随机过程-第一章 预备知识及补充
- 格式:pdf
- 大小:352.77 KB
- 文档页数:15
第一章随机过程本章主要内容:随机过程的基本概念●随机过程的数字特征●随机过程的微分和积分计算●随机过程的平稳性和遍历性●随机过程的相关函数及其性质●复随机过程●正态分布的随机过程第一章我们介绍了随机变量,随机变量是一个与时间无关的量,随机变量的某个结果,是一个确定的数值。
例如,骰子的6面,点数总是1~6,假设A面点数为1,那么无论你何时投掷成A面,它的点数都是1,不会出现其它的结果,即结果具有同一性。
但生活中,许多参量是随时间变化的,如测量接收机的电压,它是一个随时间变化的曲线;又如频率源的输出频率,它随温度变化,所以有个频率稳定度的范围的概念(即偏离标称频率的最大范围)。
这些随时间变化的随机变量就称为随机过程。
显然,随机过程是由随机变量构成,又与时间相关。
1.1 随机过程的基本概念及统计特性1.1.1 随机过程的定义现在我们进一步论述随机过程的概念。
当对接收机的噪声电压作“单次”观察时,可以得到波形)(1t x ,也可能得到波形)(2t x ,)(3t x 等等,每次观测的波形的具体形状,虽然事先不知道,但肯定为所有可能的波形中的一个。
而这些所有可能的波形集合)(1t x ,)(2t x ,)(3t x ,…,)(t x n ,…..,就构成了随机过程)(t X 。
图1.1 噪声电压的起伏波形1. 样本函数:)(1t x ,)(2t x ,)(3t x ,…,)(t x n ,都是时间的函数,称为样本函数。
2. 随机性:一次试验,随机过程必取一个样本函数,但所取的样本函数带有随机性。
因此,随机过程不仅是时间t 的函数,还是可能结果ζ的函数,记为),(ζt X ,简写成)(t X 。
3.随机过程的定义:定义1把随机过程看成一族样本函数。
4.定义的理解上面两种随机过程的定义,从两个角度描述了随机过程。
具体的说,作观测时,常用定义1,这样通过观测的试验样本来得到随机过程的统计特性;对随机过程作理论分析时,常用定义2,这样可以把随机过程看成为n 维随机变量,n越大,采样时间越小,所得到的统计特性越准确。
概率论与随机过程(工程硕士生60学时)教材及主要参考书:1.《随机过程》刘次华著,华中理工大学出版社出版。
2.《概率论与数理统计》浙江大学编,高等教育出版社出版。
3.《概率论与数理统计》同济大学编,高等教育出版社出版。
第一章 概率论第一节 预备知识一、排列与组合问题(一) 排列问题的提法:从n 个不同元素n a a a ...,21中任取r 个)(n r ≤,按先后顺序把它们排列,共有多少种不同的排列?分析:第一个位置有n 种取法,第二个位置有1-n 种取法,…第r 个位置有1+-r n 种取法,则共有:rn A r n n r n n n =-=+--)!(!)1()1((二) 组合问题的提法:从n 个不同元素n a a a ...,21中任取r 个(n r ≤),不按先后顺序得到一种组合,共有多少中不同的组合?分析:由于不按先后顺序,因此r r a a a a 121- 与121a a a a r r -是同一组合,因此一种组合对应!r 种排列,共有:!)1()1(r r n n n +-- =)!(!!r n r n -=rn C 二、集合论(不妨假设所有集合全为Ω的子集)(一)A B ⊂,A 是B 的子集,即集合A 的元素全部属于集合B 。
例:{}全体实数=R {}全体自然数=N 则:R N ⊂(二)B A =B A ⊂⇔且A B ⊂分析:定义蕴涵了证明两个集合相等的方法。
(三)B A C =或B A C +=,即集合C 包含集合A 和集合B 的全部元素,但不包含其它元素。
例:{}全体有理数=A {}全体无理数=B 则:{}R B A C ==+=全体实数 1.运算规律(1)交换律 A B B A =(2)结合律 )()(C B A C B A =特别地:若B A ⊂,则:B B A =A A =Φ Ω=Ω A A A A =2.推广情形集合的并运算可以推广到有限个、可数多个甚至到不可数情形,为了阐述清楚,下面补充可数集合的定义。
(完整word版)随机过程知识点汇总(word文档良心出品).docx第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量X,分布函数F ( x)P(X x)离散型随机变量X 的概率分布用分布列p k P( X x k )分布函数 F ( x)pkX 的概率分布用概率密度 f (x)xf (t )dt连续型随机变量分布函数 F ( x)2. n 维随机变量X( X1 , X 2 ,, X n )其联合分布函数 F (x) F (x1 , x2 , , x n )P( X1x1 , X 2x2 ,, X n x n , )离散型联合分布列连续型联合概率密度3.随机变量的数字特征数学期望:离散型随机变量X EX x k p k连续型随机变量X EX xf ( x) dx 方差: DX E( X EX ) 2EX 2( EX ) 2反映随机变量取值的离散程度协方差(两个随机变量X , Y ): B XY E[( X EX )(Y EY )]E( XY )EX EY相关系数(两个随机变量X, Y ):XYBXY若0,则称 X ,Y 不相关。
DX DY独立不相关04.特征函数 g(t ) E (e itX )离散g(t )e itx k p k连续g (t)e itx f ( x) dx 重要性质: g(0)1, g(t)1, g ( t )g (t) , g k (0)i k EX k 5.常见随机变量的分布列或概率密度、期望、方差0-1分布P( X 1) p, P( X 0) q EX p DX p q二项分布P( X k) C n k p k q n k EX np DX npqk泊松分布P( X k) e EX DX均匀分布略k!1( x a)2正态分布 N (a,2 ) f (x) e 222 EX a DX2f ( x)e x , x0EX11指数分布x0DX20,6.N正随机量X( X 1 , X 2 ,, X n ) 的合概率密度 X ~ N ( a, B)f ( x1 , x2 ,, x n )1exp{1TB1( x a)} n1( x a)( 2) 2| B |22a (a1 , a2 ,, a n ) , x(x1 , x2 , , x n ) , B(b ij) n n正定方差二.随机程的基本概念1.随机程的一般定( ,P) 是概率空,T是定的参数集,若每个t T,都有一个随机量X 与之,称随机量族X (t, e), t T 是 ( ,P) 上的随机程。