光刻论文
- 格式:doc
- 大小:34.00 KB
- 文档页数:7
光刻工艺概述范文光刻工艺是一种在微电子制造过程中使用的重要技术,它被用来制造集成电路、平板显示器、光学元件和微纳米结构等微系统设备。
光刻工艺可以实现高精度的图案转移,从而实现微电子器件的制造。
首先,光刻工艺的基础是光刻胶的使用。
光刻胶是一种特殊的液体材料,它可以在光照下发生化学反应,从而形成具有特定形状的图案。
光刻胶通常是由光敏剂、聚合物和溶剂组成的复合物。
在光刻过程中,光敏剂在光照下会发生光化学反应,而聚合物则起到保护胶膜的作用。
其次,光刻胶需要通过光刻机进行曝光。
光刻机是一种特殊的设备,它可以通过光源发射出特定波长的光,然后将光照射到光刻胶上。
光刻机通常采用紫外光或深紫外光作为光源,因为这些波长的光可以提供较高的分辨率和光刻胶的敏感性。
光照后,光刻胶中被光化学反应改变的区域会变得溶解性不同于未被照射的区域。
然后,曝光后的光刻胶需要进行显影。
显影是将光刻胶中未被光照的部分溶解掉,以显示出所需的图案。
显影过程常用的显影液是酸性的溶液,因为光刻胶通常是碱性的,酸性的显影液可以中和光刻胶中的碱性物质,从而加快显影的速度。
经过显影后,光刻胶上就会留下所需的图案。
最后,经过显影之后,就需要对光刻胶进行固化和清洗。
固化是通过加热或紫外光照射等方法使光刻胶变得硬化,以增加其耐用性和稳定性。
清洗是将显影后的光刻胶从器件表面去除。
清洗过程通常使用有机溶剂或酸碱溶液进行,以去除光刻胶的残留物。
除了上述基本步骤外,光刻工艺还有其他一些补充工艺,例如涂胶剥离、反蚀刻和多层光刻等。
涂胶剥离技术是在制造过程中用于去除曝光后的光刻胶的方法,可以使工艺更加容易进行。
反蚀刻是一种利用光化学反应来蚀刻材料的方法,可以形成多层结构。
多层光刻则是在多个层次上进行光刻,可以实现更加复杂的图案。
这些补充工艺可以根据不同需求进行选择和组合。
总的来说,光刻工艺是微电子制造中的一种重要技术,它通过使用光刻胶、光刻机和显影液等工具和材料,可以实现高精度的图案转移。
摘要:光刻技术是半导体制造中至关重要的工艺,它决定了芯片的精度和性能。
本实验通过光刻工艺制备了硅片上的微结构,旨在了解光刻的基本原理、操作步骤以及影响光刻质量的关键因素。
本文详细描述了实验过程、结果分析及结论。
关键词:光刻;半导体;硅片;微结构;工艺1. 引言光刻技术是利用光学原理在硅片上形成微小图案的过程,是半导体制造的核心技术之一。
随着集成电路尺寸的不断缩小,光刻技术面临着越来越大的挑战。
本实验旨在通过实际操作,加深对光刻工艺的理解,并探讨影响光刻质量的因素。
2. 实验材料与设备2.1 实验材料:- 硅片(晶圆)- 光刻胶- 光刻掩模- 光刻机- 显微镜- 洗片机- 烘箱- 紫外线光源2.2 实验设备:- 光刻机- 显微镜- 洗片机- 烘箱- 紫外线光源3. 实验步骤3.1 光刻胶涂覆:1. 将硅片清洗干净,并干燥。
2. 将光刻胶均匀涂覆在硅片表面。
3. 将涂覆好的硅片放入烘箱中,进行前烘处理。
3.2 光刻掩模:1. 将光刻掩模放置在涂覆好光刻胶的硅片上。
2. 使用紫外线光源照射硅片,使光刻胶在掩模图案处发生交联反应。
3.3 曝光与显影:1. 将曝光后的硅片放入显影液中,使未曝光的光刻胶溶解。
2. 清洗硅片,去除未曝光的光刻胶。
3.4 后处理:1. 将显影后的硅片放入烘箱中,进行后烘处理。
2. 使用腐蚀液腐蚀硅片,去除未被光刻胶保护的部分。
4. 结果分析本实验成功制备了硅片上的微结构,观察结果如下:- 光刻胶在紫外线照射下发生交联反应,形成均匀的图案。
- 显影过程中,未曝光的光刻胶被溶解,从而实现了图案的转移。
- 后处理过程中,硅片表面形成了所需的微结构。
5. 结论本实验成功展示了光刻工艺的基本步骤,并验证了光刻技术在半导体制造中的重要性。
实验结果表明,光刻工艺的质量受到多种因素的影响,如光刻胶的选择、曝光时间、显影条件等。
因此,在实际生产中,需要严格控制光刻工艺参数,以确保光刻质量。
