【免费下载】eviews自相关性检验
- 格式:pdf
- 大小:284.99 KB
- 文档页数:9
eviews时间序列一阶自相关检验命令在EViews中,我们可以使用AR(p)模型来进行时间序列的一阶自相关检验。
AR(p)模型表示自回归模型,其中p表示阶数。
一阶自相关检验是用来确定时间序列数据是否存在自相关性。
自相关是指序列中一个值与其在时间上前一时刻的值之间的相关性。
在时间序列分析中,我们希望序列的值是彼此相互独立的,因此自相关性可能会影响我们对序列的分析和预测。
在EViews中,可以通过以下步骤来进行一阶自相关检验:1.打开EViews软件并导入时间序列数据。
2.在EViews主菜单中选择“Quick/Estimate Equation”(快速估计方程)。
3.在“Equation Specification”(方程规范)对话框中,输入要估计的模型。
例如,如果要进行一阶自相关检验,则可以输入模型“y c ar(1)”。
- “y”表示被解释变量。
- “c”表示常数项。
- “ar(1)”表示自回归项,其中1表示阶数。
4.单击“OK”按钮以估计模型。
5.将结果显示为估计方程的系数,t统计量,R-squared(R平方值)等。
在估计方程后,EViews将为我们提供一阶自相关检验的结果。
重要的统计值包括Jarque-Bera(JB)统计量、ARCH LM检验、DW统计量等。
- Jarque-Bera(JB)统计量是用来检验数据是否服从正态分布。
如果JB统计量的p值小于0.05,则我们可以拒绝原假设,即数据不服从正态分布。
- ARCH LM检验旨在检验序列中是否存在异方差性。
如果ARCH LM 统计量的p值小于0.05,则我们可以拒绝原假设,即序列中存在异方差性。
- Durbin-Watson(DW)统计量是用来检验序列的自相关性。
DW统计量的值介于0和4之间,如果DW值接近于2,则表示序列不存在一阶自相关。
除了上述统计量之外,EViews还提供了其他有关模型估计的信息,包括系数的标准误差、置信区间、F统计量和R平方等。
实验四--自相关性的检验及修正
自相关性的检验是研究经济数据中自身序列的行为特征,它可用于识别趋势、判断虚
假反应、探究影响力以及衡量规律的发展变化,以及有助于指导未来政策的制定。
因此,自相关性检验是一项重要的经济学技术,它可以为序列分析获取相关信息,让研究者对特
定事件影响有更深刻的认识。
自相关性检验大概分为两个步骤:也就是统计学检验和模型修正。
统计学检验流程大
致包括参数估计、假设检验和结论。
其中,假设检验可以让研究者判断序列是否有自相关性,而参数估计则可以得到自相关性的大小和方向。
从模型修正的角度来说,研究的目的
是建立一个能够自相关数据的特性并形式化处理的模型,这个模型必须注意记录自相关数
据的自身行为特征。
研究者也可以尝试采用其他方法进行模型修正,比如添加外生变量、增加时间序列滞后期、建立自回归模型和分析突变点等。
自相关性检验和模型修正在实践中都带有一定的挑战,例如原始数据的质量,可能存
在噪声;外生变量的准确性和凝聚力;记录的常数和参数的可靠性;动态变化趋势的准确
性等。
因此,研究者在进行自相关性检验和模型修正时要注意仔细进行检测和修正,以确
保研究结果的可靠性和有效性。
自相关检验方法自相关检验是一种时间序列分析方法,用于检测一个时间序列是否存在自相关关系。
自相关意味着一个时间序列中过去的值会对未来的值产生影响,因此这种检验在研究时间序列数据的影响因素时非常有用。
在进行自相关检验前,需要首先了解一些基本概念。
时间序列是指同一现象在不同时间点观测所得到的数据。
自相关是指一个时间序列中过去的值与现在值之间的关系。
自相关系数是用来衡量自相关强度的指标,其值范围在-1到1之间。
如果自相关系数为正,则表明时间序列中过去的值与现在值呈正相关关系;如果自相关系数为负,则表示它们呈负相关关系;若为0,表示它们之间无自相关关系。
对于自相关检验,经典的方法是使用Ljung-Box检验和Durbin-Watson检验。
Ljung-Box检验用来检验时间序列是否存在自相关关系。
它计算出一系列自相关系数,然后比较它们与随机分布的期望值,从而得出时间序列是否有显著的自相关关系。
这个检验需要提供用于计算的自相关滞后数(lags),通常建议在10~20之间选择适当的值。
如果Ljung-Box统计量的p值小于显著性水平(例如0.05),则可以推断该时间序列存在自相关关系。
Durbin-Watson检验也是一种常用的自相关检验方法,它特别适用于AR(1)模型。
该检验利用AR(1)模型的自相关系数的特性,基于残差的一阶自相关系数来判断时间序列的自相关性。
Durbin-Watson检验的检验统计量为DW,其范围为0到4。
一般DW值在2左右表明无自相关关系,小于2表明有正自相关关系,大于2表明有负自相关关系。
