最新省时6 %变性聚丙烯酰胺凝胶电泳
- 格式:doc
- 大小:16.50 KB
- 文档页数:2
药典聚丙烯酰胺凝胶电泳(Pharmaceutical Polyacrylamide Gel Electrophoresis,简称Pharm PGAE)是一种用于药学和生物制剂分析的电泳技术。
这种电泳方法主要用于分离和检测药品和生物制剂中的蛋白质、多肽、核酸和其他生物大分子。
Pharm PGAE在药物研发、质量控制和生物制剂生产等领域起到了至关重要的作用。
下面将详细探讨Pharm PGAE的原理、步骤、应用和优势。
### 原理:Pharm PGAE的原理基于凝胶电泳的基本原理,即在凝胶介质中通过电场作用,根据生物大分子的大小、形状和电荷进行迁移分离。
这种技术采用聚丙烯酰胺凝胶作为分离介质,通过改变凝胶的浓度和电场的强度来实现对不同生物大分子的高效分离。
### 步骤:1. **制备凝胶:** 使用聚丙烯酰胺(Polyacrylamide)和交联剂(crosslinker)制备凝胶。
凝胶的浓度和孔隙度会影响分离效果,通常根据样品的性质进行优化选择。
2. **样品处理:** 样品通常需要在电泳前进行处理,如加入蛋白负载缓冲剂、热变性处理等,以确保最佳的电泳效果。
3. **加载样品:** 将处理好的样品加载到凝胶孔中。
加载的位置和数量取决于需要分离的生物大分子种类和数量。
4. **电泳分离:** 将凝胶浸泡在缓冲液中,然后施加电场。
生物大分子根据其大小和电荷在凝胶中迁移,最终形成带状图案。
分离的速度与电场的强度、凝胶浓度以及生物大分子的电荷和大小有关。
5. **染色与检测:** 完成电泳后,需要将凝胶染色以可视化分离的生物大分子。
染色剂的选择取决于要检测的生物大分子类型。
例如,蛋白质通常使用银染或共染色,核酸则使用荧光染料如乙溴铵溴化物(Ethidium Bromide)等。
6. **图像分析:** 利用成像设备(如凝胶文献仪)获取凝胶图像,然后使用专业软件进行带状图案的分析和生物大分子的定量。
### 应用:Pharm PGAE在药学和生物制剂领域有广泛的应用:1. **药物质量控制:** 用于分析药品中的蛋白质、多肽和其他生物大分子成分,确保药物的质量符合规定标准。
聚丙烯酰胺凝胶电泳原理及方法发布时间:11-06-01 来源:点击量:10032 字段选择:大中小聚丙烯酰胺凝胶电泳原理及方法聚丙烯酰胺凝胶电泳是以聚丙烯酰胺凝胶作为支持介质的电泳方法。
在这种支持介质上可根据被分离物质分子大小和分子电荷多少来分离。
聚丙烯酰胺凝胶有以下优点:①聚丙烯酰胺凝胶是由丙烯酰胺和N,N'甲叉双丙烯酰胺聚合而成的大分子。
凝胶有格子是带有酰胺侧链的碳-碳聚合物,没有或很少带有离子的侧基,因而电渗作用比较小,不易和样品相互作用。
②由于聚丙烯酰胺凝胶是一种人工合成的物质,在聚合前可调节单体的浓度比,形成不同程度交链结构,其空隙度可在一个较广的范围内变化,可以根据要分离物质分子的大小,选择合适的凝胶成分,使之既有适宜的空隙度,又有比较好的机械性质。
一般说来,含丙烯酰胺7-7.5%的凝胶,机械性能适用于分离分子量范围不1万至100万物质,1万以下的蛋白质则采用含丙烯酰胺15-30%的凝胶,而分子量特别大的可采用含丙烯酰胺4%的凝胶,大孔胶易碎,小孔胶则难从管中取出,因此当丙烯酰胺的浓度增加时可以减少双含丙烯酰胺,以改进凝胶的机械性能。
③在一定浓度范围聚丙烯酰胺对热稳定。
凝胶无色透明,易观察,可用检测仪直接测定。
④丙烯酰胺是比较纯的化合物,可以精制,减少污染。