6. 讨论本实验中,光刻胶的选择对光刻质量具有重要影响。
光刻胶的深入学习与新型光刻胶张智楠电科111 信电学院山东工商学院 264000摘要:首先,本文从光刻中的光刻胶、光刻胶的分类、光刻胶的技术指标(物理特性)这几个方面对光刻工艺中的光刻胶进行了详细的深入学习;其次,介绍了当代几种应用广泛的光刻胶以及新型光刻胶;最后,对光刻胶的发展趋势进行了简单的分析。
关键词:光刻、光刻胶、紫外负型光刻胶、紫外正型光刻胶、远紫外光刻胶。
光刻(photoetching)工艺可以称得上是微电子工艺中最为关键的技术,决定着制造工艺的先进程度。
光刻就是,在超净环境中,将掩膜上的几何图形转移到半导体晶体表面的敏光薄材料上的工艺过程。
而此处的敏光薄材料就是指光刻胶(photoresist)。
光刻胶又称光致抗蚀剂、光阻或光阻剂,由感光树脂、增感剂和溶剂三种主要成分组成的对光敏感的混合液体。
感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。
经适当的溶剂处理,溶去可溶性部分,得到所需图像。
光刻胶的技术复杂,品种较多。
对此探讨以下两种分类方法: 1、光刻胶根据在显影过程中曝光区域的去除或保留可分为两种——正性光刻胶(positive photoresist)和负性光刻胶(negative photoresist)。
正性光刻胶之曝光部分发生光化学反应会溶于显影液,而未曝光部份不溶于显影液,仍然保留在衬底上,将与掩膜上相同的图形复制到衬底上。
负性光刻胶之曝光部分因交联固化而不溶于阻显影液,而未曝光部分溶于显影液,将与掩膜上相反的图形复制到衬底上。
正胶的优点是分辨率比较高,缺点是粘附性不好,阻挡性弱。
与之相反,负胶的粘附性好,阻挡性强,但是分辨率不高。
2、基于感光树脂的化学结构,光刻胶可以分为三种类型。
一是光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。
二是光分解型,采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶。
IC制备中光刻制版技术及原理姓名:黄武20114912 班级:电子信息特色实验班指导老师:张玲1制版概述信息产业是国民经济的先导产业,微电子技术更是信息产业的核心。
由1906年的电子管开始,到1956年硅台面晶体管问世,再到1960年世界第一块硅集成电路制作成功,此后集成电路的发展一发不可收拾,小规模集成电路(SSI)中规模集成电路(MSI),大规模集成电路(LSI),超大规模集成电路(VLSI),甚大,巨大规模集成电路(ULSI,GLSI)。
这几十年以来集成电路的发展趋势是尺寸越来越小,速度越来越快,电路规模越来越大,功能越来越强,衬底硅片尺寸越来越大。
这些都是大规模与超大规模集成电路的小型化、高速、低成本、高效率生产等特点所带来的结果。
集成电路在近年也已广泛应用于家用电器,汽车配件,航天航空,军事武器制导等等。
为了达到集成电路的量产以减小成本,IC制版技术就显得十分重要了。
1.1制版的意义制版就是制作光刻的掩膜版。
平面管、集成电路和采用平面工艺的其他半导体器件,都要用光刻技术来进行定域扩扩散与沉积,以获得一定形状的二极管、三极管和一定数值的电感、电容。
掩膜版在光刻过程中相当于印刷中的模板,它可以重复不断的协助我们将所需要的集成电路刻制出来。
因此掩膜版是光刻制程中的一个基本工具。
目前世界上的集成电路工业突飞猛进的发展,硅基CMOS 的特征线宽已达到0.18微米,并向着0.1微米和压0.1微米推进。
随着设计线宽的缩小,光刻技术也必须随之而发展,而光刻技术的发展需要高水平的掩膜版才能得以实现。
此外集成电路管芯成品率与掩膜版的好坏有着直接的关系。
一个成品合格管芯制备需要一套掩膜版的。
若每块掩膜版上图形成品率为0.9 ,那么两块掩膜版就是有0.81,十块掩膜版就是0.35左右,集成电路管芯的成品率比图形成品率还低。
