理学三重积分华南理工大学高数模版
- 格式:pptx
- 大小:1.32 MB
- 文档页数:35
高等数学〔下〕试题集t在点(),0,0a 的切线方程为0x a y z a c -==. 22122z x y =+上求出切平面,使所得的切平面与平面},,1x y -应与平面平面42210x y z ---=的法向量平行,11,2x =-=,由于切点在曲面上()221121122z ⎛⎫=+-= ⎪⎝⎭ ()()21210,210y z x y z +--=---=473y z+==-和平面:4223x y z ∏--=则〔 B 〕 、L 与∏平行,但L 不在∏内 、L 不与∏垂直,L 不与∏平行 23z xy +=在点()1,2,0处的法线方程是直线1210:320x y L x z +-=⎧⎨+-=⎩和2112:123x y z L -+-==,12,L L 所确定的平面方程。
()()0,1,2,1,1,1--,则{}11,2,3S =--是1L 的{}21,2,3S =-,因为12//S S ,所以12//L L设12,L L 所确定的平面方程为0Ax By Cz D +++=,它经过点()1,1,2-和点()()0,1,2,1,1,1--,所以2022000A B C D A D B C D B D A B C D C -++==-⎧⎧⎪⎪++=⇒=-⎨⎨⎪⎪--+==⎩⎩所求方程为210x y --+=二。
多元函数[](){}221.201042,116,18.z x y gradz ==+9点的梯度[]()()44222.2010(,)21,1,1,1.f x y x y x xy y =+-----的极值点是[]()()2010:(,)0,0,(0,0)(0,0),0,0.f x y f f x y=3. 证明处连续与存在但在处不可微()()()()()0:10(0,0),(,)0,0(,0)(0,0)2(0,0)lim (0,0)0,(0,0)(0,0).(0,0)(0,0)3lim (,)0,0.x y x y x x y x y f f x y f x f f f xf f f f x f y f x y →→∆→∆→∆→===∆-==∆⎡⎤∆-∆+∆解因为所以处连续.=0,同理所以与存在因为,所以在处不可微[]()2010,cos ,sin ,u x y x r y r u ux y r y xθθθ==∂∂-∂∂4. 设函数有连续偏导数,试用极坐标与 直角坐标的转化公式 将变换为,下的表达式.cos ,sin arctan ,sin cos cos ,sin ,,.yx r y r r xr r x y x r y r u u u x y y x θθθθθθθθθθ====∂∂∂∂===-=∂∂∂∂∂∂∂-=∂∂∂解:由得到从而于是5.[2021]00009916x x y y xy →→→→-+==-6.[2021] ()()()23322222200110,1x x y y y xyu du dx dy dx xyxy====-==+=++处7.[2021] 设22,y z f x x ⎛⎫= ⎪⎝⎭,其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂。
05第五节三重积分(二)第五节三重积分(二)分布图示★利用柱面坐标计算三重积分★例1 ★例2★例3★利用球面坐标计算三重积分★例4 ★例5★例6★空间立体的质心与转动惯量★例7 ★例8★例9★空间立体对质点的引力★例10★内容小结★课堂练习★习题10—5 ★返回内容要点一、利用柱面坐标计算三重积分点«Skip Record If...»的直角坐标«Skip Record If...»与柱面坐标«Skip Record If...»之间的关系为«Skip Record If...» «Skip Record If...» «Skip Record If...» (5.1)柱面坐标系中的三族坐标面分别为«Skip Record If...»常数:一族以«Skip Record If...»轴为中心轴的圆柱面;«Skip Record If...»常数:一族过«Skip Record If...»轴的半平面;«Skip Record If...»常数:一族与«Skip Record If...»面平行的平面.柱面坐标系中的体积微元: «Skip Record If...»,为了把上式右端的三重积分化为累次积分,平行于«Skip Record If...»轴的直线与区域«Skip Record If...»的边界最多只有两个交点. 设«Skip Record If...»在«Skip Record If...»面上的投影为«Skip Record If...»,区域«Skip Record If...»用«Skip Record If...»,«Skip Record If...»表示. 区域«Skip Record If...»关于«Skip Record If...»面的投影柱面将«Skip Record If...»的边界曲面分为上、下两部分,设上曲面方程为«Skip Record If...»,下曲面方程为«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,于是«Skip Record If...»二、利用球面坐标计算三重积分点«Skip Record If...»的直角坐标«Skip Record If...»与柱面坐标«Skip Record If...»之间的关系为«Skip Record If...» (5.3)球面坐标系中的三族坐标面分别为«Skip Record If...»常数:一族以原点为球心的球面;«Skip Record If...»常数:一族以原点为顶点,«Skip Record If...»轴为对称轴的圆锥面;«Skip Record If...»常数:一族过«Skip Record If...»轴的半平面.球面坐标系中的体积微元: «Skip Record If...»,三、三重积分的应用空间立体的重心«Skip Record If...», «Skip Record If...»«Skip Record If...».其中,«Skip Record If...»为该物体的质量.空间立体的转动惯量«Skip Record If...»«Skip Record If...» «Skip Record If...».空间立体对质点的引力«Skip Record If...»«Skip Record If...».例题选讲利用柱面坐标计算三重积分例1 (E01) 立体«Skip Record If...»是圆柱面«Skip Record If...»内部, 平面«Skip Record If...»下方, 抛物面«Skip Record If...»上方部分, 其上任一点的密度与它到z轴之距离成正比(比例系数为K), 求«Skip Record If...»的质量m.解据题意,密度函数为«Skip Record If...»所以 «Skip Record If...»利用柱坐标,先对«Skip Record If...»积分,«Skip Record If...»在«Skip Record If...»平面上投影域«Skip Record If...»为«Skip Record If...»故 «Skip Record If...»«Skip Record If...»例2 (E02) 计算«Skip Record If...»其中«Skip Record If...»是由球面«Skip Record If...»