高一化学 微粒间的相互作用
- 格式:ppt
- 大小:1.03 MB
- 文档页数:27
2021届高三化学一轮复习——微粒之间的相互作用力(知识梳理及训练)核心知识梳理(一)化学键及类型化学键是物质中直接相邻的原子或离子间存在的强烈的相互作用。
(二)离子键、共价键的比较(三)判断离子化合物和共价化合物的三种方法(四)化学键的断裂与化学反应1.化学反应过程化学反应过程中反应物中的化学键被破坏。
如H2+F2===2HF,H—H键、F—F键均被破坏。
化学反应中,并不是反应物中所有的化学键都被破坏,如(NH4)2SO4+BaCl2===BaSO4↓+2NH4Cl,只破坏反应物中的离子键,而共价键未被破坏。
2.物理变化过程(1)离子化合物,溶于水便电离成自由移动的阴、阳离子,离子键被破坏;熔化后,也电离成自由移动的阴、阳离子,离子键被破坏。
(2)有些共价化合物溶于水后,能与水反应,其分子内共价键被破坏。
如:CO2、SO3等;有些共价化合物溶于水后,与水分子作用形成水合离子,从而发生电离,形成阴、阳离子,其分子内的共价键被破坏。
如:HCl、H2SO4等强酸。
(五)微粒电子式的书写Na+(六)分子间作用力1.概念分子间存在着将分子聚集在一起的作用力叫分子间作用力,分子间作用力包括范德华力和氢键。
2.特点(1)分子间作用力比化学键弱得多,它主要影响物质的熔沸点和溶解度等物理性质,而化学键主要影响物质的化学性质。
(2)分子间作用力只存在于由共价键形成的多数化合物分子之间和绝大多数非金属单质分子之间。
但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在分子间作用力。
3.氢键(1)氢原子与电负性较大的原子以共价键结合,若与另一电负性较大的原子接近时所形成的一种特殊的分子间或分子内作用,是一种比范德华力稍强的相互作用。
(2)除H原子外,形成氢键的原子通常是N、O、F。
4.变化规律(1)组成和结构相似的由分子组成的物质,相对分子质量越大,范德华力越大,物质的熔、沸点越高。
(2)与H原子形成氢键的原子的电负性越大,所形成的氢键越强,物质的熔沸点越高。
《微粒之间的相互作用力》讲义在我们所处的这个奇妙的物质世界中,微粒(原子、分子、离子等)并非孤立存在,它们之间存在着各种各样的相互作用力。
这些相互作用力决定了物质的性质和状态,从坚硬的固体到流动的液体,再到无处不在的气体,无一不是微粒间相互作用的结果。
首先,让我们来了解一下离子键。
当活泼的金属元素(如钠、钾)与活泼的非金属元素(如氯、氟)相遇时,它们之间容易发生电子的转移。
金属原子失去电子形成阳离子,非金属原子得到电子形成阴离子。
由于正负电荷之间的强烈吸引,阳离子和阴离子紧密结合,形成了离子键。
离子键的强度较大,因此由离子键构成的化合物(如氯化钠)通常具有较高的熔点和沸点,在固态时不导电,而在熔融状态或水溶液中能够导电。
与离子键不同,共价键则是原子之间通过共用电子对形成的相互作用。
例如,氢分子中的两个氢原子,它们各自提供一个电子,形成共用电子对,从而将两个氢原子结合在一起。
共价键又分为极性共价键和非极性共价键。
在极性共价键中,成键原子对共用电子对的吸引力不同,导致电子对有所偏移,使得分子呈现极性;而非极性共价键中,成键原子对共用电子对的吸引力相同,电子对不偏移,分子呈非极性。
金属键是存在于金属单质或合金中的一种特殊的相互作用力。
在金属晶体中,金属原子的部分或全部外层电子会脱离原子,形成“自由电子”,这些自由电子在整个金属晶体中自由运动,将金属原子或离子“胶合”在一起。
