微粒之间的相互作用力解读
- 格式:ppt
- 大小:777.00 KB
- 文档页数:7
微粒间的相互作用要点:1.了解化学键的定义,了解离子键、共价键的形成。
2.了解离子化合物和共价化合物的结构特征并能初步解释其物理性质一、化学键的含义与类型1.化学键:相邻的两个或多个原子间强烈的相互作用。
注意:(1)化学键定义中的原子是广义上的原子,既包括中性原子,也包括带电原子或原子团(即离子);(2)化学键定义中“相邻”“强烈的相互作用”是指原子间紧密的接触且能产生强烈电子与质子、电子与电子、质子与质子间的电性吸引与排斥平衡作用。
物质内不相邻的原子间产生的弱相互作用不是化学键;(3)化学键的形成是原子间强烈的相互作用的结果。
如果物质内部相邻的两个原子间的作用很弱,如稀有气体原子间的相互作用,就不是化学键。
它们之间的弱相互作用叫做范德华力(或分子间作用力)。
化学键的常见类型:离子键、共价键、金属键。
(一)、共价键1.共价键的概念:原子之间通过共用电子形成的化学键称为共价键。
2.成键元素:通常是非金属元素原子形成的化学键为共价键。
结果是使每个原子都达到8或2个电子的稳定结构,使体系的能量降低,达到稳定状态。
3.形成共价键的条件:同种或不同种的原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。
(二)、离子键1.离子键的概念:阴阳离子之间通过静电作用形成的化学键。
2.成键元素:一般存在于金属和非金属之间。
3.形成离子键的条件:成键原子的得、失电子能力差别很大(活泼金属与活泼非金属之间)例如:在氯化钠的形成过程中,由于钠是金属元素很容易失电子,氯是非金属元素很容易得电子,当钠原子和氯原子靠近时,钠原子就失去最外层的一个电子形成钠阳离子,氯原子最外层得到钠的一个电子形成氯阴离子(两者最外层均达到稳定结构),阴、阳离子靠静电作用形成化学键——离子键,构成氯化钠。
由于钠和氯原子之间是完全的得失电子,他们已形成了离子,因此NaCl中的微粒不能再叫原子,而应该叫离子。
【例题1】.下列关于化学键的叙述正确的是()A.化学键既存在于相邻的原子之间,又存在于相邻分子之间B.两个原子之间的相互作用叫做化学键C.化学键通常指的是相邻的两个或多个原子之间的强烈的相互作用D.阴阳离子之间有强烈的吸引作用而没有排斥作用,所以离子键的核间距相当小【例题2】.下列过程中,共价键被破坏的是()A.碘升华B.溴蒸气被木炭吸附C.酒精溶于水D.HCl气体溶于水二、离子化合物与共价化合物1.离子化合物:含有离子键的化合物。
2021届高三化学一轮复习——微粒之间的相互作用力知识梳理与训练知识梳理1.化学键的概念及分类(1)概念:相邻原子或离子之间强烈的相互作用。
(2)形成与分类2.共价键(1)共价键的类型①按成键原子间共用电子对的数目分为单键、双键和三键。
②按共用电子对是否偏移分为极性键、非极性键。
③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。
(2)键参数①键能:指气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。
②键长:指形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。
③键角:在原子数超过2的分子中,两个共价键之间的夹角。
④键参数对分子性质的影响键长越短,键能越大,分子越稳定。
(3)σ键、π键的判断①由轨道重叠方式判断“头碰头”重叠为σ键,“肩并肩”重叠为π键。
②由共用电子对数判断单键为σ键;双键或三键,其中一个为σ键,其余为π键。
③由成键轨道类型判断s轨道形成的共价键全部是σ键;杂化轨道形成的共价键全部为σ键。
(4)配位键①孤电子对分子或离子中没有跟其他原子共用的电子对称为孤电子对。
②配位键a.配位键的形成:成键原子一方提供孤电子对,另一方提供空轨道形成的共价键;b.配位键的表示:常用“―→”来表示配位键,箭头指向接受孤电子对的原子,如NH+4可表示为,在NH+4中,虽然有一个N—H键形成的过程与其他3个N—H键形成的过程不同,但是一旦形成之后,4个共价键就完全相同。