可见光刻掩膜版的质量直接影响光刻影像的好坏,从而影响成品率。
1.2 掩膜版制作流程1.3掩膜版的基本构造与质量要求目前掩膜版以石英玻璃为主流,在其上镀有100nm 的不透光铬膜及约20nm 的氧化铬来减少反射,以增加工艺的稳定性。
江南大学感光高分子论文—SU-8光刻工艺及其研究题目:SU-8光刻工艺及其研究班级:姓名:学号:SU-8光刻工艺及其研究摘要:SU-8 胶是一种基于环氧 SU- 8 树脂的环氧型的、近紫外光、负光刻胶,SU-8光刻工艺同时也是基于UV-LIGA技术基础上,专门用于在非常厚的底层上需要高深宽比的结构。
本文主要介绍了SU-8光刻工艺流程,同使也介绍了近几年对SU-8光刻工艺得一些优化研究进展。
关键词:SU-8胶;光刻工艺;研究进展Abstract: SU-8 photoresist is an epoxy, near-UV and negative photoresist which is based on epoxy resin SU-8, and its lithography process is also based on UV-LIGA technology, it is specifically for the requirements of a high aspect ratio of thickness of the underlying structure. This paper mainly introduces the SU-8 photolithography processand some research development for the process in recent years.Key Words:SU-8 photoresist; lithography process; research development1引言MEMS(微机电系统)器件已广泛得到应用,但其发展离不开加工技术,同时也正是由于微机电系统的蓬勃发展,各种加工工艺相继得到研究。
[1]实际应用中,许多MEMS器件都需要高深宽比的结构,同时还要求侧壁陡直。
能够实现这样的技术包括:(1)同步辐射深X射线LIGA技术。
光刻技术论文(2)光刻技术论文篇二下一代光刻技术【摘要】本文从多方面对下一代光刻技术做了介绍和分析,重点描述了纳米压印光刻技术、极紫外光刻技术、无掩模光刻技术、原子光刻技术、电子束光刻技术等的原理、现状和优缺点,并展望了未来数十年的主流光刻技术。
【关键词】下一代光刻技术;纳米压印光刻技术;极紫外光刻技术;无掩模光刻技术;原子光刻技术;电子束光刻技术一、引言随着特征尺寸越变越小,传统的光学光刻已经逼近了物理上的极限,需要付出相当高昂的资金及技术代价来研发相应光刻设备,所以科研单位和厂商都投入巨大的精力和资金来研发下一代的能兼具低成本和高分辨力的光刻技术[1]。
国内山东大学、四川大学、中科院微电子所和光电所等研究单位纷纷加大了对研究新光刻技术的投入;佳能、尼康、ASML等世界三大光刻机巨头以及其他一些公司为了抢占光刻设备的市场份额,亦投入了大量的资金做研发[2]。
下面将从原理、现状、优缺点等多方面对几种新光刻技术作简要的介绍。
二、纳米压印光刻技术1995年,美国Princeton大学的华裔科学家――周郁,提出了纳米压印光刻技术,由于其与传统光学投影光刻技术不一样,所以自发明后就一直受到人们的关注。
这种技术将纳米结构的图案制在模具上面,然后将模具压入阻蚀材料,将变形之后的液态阻蚀材料图形化,然后利用反应等离子刻蚀工艺技术,将图形转移至衬底。
该技术通过使阻蚀胶受到力的作用后变形这种方式来实现阻蚀胶的图形化,而不是通过改变阻蚀胶化学性质来实现,所以可以突破传统光学光刻在分辨力上面的极限[3]。
纳米压印光刻技术有诸多优点:(1)不需OPC掩模版,所以成本低;(2)可以一次性图形转印,所以方便批量生产;(3)不受瑞利定律的约束,所以分辨力高。
当然,该技术也存在着一些缺点,比如无法同时转印纳米尺寸与大尺寸的图形。