金属键没有方向性和饱和性,这使得金属具有良好的延展性、导电性和导热性。
除了上述三种主要的化学键,微粒之间还存在着分子间作用力。
分子间作用力包括范德华力和氢键。
范德华力普遍存在于分子之间,其强度相对较弱。
一般来说,随着分子相对质量的增大,范德华力也会增大,物质的熔沸点也会相应升高。
氢键则是一种特殊的分子间作用力,它比范德华力要强一些。
当氢原子与电负性大、半径小的原子(如氮、氧、氟)结合时,氢原子与另一个电负性大的原子之间会产生一种较强的相互作用,这就是氢键。
高中化学微粒间的作用教案
一、教学目标
1.了解微粒的定义和种类。
2.掌握微粒间的作用。
3.能够举例说明不同微粒间的作用。
二、教学重点
1.微粒的定义和种类。
2.微粒间的作用。
三、教学难点
1.理解微粒间的作用。
2.举例说明不同微粒间的作用。
四、教学准备
1.教师:化学微粒的教学资料,示例实验和图片。
2.学生:笔记本,纸和笔。
五、教学过程
1.引入:
教师向学生介绍微粒的概念和种类,并简要解释微粒间的作用。
让学生思考微粒间的作用对化学反应的影响。
2.讲解微粒间的作用:
(1)分子间的作用:包括范德华力,氢键和离子键。
(2)离子间的作用:主要是电荷之间的相互作用。
(3)原子间的作用:主要是原子之间的共价键和金属键。
3.示例实验:
进行几个简单的示例实验,让学生通过实验观察和分析不同微粒间的作用,加深他们对微粒间作用的理解。
4.小结:
总结微粒间不同作用的特点和影响,强调微粒间的作用在化学反应中的重要性。
五、练习与拓展:
让学生进行一些练习题,巩固对微粒间作用的理解,并引导他们思考微粒间的作用如何影响化学反应的速率和性质等。
六、课后作业:
要求学生通过查阅资料,了解更多有关微粒间作用的知识,并写一份小结和心得体会。
七、教学反思:
总结教学过程中的不足之处,为以后的教学提供参考。
二、微粒之间的相互作用力
1、化学键的定义:物质中直接相邻的原子或离子之间存在的强烈的相互作用力叫做化学键。
2、分子间作用力:是存在着将分子聚集在一起的作用力,分子间作用力比化学键弱得多。
由分子构成的物质,分子间作用力影响物质的和。
3、电子式:在元素符号周围用“”或“”来表示原子的最外层电子数,以简明地表示原子、离子的最外
4、结构式:用短线表示分子中共用电子对形成情况的式子就是结构式。
用结构式表示共价分子时,原子间有几条短线就有共用电子对。
N2结构式、CO2结构式、H2O结构式。
与电子式相比结构式更能清晰、简洁地表征共价分子的结构特点。
5、共价分子中各原子间有一定的连接方式,分子有一定的。
可以用模型、模型表示共价分子的空间结构。
一般从字面含义就能分辨何种模型。
6、碳元素位于第周期族,原子的最外层有个电子。
在化学反应中,碳原子既不易电子,也不易电子,通常与其他原子以结合。
碳原子之间以及碳原子与其他原子之间可以形成共价单键、共价双键和;碳原子之间可以通过共价键彼此结合形成碳链,也可以连接形成碳环。
如:甲烷结构式、乙烯结构式、乙炔结构式
注意:化学式、电子式、结构式、结构简式、球棍模型、比例模型等等是化学学科独有的化学语言,故总称他们为化学用语。
7、含有共价键的分子晶体如发生物理变化克服的作用力是分子间作用力(又称为范德华力)
注:分子间作用力不是化学键
三、三大晶体结构与其性质比较
四、同系物、同分异构体、同位素、同素异形体比较
四、同系物、同分异构体、同位素、同素异形体比较。