③配合物如[Cu(NH3)4]SO4配位体有孤电子对,如H2O、NH3、CO、F-、Cl-、CN-等。
中心原子有空轨道,如Fe3+、Cu2+、Zn2+、Ag+等。
3.分子间作用力和氢键(1)分子间作用力①定义:把分子聚集在一起的作用力。
②特点a.分子间作用力比化学键弱得多,它主要影响物质的熔、沸点等物理性质,而化学键主要影响物质的化学性质。
b.分子间作用力存在于由共价键形成的多数共价化合物和绝大多数气态、液态、固态非金属单质分子之间。
第二单元微粒之间的相互作用力知识梳理一、离子键1.构成宏观物质的微观粒子的种类有原子、分子、离子等.不同的物质含有不同的微粒,这些微粒间通过一定的作用力彼此结合.化学键是物质中直接相邻的原子或离子之间存在的强烈的相互作用.常见的化学键有离子键、共价键和金属键.(其中金属键在中学阶段不作要求,只作了解)2。
氯化钠的形成过程钠原子和氯原子的电子层结构为不稳定结构,钠原子最外电子层电子数为1,少于4,容易失去最外层的1个电子,而形成以原子的次外电子层为最外层的8个电子稳定结构;而氯原子最外层电子数为7,多于4个,容易得1个电子,而形成最外层为8个电子的稳定结构。
当钠与氯气相互接触并加热时,反应过程中,其中Na和Cl分别失去和得到电子形成稳定的Na+和Cl—。
带异性电荷的Na+和Cl-之间发生静电作用,形成了稳定的离子化合物氯化钠。
3。
离子键的概念离子键是使阴、阳离子结合成化合物的静电作用。
4。
离子键的形成由氯化钠的形成过程可知,形成离子键的首要条件是参加反应的原子双方,一方容易失去电子,而另一方得到电子,电子由容易失去电子的一方转移到容易得到电子的一方,进而形成阳、阴离子,形成离子键。
即活泼金属与活泼非金属化合时,一般能形成离子键.5。
离子键的存在——离子化合物离子化合物是许多阴、阳离子通过离子键而形成的化合物。
因此,凡是离子化合物,其中一定存在离子键。
6.电子式(1)电子式的概念电子式是在元素符号周围用“·”或“×”来表示原子或离子的最外层上电子的式子。
(2)电子式的书写①试写出第一和第二周期内各元素原子的电子式H· ∶He ·Li ∶Be或·Be·②试写出钠、镁、铝、氯、氧、硫形成的简单离子的电子式Na+Mg2+Al3+③试写出铵离子和氢氧根离子的电子式④试写出氧化钠、过氧化钠、氯化镁、溴化铵、氢氧化钙的电子式(3)用电子式表示离子化合物的形成过程试用电子式表示出氯化镁、氧化钠、氮化镁的形成过程(说明:Mg3N2是Mg在氮气中的燃烧产物,反应的方程式为3Mg+N2点燃Mg3N2,镁在空气中燃烧也有Mg3N2生成.)或或或或7.离子的特征(1)离子电荷的电性、电荷数目离子电荷的电性、电荷数目,决定于原子得、失电子及其数目。
2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)核心知识梳理(一)化学键及类型化学键是物质中直接相邻的原子或离子间存在的强烈的相互作用。
(二)离子键、共价键的比较(三)判断离子化合物和共价化合物的三种方法(四)化学键的断裂与化学反应1.化学反应过程化学反应过程中反应物中的化学键被破坏。
如H2+F2===2HF,H—H键、F—F键均被破坏。
化学反应中,并不是反应物中所有的化学键都被破坏,如(NH4)2SO4+BaCl2===BaSO4↓+2NH4Cl,只破坏反应物中的离子键,而共价键未被破坏。
2.物理变化过程(1)离子化合物,溶于水便电离成自由移动的阴、阳离子,离子键被破坏;熔化后,也电离成自由移动的阴、阳离子,离子键被破坏。
(2)有些共价化合物溶于水后,能与水反应,其分子内共价键被破坏。
如:CO2、SO3等;有些共价化合物溶于水后,与水分子作用形成水合离子,从而发生电离,形成阴、阳离子,其分子内的共价键被破坏。
如:HCl、H2SO4等强酸。
(五)微粒电子式的书写Na+(六)分子间作用力1.概念分子间存在着将分子聚集在一起的作用力叫分子间作用力,分子间作用力包括范德华力和氢键。
2.特点(1)分子间作用力比化学键弱得多,它主要影响物质的熔沸点和溶解度等物理性质,而化学键主要影响物质的化学性质。