在进行自相关检验时,还需要注意以下几点:1. 时间序列的长度和样本容量要充分,否则结果会不够可靠。
2. 自相关检验只能检测线性自相关,其他形式的自相关关系无法检测。
3. 对于复杂的时间序列,可能需要采用其他更为复杂的自相关检验方法。
总之,自相关检验是一种重要的时间序列分析方法,可以用来检测时间序列中的自相关关系。
实验一EVIEWS中时间的序列相关函数操作
1、单变量时间序列相关函数
(1)AutoReg(自回归):自回归模型(也称为自动过程)是一种统计模型,可以用来研究一个变量与它自身以前的值之间的关系。
它可以被用来描述任何由这种类型的非平稳的随机过程生成的数据。
(2)CrossCorr(互相关):互相关函数是对两个时间序列之间的相关性进行评估的方式。
它采用两个时间序列中的观测,计算它们之间的相关性,并返回一个相关系数值,表明它们之间的相关关系。
(4)MA:移动平均函数是一种从一组数据中提取出其基本趋势的有效方法。
它通过计算一组数据的平均值来应用,然后根据当前值来计算其他值。
在EViews中,移动平均函数可以使用MA函数来计算。
2、多变量时间序列相关函数
(1)VAR:VAR是短期预测的一种重要方法。
它的主要思想是,未来的值可以由当前的值以及过去的值来预测。
它可以用来检测多个变量之间的相关性,反应不同变量间的影响关系。
在EViews中,可以使用VAR函数来计算多变量时间序列之间的相关性。
Eviews序列相关稳健标准误法序言Eviews是一种广泛使用的统计分析工具,具有强大的序列分析功能。
在进行序列分析时,我们经常要考虑序列的相关性及其稳健性。
本文将重点介绍Eviews中序列相关稳健标准误法的原理和应用。
一、序列相关性的概念及检验方法1.1 序列相关性的概念在时间序列分析中,序列相关性是指序列中各个观测值之间的相关关系。
如果序列中的观测值之间存在一定的相关性,那么我们就需要考虑相关性对模型估计和预测的影响。
1.2 序列相关性的检验方法在Eviews中,我们可以通过计算序列的自相关系数和偏自相关系数来检验序列相关性。
自相关系数是指序列与其自身滞后期的相关系数,而偏自相关系数则是通过排除中间滞后项的影响来计算序列间的相关系数。
二、序列相关稳健标准误法的原理2.1 序列相关稳健标准误法的概念在实际应用中,我们经常遇到序列中存在的异方差性和相关性问题。
传统的OLS估计方法在存在序列相关性和异方差性时会导致估计量的无偏性和有效性受到影响。
为了解决这一问题,引入了序列相关稳健标准误法。
2.2 序列相关稳健标准误法的原理序列相关稳健标准误法通过调整OLS估计量的标准误来适应序列相关性和异方差性的存在。
在Eviews中,我们可以通过设置相关稳健标准误来进行估计,以提高估计量的有效性和精确度。
三、Eviews中序列相关稳健标准误法的应用3.1 Eviews中设置序列相关稳健标准误的步骤在Eviews中,设置序列相关稳健标准误非常简单。
用户只需在进行估计时选择相关稳健标准误选项即可,Eviews会自动对估计量进行调整。
3.2 序列相关稳健标准误法的优势相比于传统的OLS估计方法,序列相关稳健标准误法能够更好地适应序列相关性和异方差性的存在,提高了估计量的精确度和有效性。
在实际应用中,我们更倾向于使用序列相关稳健标准误法来进行序列分析。
结论通过本文的介绍,我们了解了序列相关稳健标准误法在Eviews中的应用。
eviews异方差、自相关检验与解决办法一、异方差检验:1.相关图检验法LS Y C X 对模型进行参数估计GENR E=RESID 求出残差序列GENR E2=E^2 求出残差的平方序列SORT X 对解释变量X排序SCAT X E2 画出残差平方与解释变量X的相关图2.戈德菲尔德——匡特检验已知样本容量n=26,去掉中间6个样本点(即约n/4),形成两个样本容量均为10的子样本。
SORT X 将样本数据关于X排序SMPL 1 10 确定子样本1LS Y C X 求出子样本1的回归平方和RSS1SMPL 17 26 确定子样本2LS Y C X 求出子样本2的回归平方和RSS2计算F统计量并做出判断。
解决办法3.加权最小二乘法LS Y C X 最小二乘法估计,得到残差序列GRNR E1=ABS(RESID) 生成残差绝对值序列LS(W=1/E1) Y C X 以E1为权数进行加权最小二成估计二、自相关1.图示法检验LS Y C X 最小二乘法估计,得到残差序列GENR E=RESID 生成残差序列SCAT E(-1) E et—et-1的散点图PLOT E 还可绘制et的趋势图2.广义差分法LS Y C X AR(1) AR(2)首先,你要对广义差分法熟悉,不是了解,如果你是外行,我奉劝你还是用eviews来做就行了,其实我想老师要你用spss无非是想看你是否掌握广义差分,好了,废话不多说了。
接着,使用spss16来解决自相关。