合成聚丙的总克数称凝胶浓度,常用T%表达;凝胶溶液中交联剂占单体和交联体总量的百分数称为交联度,常用C%表示,可用下式计算:公式a:丙烯酰胺克数;b:甲撑双丙烯酰胺克数;m:缓冲液体积(毫升)凝胶浓度过高时,凝胶硬而脆,容易破碎;凝胶浓度太低时,凝胶稀软,不易操作。
交联度过高,胶不透明并缺乏弹性;交联度过低,凝胶呈糊状。
聚丙烯酰胺凝胶具有较高的粘度,它不防止对流减低扩散的能力,而且因为它具有三度空间网状结构,某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状,这是凝胶的分子筛作用。
由于这种分子筛作用,这里的凝胶并不仅是单纯的支持物,因此,在电泳过程中除了注意电泳的基本原理以外,还必须注意与凝胶本身有关的各种性质(网孔的大小和形状等)。
分子生物学实验报告实验名称:SDS-聚丙烯酰胺凝胶电泳班级:生工xxx姓名:xxx同组人:xxx学号:xxxx日期:xxxxSDS-聚丙烯酰胺凝胶电泳1 引言SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)是目前分离蛋白质亚基并测定其分子量的常用方法,为检测电泳后凝胶中的蛋白质,一般使用考马斯亮蓝(CBB)染色[1]。
本次实验的目的在于学习聚丙烯酰胺凝胶电泳的原理,并掌握聚丙烯酰胺凝胶垂直板电泳分离蛋白质的操作技术。
2 材料和方法2.1实验原理2.1.1 聚丙烯酰胺凝胶的性能及制备原理2.1.1.1 性能聚丙烯酰胺凝胶的机械性能好,有弹性,透明,相对地化学稳定,对pH和温度变化比较稳定,在很多溶剂中不溶,是非离子型的,没有吸附和电渗作用。
通过改变浓度和交联度,可以控制孔径在广泛的范围内变动,并且制备凝胶的重复性好。
由于纯度高和不溶性,因此还适于少量样品的制备,不致污染样品。
2.1.1.2 制备原理聚丙烯酰胺凝胶是用丙烯酰胺(Acr)和交联剂甲叉双丙烯酰胺(Bis)在催化剂的作用下聚合而成。
聚丙烯酰胺凝胶聚合的催化系统有化学聚合和光聚合两种。
本实验是用化学聚合。
化学聚合的催化剂通常多采用过硫酸铵(AP)或过硫酸钾,此外还需要一种脂肪族叔胺作加速剂,最有效的加速剂是N,N,N’,N’-四甲基乙二胺(TEMED)。
在叔胺的催化下,由过硫酸铵形成氧的自由基,后者又使单体形成自由基,从而引发聚合反应。
叔胺要处于自由碱基状态下才有效,所以在低pH时,常会延长聚合时间;分子氧阻止链的延长,妨碍聚合作用;一些金属也能抑制聚合;冷却可以使聚合速度变慢。
通常控制这些因素使聚合在1小时内完成,以便使凝胶的性质稳定。
聚丙烯酰胺凝胶电泳和SDS-聚丙烯酰胺凝胶电泳有两种系统,即只有分离胶的连续系统和有浓缩胶与分离胶的不连续系统,不连续系统中最典型、国内外均广泛使用的是著名的Ornstein-Davis高pH碱性不连续系统,其浓缩胶丙烯酰胺浓度为4%,pH = 6.8,分离胶的丙烯酰胺浓度为12.5%,pH = 8.8。
聚丙烯酰胺凝胶电泳原理
聚丙烯酰胺凝胶电泳原理是一种常用的蛋白质分离和分析方法。
该方法利用聚丙烯酰胺凝胶作为分离介质,通过电场作用将带电的蛋白质分子在凝胶中移动分离。
其原理可以分为三个步骤:样品加载、电泳分离和染色/检测。
首先,将待测样品经过加热变性处理,使蛋白质变性并带有负电荷,然后将其加载到聚丙烯酰胺凝胶的凝胶孔中。
加载完成后,施加电场使带负电荷的蛋白质沿着凝胶孔向正极移动。
由于蛋白质分子的大小和形状不同,它们在凝胶中的移动速度也不同,从而实现了蛋白质的分离。