与抛物面«Skip Record If...»所围成(在抛物面内的那一部分)的立体区域.解利用柱面坐标,题设两曲面方程分别为«Skip Record If...»«Skip Record If...»从中解得两曲面的交线为«Skip Record If...»«Skip Record If...»«Skip Record If...»在«Skip Record If...»面上的投影区域为«Skip Record If...»«Skip Record If...»«Skip Record If...»对投影区域«Skip Record If...»内任一点«Skip Record If...»有«Skip Record If...»所以«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»例3 计算«Skip Record If...»其中«Skip Record If...»是曲线«Skip Record If...»绕«Skip Record If...»轴旋转一周而成的曲面与平面«Skip Record If...»所围的立体.解由曲线«Skip Record If...»«Skip Record If...»绕«Skip Record If...»轴旋转所得曲面方程为«Skip Record If...»旋转抛物面设«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»利用球面坐标计算三重积分例4 (E03) 计算«Skip Record If...»其中«Skip Record If...»是锥面«Skip Record If...»与平面«Skip Record If...»所围的立体.解在球面坐标系中«Skip Record If...» «Skip Record If...»«Skip Record If...»故积分区域«Skip Record If...»可表为«Skip Record If...»所以 «Skip Record If...»«Skip Record If...»注: 本题也可采用柱面坐标来计算.此时,锥面« «SkipRecord If...»积分区域«Skip Record If...»同样得到«Skip Record If...»例5 (E04) 计算球体«Skip Record If...»在锥面«Skip Record If...»上方部分«Skip Record If...»的体积(图9-5-8).解在球面坐标系中,«Skip Record If...»« «Skip RecordIf...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»故所求体积«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»例6 计算«Skip Record If...», 其中«Skip Record If...»是由抛物面«Skip Record If...»和球面«Skip Record If...»所围成的空间闭区域.解«Skip Record If...»注意到«Skip Record If...»关于«Skip Record If...»和«Skip Record If...»面对称,有«Skip Record If...»且«Skip Record If...»«Skip Record If...»在«Skip Record If...»面上的投影区域圆域«Skip Record If...»对«Skip Record If...»内任一点,有«Skip Record If...»所以«Skip Record If...»«Skip Record If...»三重积分的应用例7 (E05) 已知均匀半球体的半径为a, 在该半球体的底圆的一旁, 拼接一个半径与球的半径相等, 材料相同的均匀圆柱体, 使圆柱体的底圆与半球的底圆相重合, 为了使拼接后的整个立体重心恰是球心, 问圆柱的高应为多少?解如图(见系统演示),设所求的圆柱体的高度为«Skip Record If...»使圆柱体与半球的底圆在«Skip Record If...»平面上.圆柱体的中心轴为«Skip Record If...»轴,设整个立体为«Skip Record If...»其体积为«Skip Record If...»重心坐标为«Skip Record If...»由题意应有«Skip Record If...»于是«Skip Record If...»设圆柱体与半球分别为«Skip Record If...»分别用柱面坐标与球面坐标计算,得«Skip Record If...»«Skip Record If...»«Skip Record If...»得«Skip Record If...»就是所求圆柱的高.例8 求密度为«Skip Record If...»的均匀球体对于过球心的一条轴«Skip Record If...»的转动惯量.解取球心为坐标原点,球的半径为«Skip Record If...»轴与轴«Skip Record If...»重合,则球体所占空间闭区域«Skip Record If...»所求转动惯量即球体对于«Skip Record If...»轴的转动惯量为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»其中«Skip Record If...»为球体的质量.例9 (E06) 求高为h, 半顶角为«Skip Record If...»密度为«Skip Record If...»(常数)的正圆锥体绕对称轴旋转的转动惯量.解取对称轴为«Skip Record If...»轴,取顶点为原点,建立如图坐标系,则«Skip Record If...»利用截面法,由«Skip Record If...»«Skip Record If...»得到«Skip Record If...»«Skip Record If...»例10 (E07) 设半径为«Skip Record If...»的匀质球(其密度为常数«Skip Record If...»)占有空间区域«Skip Record If...»求它对位于«Skip Record If...»«Skip Record If...»处的单位质量的质点的引力.解设球的密度为«Skip Record If...»由球体的对称性及质量分布的均匀性知«Skip Record If...»所求引力沿«Skip Record If...»轴的分量为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»其中«Skip Record If...»为球的质量.注: 本题表明,匀质球对球外一质点的引力如同球的质量集中于球心时两质点间的引力.课堂练习1.计算由曲面«Skip Record If...»所围立体的体积.2.求均匀半球体的重心.。
一、二重积分(引例:求平面薄片的质量) 基本计算思路:把二重积分化为二次积分(定积分) 基本计算的两个步骤:1)定限;2)定积分的计算基本计算方法:1)在直角坐标下的计算方法:x 型区域、y 型区域;2)在极坐标下的计算方法:注意被积函数要乘一个r 。
其他知识点:改变积分的次序二重积分的应用:曲面():,z f x y ∑=的面积为D,其中D为∑在xoy 面上的投影区域。