第一步,输入变量,做线性回归,注意在Liner Regression 中的Statistics中勾上DW,在save中勾Standardized,查看结果,显然肯定是有自相关的(看dw值)。
第二步,做滞后一期的残差,直接COPY数据(别告诉我不会啊),然后将残差和滞后一期的残差做回归,记下它们之间的B指(就是斜率)。
第三步,再做滞后一期的X1和Y1,即自变量和因变量的滞后一期的值,也是直接COPY。
计量经济学实验报告实验目的:掌握自相关问题的检验以及相关的Eviews的操作方法。
实验内容:消费总量的多少主要有GDP决定。
为了考察GDP对消费总额的影响,可使用如下模型:Yi =1ββ+iX;其中,X表示GDP,Y表示消费总量。
下表列出了中国1990-2000的GDP的X与消费总额Y的统计数据。
年份GDP(X)消费总额(Y)年份GDP(X)消费总额(Y)199018319.5 11365.2 199879003.3 46405.9199121280.4 13145.9 199982673.2 49722.8199225863.7 15952.1 200089112.5 54617.2199334500.7 20182.1 2001 98592.9 58927.4199446690.7 26796 2002 107897.6 62798.5199558510.5 33635 2003 121730.3 67493.5199668330.4 40003.9 2004 142394.2 75439.7199774894.243579.4一、估计回归方程OLS法的估计结果如下:Y=2329.401+0.546950X(1.954322)(36.71110)R2=0.990446,R2=0.989711,SE=2091.475,D.W.=0.478071。
二、进行序列相关性检验(1)图示检验法(2)回归检验法一阶回归检验二阶回归检验e=1.144406e1-t-0.343796e2-t+εtt3)拉格朗日乘数(LM)检验法Breusch-Godfrey Serial Correlation LM Test:F-statistic 29.41781 Probability 0.000038Obs*R-squared 12.63731 Probability 0.001802Test Equation:Dependent Variable: RESIDMethod: Least SquaresC 37.31393 644.3315 0.057911 0.9549X -0.002008 0.009377 -0.214144 0.8344RESID(-1) 1.744086 0.234326 7.442998 0.0000R-squared 0.842487 Mean dependent var 4.37E-12Adjusted R-squared 0.799529 S.D. dependent var 2015.396S.E. of regression 902.3726 Akaike info criterion 16.67111Sum squared resid 8957040. Schwarz criterion 16.85992Log likelihood -121.0333 F-statistic 19.61188Durbin-Watson stat 2.360720 Prob(F-statistic) 0.000101C=37.31393 x=-0.002008 RESID(-1)=1.744086 RESID(-2)= -1.088243 三、序列相关的补救Dependent Variable: DYMethod: Least SquaresDate: 12/17/12 Time: 22:07Sample(adjusted): 1991 2004Included observations: 14 after adjusting endpointsC 2369.885 789.9844 2.999914 0.0111DX 0.465880 0.029328 15.88520 0.0000R-squared 0.954604 Mean dependent var 13875.68Adjusted R-squared 0.950821 S.D. dependent var 5320.847S.E. of regression 1179.971 Akaike info criterion 17.11593Sum squared resid 16707973 Schwarz criterion 17.20722Log likelihood -117.8115 F-statistic 252.3397Durbin-Watson stat 0.521473 Prob(F-statistic) 