接下来,电泳分离的时间和电场强度可以根据需要进行调节,以实现较好的分离效果。
一般情况下,较小的蛋白质分子会更快地向阳极移动,而较大的蛋白质分子移动较慢。
根据蛋白质在凝胶中的迁移距离,可以用来判断蛋白质的相对分子质量。
最后,对分离完成的蛋白质进行染色或检测。
常用的染色方法包括银染法和脱氧核糖核酸( DNA )染料染色法,这些方法可
以使蛋白质在凝胶上形成可见的条带。
另外,还可以使用荧光标记的蛋白质或特定的抗体进行免疫检测,以获得更具体的信息。
综上所述,聚丙烯酰胺凝胶电泳利用聚丙烯酰胺凝胶作为分离介质,通过电场作用将带电的蛋白质在凝胶中移动分离,并通过染色或检测方法来获取蛋白质的分离结果。
这种方法具有简
单、快速和可重复性好的特点,被广泛应用于生物化学和分子生物学领域的蛋白质研究中。
简述聚丙烯酰胺凝胶电泳
聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis,PAGE)是一种用于分离和分析生物分子的技术。
它基于不同分子在电场中的
迁移率差异,从而实现对蛋白质、核酸等生物大分子的分离和鉴定。
聚丙烯酰胺凝胶是由丙烯酰胺和亚甲基双丙烯酰胺聚合而成的三
维网状结构。
在电泳过程中,将待分析的样本加载到凝胶孔中,然后
在电场作用下,分子会根据其电荷性质和大小在凝胶中移动。
较小的
分子会穿过凝胶中的小孔,而较大的分子则被阻挡在凝胶中,从而实
现分子的分离。
聚丙烯酰胺凝胶电泳可以根据凝胶的浓度和孔径大小来控制分离
的效果。
通常使用的凝胶浓度为 5%至 20%,孔径大小则根据待分析
的分子大小而定。
在电泳过程中,可以通过染色或荧光标记来检测分
子的位置和数量。
聚丙烯酰胺凝胶电泳是一种常用的生物化学技术,广泛应用于蛋白质、核酸等生物分子的分离、鉴定和纯化。
它具有分辨率高、操作简便、重复性好等优点,是生物化学研究中不可或缺的工具之一。
SDS聚丙烯酰胺凝胶电泳:莱姆利(emmli)于1970年创建的含十二烷基硫酸钠(SDS)的变性聚丙烯酰胺凝胶电泳分离蛋白质方法。
向样品加入还原剂(打开蛋白质的二硫键)和过量SDS,SDS是阴离子去垢剂,使蛋白质变性解聚,并与蛋白质结合成带强负电荷的复合物,掩盖了蛋白质之间原有电荷的差异,使各种蛋白质的电荷/质量比值都相同,因而在聚丙烯酰胺凝胶中电泳时迁移率主要取决于蛋白质分子大小。
是分析蛋白质和多肽、测定其分子量等常用的方法。
可测定蛋白质分子量.其原理是带大量电荷的SDS结合到蛋白质分子上克服了蛋白质分子原有电荷的影响而得到恒定的荷/质比.SDS聚丙烯酰胺凝胶电泳测蛋白质分子量已经比较成功,此法测定时间短,分辨率高,所需样品量极少(1~100μg),但只适用于球形或基本上呈球形的蛋白质,某些蛋白质不易与SDS结合如木瓜蛋白酶,核糖核酸酶等,此时测定结果就不准确.2、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)(1)定义丙烯酰胺凝胶电泳(PAGE):是以聚丙烯胺凝胶作为载体的一种区带电泳。
SDS-PAGE:是在聚丙烯酰胺凝胶系统中引进SDS(十二烷基磺酸钠)(2)SDS的作用SDS是一种阴离子去垢剂,可与蛋白质结合,形成SDS-蛋白质复合物。
于SDS带有大量负电荷,好比蛋白质穿上带负电的“外衣”,蛋白质本身带有的电荷则被掩盖,即消除了蛋白质分子之间电荷差异。