例1:()()2222,:,,00Dy x d D y R x x y R y R σ-≤++≤≥>⎰⎰解:原式()()02232000sin cos R xRR dx y x dy d r dr πθθθ+-=-+-⎰⎰⎰⎰()33032001sin 233R R R x dx d r dr πθθ-⎛⎫=++- ⎪⎝⎭⎰⎰⎰ 44414428R R R ππ⎛⎫=+-= ⎪⎝⎭ 例2:交换下列二次积分的次序()()()21133201,,x x dx f x y dy dx f x y dy -+=⎰⎰⎰⎰132y -二、三重积分(引例:求空间立体的质量) 基本计算思路:把三重积分化为三次积分(定积分) 基本计算的两个步骤:1)定限;2)定积分的计算基本计算方法:1)投影法;2)切片法;3)柱面坐标下计算法;4)球面坐标下计算法例3:计算三重积分zdv Ω⎰⎰⎰,式中Ω为由12z z ⎧≥⎪⎨≤≤⎪⎩所确定的圆台体。
解:方法一、用截面法:2423111544z zdv z dz πππΩ⎡⎤===⎢⎥⎣⎦⎰⎰⎰⎰ 方法二、用球面坐标: 1202,0,4cos cos πθπϕρϕϕ≤≤≤≤≤≤ 223cos 44133cos 4sin sin sin cos 2cos 4cos zdv d d d d πππϕϕϕϕθϕρϕϕρπϕϕϕΩ⎛⎫==-⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰ 4222111152242cos 8cos 484ππππϕϕ⎡⎤⎛⎫=-=--+= ⎪⎢⎥⎝⎭⎣⎦ 三、关于弧长的曲线积分(引例:求曲线弧状物体的质量) 基本计算思路:把曲线积分化为定积分基本计算的两个步骤:1)化积分曲线为参数方程并确定参数取值范围,注意定积分的下限总小于上限;2)定积分的计算 注意选取适当的参数以简化定积分的计算。
第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限`(1)00x y →→;解:000031lim 6x t t y t →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在 !4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.;作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. ¥2.设2exy u =, 证明 02=∂∂+∂∂yu y x u x.证:因为222312,xxy yu ux e e x y y y ∂∂-==∂∂ 所以222223*********x x x xy y y y u u x x x x y xe ye e e x y y y y y∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭—2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+(当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,limlim 00y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量)z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln z x z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.;3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()2201sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====--又()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==)所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y +≠=-+++()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; |(2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦~()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式 (1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=-4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂.解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题*(1)已知3330x y xy +-=,则d d y x =22x yx y --;(2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .$解:由已知()2222222602460dz xdx ydy dz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩ ()()22606,132623220xdx z dz dz x dy x xy dx z dxy yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u u u P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂--5.设函数()f u 具有二阶连续偏导数,而()e sin x zf y =满足方程22222e x z zz x y∂∂+=∂∂,求()f u . 】解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂()()()()222cos ,cos (sin )x xx z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是@cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l 的方向导数是23;(6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变解:(){}(){}1,11,12,23,3gradz x y y x --=--=-5l =⎨⎩,{3,3}zl∂=-⋅=∂ )z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2); !(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩,法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z =&{}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z ab ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z ngradz n n ∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. —证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬ ⎪ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。