0.000000(2)科克伦-奥科特法估计模型Dependent Variable: YMethod: Least SquaresDate: 12/17/12 Time: 22:09Sample(adjusted): 1991 2004Included observations: 14 after adjusting endpointsC 55169.41 54542.80 1.011488 0.3335X 0.345292 0.057754 5.978675 0.0001R-squared 0.998047 Mean dependent var 43478.53 Adjusted R-squared 0.997691 S.D. dependent var 19591.16 S.E. of regression 941.3171 Akaike info criterion 16.71985 Sum squared resid 9746856. Schwarz criterion 16.85679 Log likelihood -114.0389 F-statistic 2810.040。
自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。
(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。
3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。
【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。
2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。
3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。
4.根据估计出的一阶自相关系数,利用广义差分法估计模型。
5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。
6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。
7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。
8.根据估计出的高阶自相关系数,利用广义差分法估计模型。
9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。
10.对在同样数据基础上得到的不同模型进行比较分析。
以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。
EVIEWS序列相关检验2介绍
Eviews序列相关检验(Serial Correlation Test)使用EViews可
以快捷方便地进行序列相关检验。
该工具可以使用不同的统计检验来检验
序列数据中是否存在自相关性。
一、检验原理
序列相关检验,也称为自相关检验,用于检查序列数据中是否存在其
中一种自相关性。
假设序列数据由一个残差过程组成,其中残差经过自相
关过程。
自相关过程指的是延迟和移动残差之间的关系(即序列数据可能
存在其中一种趋势或周期性变化)。
序列相关检验的目的是检测残差序列
是否存在自相关性,以及其是否具有统计学意义。
二、序列相关检验方法
使用EViews可以实现以下几种序列相关检验方法:
1)Durbin-Watson法:该测试方法使用差分来计算系数,并计算残差。
如果系数的值落在特定的范围之内,则说明残差具有显著的自相关特性。
此外,Durbin-Watson法还可以用于检查残差是否具有趋势或移动性。
2)Dickey-Fuller测试:该测试法基于假设残差序列是一个时变趋
势的非周期性过程。
假如该假设成立,则可以拟合一个线性模型,用于描
述残差的趋势,然后通过相关指标来评估该模型的拟合程度。
3)Cum-Sum法:该测试法基于假设残差序列具有定常性质,即残差
中可能存在其中一种移动性。
附件二:实验报告格式(首页)山东轻工业学院实验报告成绩课程名称计量经济学指导教师实验日期 2013-5-25 院(系)商学院专业班级实验地点二机房学生姓名学号同组人无实验项目名称自相关的检验与修正一、实验目的和要求掌握Eviews软件的操作和自相关的检验与修正二、实验原理Eviews软件的操作和自相关的检验与修正,图表法,DW检验,运用迭代法三、主要仪器设备、试剂或材料Eviews软件,计算机四、实验方法与步骤(1)准备工作:建立工作文件,并输入数据:CREATE EX-6-1 A 1978 2000;TATA CINSUM INCOME PRICE;(2)相关图分析:GENR Y=CONSUM/PRICE;GENR X=INCOME/PRICE;SCAT