此在电泳时,蛋白质分子的迁移速度则主要取决于蛋白质分子大小(3) SDS-PAGE分类:SDS-PAGE按照缓冲液pH值和凝胶孔径差异分为连续系统和不连续系统两大类:连续系统:电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。
不连续系统:缓冲液离子成分,pH,凝胶浓度及电位梯度均不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳(4)聚丙烯胺凝胶的生成:聚丙烯胺凝胶由丙烯酰胺单体(Acr)和N,N’-甲叉双丙烯酰胺(Bis)在催化剂作用下聚合而成。
聚丙烯酰胺凝胶电泳实验报告引言聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis,简称PAGE)是一种常用的生物分子分析技术。
它通过应用电场,将带电的生物大分子(如DNA、RNA和蛋白质)在聚丙烯酰胺凝胶上进行分离和测量。
本实验旨在通过聚丙烯酰胺凝胶电泳技术分析DNA分子的大小和浓度。
材料与方法1. 准备聚丙烯酰胺凝胶:将聚丙烯酰胺粉末加入缓冲液中,并加热至溶解,制备成一定浓度的聚丙烯酰胺凝胶。
2. 制备样品:将待测DNA样品与DNA标记物混合,加入一定体积的加载缓冲液,并加热至退变。
3. 电泳操作:将准备好的样品注入凝胶槽,连接电源,施加一定电压使DNA分子在凝胶中移动。
4. 染色与观察:将电泳结束后的凝胶进行染色,使用紫外线透射仪观察和记录分离出的DNA带。
结果与讨论通过实验我们得到了一张聚丙烯酰胺凝胶电泳的结果图。
图中展示了不同大小的DNA分子在凝胶中的分离情况。
根据DNA标记物的迁移距离和已知标准品的迁移距离,我们可以测量待测DNA样品的大小和浓度。
在实验中,我们发现较大的DNA分子在凝胶中迁移较慢,而较小的DNA分子则迁移较快。
这是因为聚丙烯酰胺凝胶具有一定的孔隙结构,较大的DNA分子难以穿过这些孔隙,因此迁移速度较慢。
而较小的DNA分子则能够更容易地通过孔隙,因此迁移速度较快。
我们还观察到,在电泳过程中,DNA分子会受到电场的作用而带有电荷,向阳极(电场的正极)移动。
根据DNA分子的电荷量、大小和凝胶孔隙的大小,我们可以通过调整电场强度和凝胶浓度来控制DNA分子的迁移速度和分离效果。
结论通过聚丙烯酰胺凝胶电泳实验,我们成功地分离和测量了DNA分子的大小和浓度。
这项技术在生物学和分子生物学研究中具有重要的应用价值,可以用于DNA测序、基因突变检测和蛋白质研究等领域。
然而,在实际应用中,我们需要注意凝胶浓度、电场强度和染色方法等因素对实验结果的影响,以确保实验的准确性和可重复性。
聚丙烯酰胺凝胶电泳实验分析在很多地方看到大家都在讨论关于聚丙烯酰胺凝胶电泳的知识。
看了好多观点以后,不如自己做一个实验来分析。
更何况对于聚丙烯酰胺凝胶电泳分析必须要通过实验来验证观点。
下面就是关于聚丙烯酰胺凝胶电泳实验分析:明确实验目的:1.掌握聚丙烯酰胺凝胶电泳的原理。
2.熟悉聚丙烯酰胺凝胶电泳的操作过程。
3.了解聚丙烯酰胺凝胶电泳的特点和应用范围。
了解实验原理:聚丙烯酰胺凝胶是由丙烯酰胺(简称Acr)和交联剂甲叉双丙烯酰胺(简称Bis)在催化剂的作用下,聚合交联而成的含有酰胺基侧链的脂肪族大分子化合物。
聚丙烯酰胺凝胶具有三维网状结构,能起分子筛作用。
用它作电泳支持物,对样品的分离取决于各组分所带电荷的多少及分子大小。
此外,聚丙烯酰胺凝胶电泳还具有浓缩效应,即在电泳开始阶段,由于不连续pH梯度作用,将样品压缩成一条狭窄区带,从而提高了分离效果。
聚丙烯酰胺凝胶电泳分为垂直平板电泳和圆盘电泳,两者的原理完全相同。