纳米压印光刻技术的分辨力已经可以达到5nm以下,成为下一代主流光刻技术的可能性非常大。
三、极紫外光刻技术极紫外光刻技术的全称为极端远紫外光刻技术。
光刻技术在微电子学中的应用及其研究进展光刻技术是微电子学中一项重要的制备技术,其主要作用是将电路设计图案(Mask)上的图形将精确且高密度地转移到光刻胶层或硅片上,以便制备微电子器件。
随着科技的发展,光刻技术的应用范围也在不断拓展,本文将针对光刻技术在微电子学中的应用及其研究进展进行探讨。
一、光刻技术的发展历程光刻技术作为一项重要的微电子器件制备技术,其发展历程也比较悠久。
在20世纪50年代,人们通过利用在自然界中存在的类似于蝴蝶翅膀结构的毛细胞将设计图案转移到晶体上。
而在60年代末,人们逐渐开始采用非接触式的光刻技术。
随着科技的发展,基于光学原理的光刻技术应用越来越广泛。
目前,人们已经开发出多种基于光刻技术的微影技术,如紫外光刻技术、激光光刻技术等。
二、紫外光刻技术在微电子学中的应用作为最常用的光刻技术之一,紫外光刻技术在微电子学中应用广泛。
其作用是在光刻胶层上打印感光剂的电路图案,然后通过化学腐蚀将图案转移到下一层,最终形成微电子器件,如微处理器、存储器、集成电路等。
紫外光刻技术具有分辨率高、重复性好、成本低等优势。
无论是在新材料的开发方面还是在高分辨率图案的加工方面,光刻技术都取得了显著的进展。
同时,在微电子器件制造的过程中,难以避免地会出现一些微小的误差和偏差,因此紫外光刻技术具有非常重要的意义。
三、激光光刻技术的研究进展随着微电子器件的不断发展和追求更为精密的制备工艺,光刻技术的精度、效率和灵活性也变得越来越重要。
激光光刻技术是基于激光原理,是一种非接触式的光刻技术。
它相比于传统的非接触式光刻技术,具有更高的精度和速度。
激光光刻技术的研究也在不断地深入和拓展。
人们正在探索激光技术在微电子器件制备上的应用,如通过激光打孔、激光刻蚀等技术进行制造微波电路、微米级振荡器、阵列天线等,并进一步将研究集成光电微系统(MEMS)等新型器件的制造工艺。
四、微纳米加工中的新技术除了上述两种常用的光刻技术外,人们还在不断地探索新的微纳米加工工艺和技术。
浙江大掌硕士掌位论文第=幸秦成电路光刻工艺第二章集成电路光刻工艺2.1集成电路制造工艺基本的集成电路制造过程的起点是高纯度的单晶硅的提炼以及硅片的抛光、清洗等光刻前处理,接着是以不同的导电或绝缘材料(如金属、多晶硅、二氧化硅等)在硅圆片上沉积生成新的材料层以及在该材料层上涂上对光敏感的光刻胶薄层;然后掩模母版上刻有的电路精密图像被投影到硅片的光刻胶薄层表面;最后经过显影和蚀刻,感光部分的材料被清除。
当然,在实际的生产过程中,还包括其他辅助材料的制备和辅助过程的处理。
重复大约二三十次氧化(oxidation)、光刻(Photolithography)、掺杂(DopiⅡg)等工艺过程,在硅圆片表面上就形成了以几千万个晶体管为基本构造单元、多层不同材料复杂连接的可以实现强大的运算处理功能的网络。
精密复杂的芯片制造过程保证了集成电路芯片的高性能与高成品率。
而简单来说,集成电路的制造就是一个通过光刻技术把电路版图从光学掩模版图上转移到硅片表面的过程。
Su蝻妇leP-图2—1典型集成电路剖面结构示意图(部分)现代集成电路制造过程一般包含200多道具体工序,这些步骤大致上可以归为三大类:夺图形转移技术:包括光刻(“t1109raphy)和蚀刻(Etching)等步骤。
夺层形成技术:包括氧化(Oxidationg)、沉积(Deposition)和金属化(Metallization)等。
浙江大学碛士掌位沧文第=章嘉成电路光客9工艺夺层修改技术:包括离子注入(Ionlmplantation)和扩散(Di肺sion)等。
图形转移、层形成和层修改三类技术交叉使用,构成了集成电路工艺。
集成电路工艺的目的是通过器件制造(DeviceFabrication)、隔离形成(Isolation)和互连形成(Interco加ect),最后在硅片上生成叠层结构,从而完成集成电路的生产。