(2)分子间作用力只存在于由共价键形成的多数化合物分子之间和绝大多数非金属单质分子之间。
但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在分子间作用力。
3.氢键(1)氢原子与电负性较大的原子以共价键结合,若与另一电负性较大的原子接近时所形成的一种特殊的分子间或分子内作用,是一种比范德华力稍强的相互作用。
(2)除H原子外,形成氢键的原子通常是N、O、F。
4.变化规律(1)组成和结构相似的由分子组成的物质,相对分子质量越大,范德华力越大,物质的熔、沸点越高。
(2)与H原子形成氢键的原子的电负性越大,所形成的氢键越强,物质的熔沸点越高。
四大晶体微粒间作用力
晶体微粒是指晶体结构中的基本单位,它们之间的相互作用力
对于晶体的性质和行为起着至关重要的作用。
在晶体学中,我们通
常将晶体微粒间的相互作用力分为四种,离子键、共价键、金属键
和范德华力。
离子键是由正负电荷之间的静电吸引力形成的一种化学键。
在
离子晶体中,正负电荷的离子通过电荷的吸引力相互结合,形成了
稳定的晶格结构。
离子键通常在具有明显正负电荷的元素之间形成,如氯化钠晶体中的钠离子和氯离子。
共价键是由原子之间共享电子形成的一种化学键。
在共价晶体中,原子通过共享电子来形成共价键,从而形成稳定的晶格结构。
共价键通常在非金属元素之间形成,如硅晶体中的硅原子和氧原子。
金属键是由金属原子之间的电子云形成的一种化学键。
在金属
晶体中,金属原子之间的电子云可以自由流动,形成了一种特殊的
电子海结构,从而形成了稳定的晶格结构。
金属键通常在金属元素
之间形成,如铜晶体中的铜原子。
范德华力是由分子之间的瞬时诱导偶极子相互作用形成的一种
相互作用力。
在范德华力中,分子之间的瞬时诱导偶极子可以引起
相互吸引或排斥的作用,从而形成了一种相对较弱的相互作用力。
范德华力通常在非极性分子之间形成,如石英晶体中的二氧化硅分子。
这四种晶体微粒间的作用力在晶体结构和性质中起着至关重要
的作用。
它们的不同特性决定了晶体的硬度、熔点、导电性等性质,也影响着晶体的应用领域和性能表现。
因此,对于这些作用力的深
入理解和研究,对于晶体学和材料科学具有重要的理论和实际意义。
《微粒之间的相互作用力》讲义在我们所处的这个奇妙的物质世界中,微粒(原子、分子、离子等)并非孤立存在,它们之间存在着各种各样的相互作用力。
这些相互作用力决定了物质的性质和状态,从坚硬的固体到流动的液体,再到无处不在的气体,无一不是微粒间相互作用的结果。
首先,让我们来了解一下离子键。
当活泼的金属元素(如钠、钾)与活泼的非金属元素(如氯、氟)相遇时,它们之间容易发生电子的转移。
金属原子失去电子形成阳离子,非金属原子得到电子形成阴离子。
由于正负电荷之间的强烈吸引,阳离子和阴离子紧密结合,形成了离子键。
离子键的强度较大,因此由离子键构成的化合物(如氯化钠)通常具有较高的熔点和沸点,在固态时不导电,而在熔融状态或水溶液中能够导电。
与离子键不同,共价键则是原子之间通过共用电子对形成的相互作用。
例如,氢分子中的两个氢原子,它们各自提供一个电子,形成共用电子对,从而将两个氢原子结合在一起。
共价键又分为极性共价键和非极性共价键。
在极性共价键中,成键原子对共用电子对的吸引力不同,导致电子对有所偏移,使得分子呈现极性;而非极性共价键中,成键原子对共用电子对的吸引力相同,电子对不偏移,分子呈非极性。
金属键是存在于金属单质或合金中的一种特殊的相互作用力。
在金属晶体中,金属原子的部分或全部外层电子会脱离原子,形成“自由电子”,这些自由电子在整个金属晶体中自由运动,将金属原子或离子“胶合”在一起。
金属键没有方向性和饱和性,这使得金属具有良好的延展性、导电性和导热性。
除了上述三种主要的化学键,微粒之间还存在着分子间作用力。
分子间作用力包括范德华力和氢键。
范德华力普遍存在于分子之间,其强度相对较弱。
一般来说,随着分子相对质量的增大,范德华力也会增大,物质的熔沸点也会相应升高。
氢键则是一种特殊的分子间作用力,它比范德华力要强一些。
当氢原子与电负性大、半径小的原子(如氮、氧、氟)结合时,氢原子与另一个电负性大的原子之间会产生一种较强的相互作用,这就是氢键。