由于垂直板形凝胶具有板薄、易冷却,分辨率高、操作简单、便于比较与扫描等优点,因而为大多数实验室采用。
聚丙烯酰胺凝胶电泳的分辨率比纸电泳高得多,能检出10-9~10-12g样品,特别适合于分离和测定蛋白质、核酸等生物大分子化合物。
它除了能对生物大分子物质进行定性、定量分析外,还可用以测定分子量,且是一种较先进的测定分子量的方法。
不连续变性聚丙烯酰胺凝胶电泳是使用最广泛的凝胶电泳。
不连续是指电泳的pH值不连续(样品浓缩胶缓冲液pH 6.8, 电极缓冲液pH 8.3, 分离胶pH 8.8)、凝胶不连续(一般分成样品浓缩胶和样品分离胶两层)。
变性是指样品蛋白经SDS和巯基乙醇作用后,所有蛋白质都解聚成为其构成亚基,并且都带上负电荷,形状都近似于长椭园棒状。
这种SDS-蛋白质复合物,在凝胶电泳中的迁移率,不再受蛋白质原有电荷和形状的影响,而只与园棒的长度也就是蛋白质的分子量有关。
SDS聚丙烯酰胺凝胶的有效分离笵围取决于灌制凝胶时聚丙烯酰胺的浓度和交联度,二者决定凝胶分子筛的孔径大小,而孔径又是灌胶时所用丙烯酰胺和甲叉双丙烯酰胺绝对浓度的函数。
6 %变性聚丙烯酰胺凝胶电泳
实验试剂及配制:
a, 40 %丙烯酰胺单体凝胶贮存液。
丙烯酰胺38 g,甲叉双丙烯酰胺 2 g,加双蒸水定容至 100mL,过滤,贮存于棕色瓶中。
b,变性剂。
1 M NaOH 1 mL,甲酰胺 95 mL,溴酚蓝 0. 05 g,二甲苯青 0. 05 g,加双蒸水定容至100 mL。
C, 固定液。
100 mL 冰醋酸溶于双蒸水定容至1 000 mL。
d, 银染液。
硝酸银 1 g, 37 甲醛 1. 5 mL,加双蒸水定容至1000 mL。
f, 显影液。
无水碳酸钠 30 g, 37 甲醛 1. 5mL, 10 mg /mL 硫代硫酸钠 200 μL,加双蒸水定容至 1 000 mL。
DNA 变性聚丙烯酰胺凝胶电泳的操作流程
6 %变性凝胶的制备:40 %的凝胶贮存液 11. 2 mL,尿素36.36g, 5 × TBE 15mL,加双蒸水定容至 75 mL。
预冷至 4 ℃后,加入500 μL 10 过硫酸铵和 50 μL TEMD 混合均匀,灌胶。
灌胶完毕,插入样品梳,在室温下聚合 30 ~60 min。
聚合完全后,梳齿下可见二条折光线。
电泳:安装电泳装置,在电泳槽中加入1 × TBE缓冲液,使缓冲液覆盖样品孔。
拔出样品梳,用移液器吸取适量缓冲液冲洗样品孔。
打开变压器,恒定功率 60 W 预电泳 15 ~30 min。
预电泳结束后,用移液器将 DNA 样品小心注入样品孔中( 加样量为 3 ~ 5 μL) ,电泳直至带型分开。
固定:关闭电源,卸下玻璃板,剥离玻璃板,将胶板置于固定液中固定 30 min,直到指示剂颜色褪去。
漂洗:将胶板转移到双蒸水中漂洗三遍,
每次 2 ~ 3 min。
染色:转移胶板至染色液中,在摇床上摇
动染色 30 ~ 40 min。
显影:将胶板在双蒸水中漂洗 5 ~ 10 s 后
立即放入预冷为 4 ℃~ 10 ℃的显影液中,摇动显
影直到带型完全出现。
定影:将出现带型的胶板放入固定液中定
影 2 ~ 3 min,再用双蒸水漂洗两次 ( 每次 2 min) 。
干胶:胶板置于室温自然干燥。
带型统计
改良方法:a,银染 0.5%HNO+0.1 %AgNO
b,漂洗蒸馏水2-3s
C,显影 1.5% NaOH+0.2%Na_CO+0.5%HCHO 2-5 min
d, 终止 5%无水乙醇+ 0.5 %HNO1 m后用自来水冲洗1 min。