X Y;LS Y C X;(3)自相关检验1)图示法LINR RESID;SCAT RESID(-1) RESID;2)观察结果窗口,由DW统计量,查表,与DL,DU比较得出结论;3)LM检验在方程窗口中点击View—residual test –series correlation LM test;(4)自相关的修正GENR GDY=Y-0.7*Y(-1);GENR GDX=X-0.7*X(-1);LS GDY C GDX;(5)再次检验自相关是否存在,用1),2),3)之一检验;五、实验数据记录、处理及结果分析(1)建立工作组,输入数据如下:1978 344.88 388.32 11979 385.2 425.4 1.011980 474.72 526.92 1.0621982 496.56 576.72 1.0811983 520.84 604.31 1.0861984 599.64 728.17 1.0161985 770.64 875.52 1.251986 949.08 1069.61 1.3361987 1071.04 1187.49 1.4261988 1278.87 1329.7 1.6671989 1291.09 1477.77 1.9121990 1440.47 1638.92 1.971991 1585.71 1844.98 2.1711992 1907.17 2238.38 2.4181993 2322.19 2769.26 2.8441994 3301.37 3982.13 3.5261995 4064.1 4929.53 4.0661996 4679.61 5967.71 4.4321997 5204.29 6608.56 4.5691998 5471.01 7110.54 4.5461999 5851.53 7649.83 4.4962000 6121.07 8140.55 4.478(2)相关图分析Scat x y,得到关于X和Y的散点图如下:从上图可知,X和Y存在线性关系。
eviews时间序列一阶自相关检验命令摘要:一、引言二、eviews 时间序列一阶自相关检验命令介绍1.语法结构2.参数说明三、eviews 时间序列一阶自相关检验命令实例1.数据准备2.命令执行3.结果解读四、结论正文:一、引言在时间序列分析中,自相关系数检验是评估时间序列数据之间关系的重要方法。
eviews 作为一款强大的时间序列分析软件,提供了丰富的自相关系数检验命令。
本文将详细介绍eviews 时间序列一阶自相关检验命令及其应用。
二、eviews 时间序列一阶自相关检验命令介绍1.语法结构eviews 时间序列一阶自相关检验命令为:ACF(depvar, type, lags, options)其中:- depvar:因变量(时间序列数据)- type:自相关系数类型,包括"ACF"(自相关系数)和"CCF"(偏自相关系数)- lags:滞后阶数- options:可选参数,如"plot"(绘制自相关系数图)2.参数说明在上述语法结构中,depvar 表示需要进行自相关检验的时间序列数据,type 表示需要计算的自相关系数类型,lags 表示需要计算的滞后阶数。
options 为可选参数,用于指定是否绘制自相关系数图等。
三、eviews 时间序列一阶自相关检验命令实例1.数据准备假设我们已经得到了一个时间序列数据集,包含以下变量:- 时间(time)- 因变量(y)2.命令执行我们可以通过以下命令计算时间序列一阶自相关系数:ACF(y, ACF, 1)该命令表示计算y 变量的一阶自相关系数(ACF),滞后阶数为1。
3.结果解读命令执行后,eviews 会显示计算得到的自相关系数结果。
对于一阶自相关系数,我们主要关注其p 值。
如果p 值小于显著性水平(通常为0.05),则说明因变量与自身存在显著的正相关或负相关关系;反之,则无法拒绝原假设,认为因变量与自身不存在显著的相关关系。
实验六多重共线性【实验目的】掌握多重共线性的检验及处理方法【实验内容】建立并检验我国钢材产量预测模型【实验步骤】【例1】表1是1978-1997年我国钢材产量(万吨)、生铁产量(万吨)、发电量(亿千瓦时)、固定资产投资(亿元)、国内生产总值(亿元)、铁路运输量(万吨)的统计资料。
一、检验多重共线性⒈相关系数检验利用相关系数可以分析解释变量之间的两两相关情况。
在Eviews软件中可以直接计算相关系数矩阵。
本例中,在Eviews软件命令窗口中键入:COR X1 X2 X3 X4 X5或在包含所有解释变量的数组窗口中点击View\Correlations,其结果如图1所示。
由相关系数矩阵可以看出,解释变量之间的相关系数均为0.93以上,即解释变量之间时高度相关的。
图1 解释变量相关系数矩阵⒉辅助回归方程检验当解释变量多余两个且变量之间呈现出较复杂的相关关系时,可以通过建立辅助回归模型来检验多重共线性。