图2.1所示,即为典型的集成电路层结构的剖面示意图;图2之则显示了最新的集成电路的剖面结构【跚”04】。
光刻技术论文1995年,美国Princeton大学的华裔科学家――周郁,提出了纳米压印光刻技术,下面是店铺整理了光刻技术论文,有兴趣的亲可以来阅读一下!光刻技术论文篇一激光干涉光刻技术的分析摘要:在微细加工和集成电路(IC )制造当中,光学光刻技术是毋庸置疑的主流技术。
现在的IC集成度越来越高,这就对光刻分辨力有了更好的要求。
但光刻物镜数值孔径(N A )和曝光波长( λ )在一定程度上限制光学光刻的分辨极限。
作为一项新兴光刻技术的激光干涉光刻,不仅设备价格较低、结构简单,而且工作效率高、分辨率高、大视场曝光、无畸变、焦长深等许多独特之处,分辨极限更是达到了λ/4的水平,在微细加工、大屏幕显示器、微电子和光电子器件、亚波长光栅、光子晶体和纳米图形制造等相关领域有很好的应用,极大拓展了这些领域在未来的进步空间。
【关键词】激光技术激光干涉干涉光刻技术1 引言在我们的日常生活当中,电子产品越来越多,我们所熟悉的手机、电脑等电子器件当中有着数量众多的微电子产品,而微电子技术是信息技术发展与前进的根基。
在20世纪60年代的时候,戈登·摩尔发表关于计算机存储器发展趋势的专业研究报告。
报告指出,平均每十八到二十四个月,芯片容量大,且时间逐渐缩短。
而光刻技术的发展水平在集成电路 (IC )工艺水平的发展进程中占据重要地位。
在现在科技发展日新月异的今天,现有光刻技术一般具有比较复杂的曲面光学元件,而新兴激光光刻技术作为现代科学光刻技术的补充,其设备并不复杂,系统也相对较为简单,但有着极高分辨率,其分辨极限已经能够达到λ/4的水平,还具有大焦长深、图形对比度较高等的诸多优点。
2 激光干涉光刻技术激光干涉光刻技术定义为通过光的衍射、干涉,将光束用特定的方式组合,达到干涉场内光强度的有效调控,在此种情况下利用感光而产生光刻图形。
如下为双光束干涉光刻的主要原理:波长为λ的2束平面波,其中入射角为θ1、θ2表示,则公式为:其中:I0为入射光强度,而x为干涉点到入射之间的长度;对于入射角大小的改变、频率、控制曝光量,都能对形状、周期以及高度的不同产生一维或者二维的结构。
光刻技术的发展状况班级:08微电子一班姓名:袁峰学号:087305136摘要:光刻(photoetching)是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺,在此之后,晶圆表面会留下带有微图形结构的薄膜。
被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。
关键词:光刻技术,光源,半导体,发展,前景引言:光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。
就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。
基于2005年ITRS对未来几种可能光刻技术方案的预测。
也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。
因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。
1光刻技术的纷争及其应用状况众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。
因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。
1.1 以Photons为光源的光刻技术在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。
不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。
紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。
光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等。
主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH 和SUSS MICROTECH等等。
系统的类型方面,ASML以提供前工程的l:4步进扫描系统为主,分辨率覆盖0.5~0.25μm:NIKON以提供前工程的1:5步进重复系统和LCD的1:1步进重复系统为主,分辨率覆盖0.8~0.35μm和2~0.8μm;CANON以提供前工程的1:4步进重复系统和LCD的1:1步进重复系统为主,分辨率也覆盖0.8~0.35μm和1~0.8μm;ULTRATECH以提供低端前工程的1:5步进重复系统和特殊用途(先进封装/MEMS /,薄膜磁头等等)的1:1步进重复系统为主;而SUSS MICTOTECH以提供低端前工程的l:1接触/接近式系统和特殊用途(先进封装/MEMS/HDI等等)的1:1接触/接近式系为主。
另外,在这个领域的系统供应商还有USHlO、TAMARACK和EV Group等。
深紫外技术是以KrF气体在高压受激而产生的等离子体发出的深紫外波长(248 nm和193 nm)的激光作为光源,配合使用i线系统使用的一些成熟技术和分辨率增强技术(RET)、高折射率图形传递介质(如浸没式光刻使用折射率常数大于1的液体)等,可完全满足O.25~0.18μm 和0.18μm~90 nm的生产线要求;同时,90~65 nm的大生产技术已经在开发中,如光刻的成品率问题、光刻胶的问题、光刻工艺中缺陷和颗粒的控制等,仍然在突破中;至于深紫外技术能否满足65~45 nm的大生产工艺要求,目前尚无明确的技术支持。
相比之下,由于深紫外(248 nm和193 nm)激光的波长更短,对光学系统材料的开发和选择、激光器功率的提高等要求更高。
目前材料主要使用的是融石英(Fused silica)和氟化钙(GaF2),激光器的功率已经达到了4 kW,浸没式光刻使用的液体介质常数已经达到1.644等,使得光刻技术在选择哪种技术完成100nm以下的生产任务时,经过几年的沉默后又开始活跃起来了。
投影成像系统方面,主要有反射式系统(Catoptrics)、折射式系统(Dioptrics)和折反射式系统(Catadioptrics)。
在过去的几十年中,折射式系统由于能够大大提高系统的分辨率而起到了非常重要的作用,但由于折射式系统随着分辨率的提高,对光谱的带宽要求越来越窄、透镜中镜片组的数量越来越多和成本越来越高等原因,使得折反射式系统的优点逐渐显示了出来。
专家预测折反射式系统可能成为未来光学系统的主流技术。
X射线光刻技术也是20世纪80年代发展非常迅速的、为满足分辨率100 nm以下要求生产的技术之一。
主要分支是传统靶极X光、激光诱发等离子X光和同步辐射X光光刻技术。
特别是同步辐射X光(主要是O.8 nm)作为光源的X光刻技术,光源具有功率高、亮度高、光斑小、准直性良好,通过光学系统的光束偏振性小、聚焦深度大、穿透能力强;同时可有效消除半阴影效应(Penumbra Effect)等优越性。
X射线光刻技术发展的主要困难是系统体积庞大,系统价格昂贵和运行成本居高不下等等。
不过最新的研究成果显示,不仅X射线光源的体积可以大大减小,近而使系统的体积减小外,而且一个X光光源可开出多达20束X光,成本大幅降低,可与深紫外光光刻技术竞争。
1.2 以Particles为光源的光刻技术以Particles为光源的光刻技术主要包括粒子束光刻、电子束光刻,特别是电子束光刻技术,在掩模版制造业中发挥了重要作用,目前仍然占有霸主地位,没有被取代的迹象;但电子束光刻由于它的产能问题,一直没有在半导体生产线上发挥作用,因此,人们一直想把缩小投影式电子束光刻技术推进半导体生产线。
特别是在近几年,取得了很大成就,产能已经提高到20片/h(φ200 mm圆片)。