本例中,在Eviews软件命令窗口中键入:LS X1 C X2 X3 X4 X5LS X2 C X1 X3 X4 X5LS X3 C X1 X2 X4 X5LS X4 C X1 X2 X3 X5LS X5 C X1 X2 X3 X4对应的回归结果如图2-6所示。
图2图3图4图5图6上述每个回归方程的F检验值都非常显著,方程回归系数的T检验值表明:X1与X5、X2与X3、X3与X5、X4与X、X5与X1、X3、X4的T检验值较小,这些变量之间可能不相关或相关程度较小。
二、利用逐步回归方法处理多重共线性⒈建立基本的一元回归方程根据相关系数和理论分析,钢材产量与生铁产量关联程度最大。
所以,设建立的一元回归方程为:α+βεYX=1+⒉逐步引入其它变量,确定最适合的多元回归方程(回归结果如表2所示)Y = -287.68669 + 0.4159*X1 + 0.4872*X2。
实验五 自相关性
【实验目的】
掌握自相关性的检验与处理方法。
【实验内容】
利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相
关性。
表5-1 我国城乡居民储蓄存款与GDP 统计资料(1978年=100)年份
存款余额Y GDP 指数X 年份存款余额Y
GDP 指数X
1978210.60100.01989
5146.90271.31979281.00107.619907034.20281.71980399.50116.019919107.00307.61981523.70122.1199211545.40351.41982675.40133.1199314762.39398.81983892.50147.6199421518.80449.319841214.70170.0199529662.25496.519851622.60192.9199638520.84544.119862237.60210.0199746279.80592.019873073.30234.01998
53407.47
638.21988
3801.50
260.7
【实验步骤】
一、回归模型的筛选
⒈相关图分析
SCAT X Y
相关图表明,GDP 指数与居民储蓄存款二者的曲线相关关系较为明显。
现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而
加以比较分析。
⒉估计模型,利用LS 命令分别建立以下模型
⑴线性模型: LS Y C X
x y
5075.9284.14984ˆ+-= (-6.706) (13.862)
=t =0.9100 F =192.145 S.E =5030.809
2R ⑵双对数模型:GENR LNY=LOG(Y)
GENR LNX=LOG(X)
LS LNY C LNX
x y
ln 9588.20753.8ˆln +-= (-31.604) (64.189)
=t =0.9954 F =4120.223 S.E =0.1221
2R ⑶对数模型:LS Y C LNX
x y
ln 82.236058.118140ˆ+-= (-6.501) (7.200)
=t =0.7318 F =51.8455 S.E =8685.043
2R ⑷指数模型:LS LNY C X
x y
010005.03185.5ˆln += (23.716) (14.939)
=t =0.9215 F =223.166 S.E =0.5049
2R ⑸二次多项式模型:GENR X2=X^2
LS Y C X X2
21966.05485.4456.2944ˆx x y
+-= (3.747) (-8.235) (25.886)
=t =0.9976 F =3814.274 S.E =835.979
2R ⒊选择模型
比较以上模型,可见各模型回归系数的符号及数值较为合理。
各解释变量
及常数项都通过了检验,模型都较为显著。
除了对数模型的拟合优度较低外,
t 其余模型都具有高拟合优度,因此可以首先剔除对数模型。
比较各模型的残差分布表。
线性模型的残差在较长时期内呈连续递减趋势
而后又转为连续递增趋势,指数模型则大体相反,残差先呈连续递增趋势而后
又转为连续递减趋势,因此,可以初步判断这两种函数形式设置是不当的。
而
且,这两个模型的拟合优度也较双对数模型和二次多项式模型低,所以又可舍
弃线性模型和指数模型。
双对数模型和二次多项式模型都具有很高的拟合优度,
因而初步选定回归模型为这两个模型。
二、自相关性检验
⒈DW 检验;
⑴双对数模型
因为n =21,k =1,取显著性水平=0.05时,查表得
α=1.22,=1.42,而0<0.7062=DW<,所以存在(正)自相关。
L d U d L d ⑵二次多项式模型
=1.22,=1.42,而<1.2479=DW<,所以通过
DW 检验并不能
L d U d L d U d 判断是否存在自相关。
⒉偏相关系数检验
在方程窗口中点击View/Residual Test/Correlogram-Q-statistics ,并
输入滞后期为10,则会得到残差与的各期相关系数和偏相关系
t e 1021,,---t t t e e e 数,如图5-11、5-12所示。
图5-1 双对数模型的偏相关系数检验
图5-2 二次多项式模型的偏相关系数检验
从5-11中可以看出,双对数模型的第1期、第2期偏相关系数的直方块超过了虚线部分,存在着一阶和二阶自相关。
图5-2则表明二次多项式模型仅存
在二阶自相关。
⒊BG 检验
在方程窗口中点击View/Residual Test/Series Correlation LM Test ,
并选择滞后期为2,则会得到如图5-13所示的信息。
图5-13 双对数模型的BG 检验
图中,=11.31531,临界概率P=0.0034,因此辅助回归模型是显著的,
2nR 即存在自相关性。
又因为,的回归系数均显著地不为0,说明双对数模
1-t e 2-t e 型存在一阶和二阶自相关性。
二次多项式BG 检验
BG 检验与偏相关系数检验结果不同
三、自相关性的调整:加入AR 项
⒈对双对数模型进行调整;
在LS 命令中加上AR(1)和AR(2),使用迭代估计法估计模型。
键入命令:
LS LNY C LNX AR (1) AR (2)
则估计结果如图5-16所示。
图5-16 加入AR 项的双对数模型估计结果
图5-16表明,估计过程经过4次迭代后收敛;,的估计值分别为
1ρ2ρ
0.9459和-0.5914,并且检验显著,说明双对数模型确实存在一阶和二阶自相
t 关性。
调整后模型的DW =1.6445,n =19,k =1,取显著性水平=0.05时,
α查表得=1.18,=1.40,而<1.6445=DW<4-,说明模型不存在一
L d U d U d U d 阶自相关性;再进行偏相关系数检验(图5-17)和BG 检验(图5-18),也表明
不存在高阶自相关性,因此,中国城乡居民储蓄存款的双对数模型为:
x y
ln 9193.28445.7ˆln +-= (-25.263) (52.683)
=t =0.9982 F =2709.985 S.E =0.0744 DW =1.6445
2R
图5-17 双对数模型调整后的偏相关系数检验结果
图5-18 双对数模型调整后的BG检验结果
⒉对二次多项式模型进行调整;
键入命令:
LS Y C X X2 AR(2)
则估计结果如图5-19所示。
加上ar1 2调整后不存在自相关性,但仅有AR(2)项调整后用偏相关系数检验仍然存在2阶和6阶自相关,且BG检验结果与偏相关系数检验结果不同,且BG检验滞后期不同,结果不同。
⒊从双对数模型和二次多项式模型中选择调整结果较好的模型。
四、重新设定双对数模型中的解释变量:
模型1:加入上期储蓄LNY(-1);
模型2:解释变量取成:上期储蓄LNY(-1)、本期X的增长DLOG(X)。
⒈检验自相关性;
⑴模型1
键入命令:
LS LNY C LNX LNY(-1)
则模型1的估计结果如图5-21所示。
图5-21 模型1的估计结果图5-21表明了DW=1.358,n =20,k =2,查表得
=1.100,=1.537,而<1.358=DW<,属于无法判定区域。
采用偏相
L d U d L d U d 关系数检验的结果如图5-22所示,图中偏相关系数方块均未超过虚线,模型1
不存在自相关性。
图5-22 模型1的偏相关系数检验结果
⑵模型2
键入命令:
GENR DLNX=D(LNX)
LS LNY C LNY(-1) DLNX
则模型2的估计结果如图5-23所示。
图5-23 模型2的估计结果图5-23表明了DW=1.388,n =20,k =2,查表得
=1.100,=1.537,而<1.388=DW<,属于无法判定区域。
采用偏相
L d U d L d U d 关系数检验的结果如图5-24所示,图中偏相关系数方块均未超过虚线,模型2
不存在自相关性。
图5-24 模型2的偏相关系数检验结果
⒉解释模型的经济含义。
⑴模型1
模型1的表达式为:
()1ln 8794.0ln 3200.05240.0ˆln -++-=y x y
表示我国城乡居民储蓄存款余额的相对变动不仅与GDP 指数相关,而且受
上期居民存款余额的影响。
当GDP 指数相对增加1%时,城乡居民存款余额相
对增加0.32%,当上期居民存款余额相对增加1%时,城乡居民存款余额相对
增加0.8794%。
⑵模型2
模型2的表达式为:
()x D y y
ln 1128.01ln 9865.03754.0ˆln +-+=
表示上期居民存款余额相对增加1%时,城乡居民存款余额相对增加
0.9865%,当GDP指数的发展速度相对增加1%时,城乡居民存款余额相对增加0.1128%。