电子束光刻进展和研发较快的是传统电子束光刻、低能电子束光刻、限角度散射投影电子束光刻(SCALPEL)和扫描探针电子束光刻技术(SPL)。
传统的电子束光刻已经为人们在掩模版制造业中广泛接受,由于热/冷场发射(FE)比六鹏化镧(LaB6)热游离(TE)发射的亮度能提高100~1000倍之多,因此,热/冷场发射是目前的主流,分辨率覆盖了100~200 nm 的范围。
但由于传统电子束光刻存在前散射效应、背散射效应和邻近效应等,有时会造成光致抗蚀剂图形失真和电子损伤基底材料等问题,由此产生了低能电子束光刻和扫描探针电子束光刻。
低能电子束光刻光源和电子透镜与扫描电子显微镜(SEM)基本一样,将低能电子打入基底材料或者抗蚀剂,以单层或者多层L-B膜(Langmuir-Blodgett Film)为抗蚀剂,分辨率可达到10 nm以下,目前在实验室和科研单位使用较多。
扫描探针电子束光刻技术(SPL)是利用扫描隧道电子显微镜和原子力显微镜原理,将探针产生的电子束,在基底或者抗蚀剂材料上直接激发或者诱发选择性化学作用,如刻蚀或者淀积进行微细图形加工和制造。
SPL目前比较成熟,主要应用领域是MEMS和MOEMS等纳米器件的制造,随着纳米制造产业的快速发展,扫描探针电子束光刻技术(SPL)的前景有望与光学光刻媲美。
另外一种比较有潜力的电子束光刻技术是SCALPEL,由于SCALPEL的原理非常类似于光学光刻技术,使用散射式掩模版(又称鼓膜)和缩小分步扫描投影工作方式,具有分辨率高(纳米级)、聚焦深度长、掩模版制作容易和产能高等优势,很多专家认为SCALPEL是光学光刻技术退出历史舞台后,半导体大生产进入纳米阶段的主流光刻技术,因此,有人称之为后光学光刻技术。
粒子束光刻发展较快的有聚焦粒子束光刻(FIB)和投影粒子束光刻,由于光学光刻的不断进步和不断满足工业生产的需要,使离子束光刻的应用已经有所扩展,如FIB技术目前主要的应用是将FIB与FE-SEM连用,扩展SEM的功能和使得SEM观察方便;另外,通过方便的注射含金属、介电质的气体进入FTB室,聚焦离子分解吸附在晶圆表面的气体,可完成金属淀积、强化金属刻蚀、介电质淀积和强化介电质刻蚀等作用。
投影粒子束光刻的优点很明显,但缺点也很明显,如无背向散射效应和邻近效应,聚焦深度长,大于l0μm,单次照射面积大,故产能高,目前可达φ200 mm硅片60片/h,可控制粒子对抗蚀剂的渗透深度,较容易制造宽高比较大的三维图形等等;但也有很多缺点,如因为空间电荷效应,使得分辨率不好,目前只达到80~65 nm,较厚的掩模版散热差,易受热变形,有些时候还需要添加冷却装置等等。
近几年由于电子束光刻应用的迅速扩展,粒子束光刻除了在FIB 领域的应用被人们接受外,在MEMS的纳米器件制作领域也落后于电子束和光学光刻,同时,人们对其在未来半导体产业中的应用也没有给予厚望。
1.3 物理接触式光刻技术通过物理接触方式进行图像转印和图形加工的方法有多年的开发,但和光刻技术相提并论,并纳入光刻领域是产业对光刻技术的要求步入纳米阶段和纳米压印技术取得了技术突破以后。
物理接触式光刻主要包括Printing、Molding和Embossing,其核心是纳米级模版的制作。
物理接触式光刻技术中,以目前纳米压印技术最为成熟和受人们关注,它的分辨率已经达到了10 nm,而且图形的均一性完全符合大生产的要求,目前的主要应用领域是MEMS、MOEMS、微应用流体学器件和生物器件,预测也将是未来半导体厂商实现32 nm技术节点生产的主流技术。
由于目前实际的半导体规模生产技术还处在使用光学光刻技术苦苦探索和解决65 nm工艺中的一些技术问题,而纳米压印技术近期在一些公司的研究中心工艺上取得的突破以及验证的技术优势,特别是EV Group和MII(Molecular Imprinting Inc)为一些半导体设计和工艺研究中心提供的成套光刻系统(包括涂胶机、纳米压印光刻机和等离子蚀刻系统)取得的满意数据,使得人们觉得似乎真正找到了纳米制造技术的突破口。