现代控制理论-第6章-多变量输出反馈控制和解耦控制
- 格式:ppt
- 大小:1.46 MB
- 文档页数:29
第六章线性定常系统的综合6.5 6.5 解耦控制解耦控制在(0)0x =的条件下的条件下,,输出与输入之间的关系输出与输入之间的关系,,可用传递函数()G s 描述描述::1()()()()()y s G s u s C sI A Bu s −==−MIMO MIMO系统系统系统((p 入q 出):11111221221122221122()()()()()()()()()()()()()() ()()()()()()()p p p p q q q qp p y s g s u s g s u s g s u s y s g s u s g s u s g s u s y s g s u s g s u s g s u s =+++=+++=+++⋯⋯⋯⋯⋮⋮⋯⋯即第六章线性定常系统的综合6.5.1 6.5.1 问题的提出问题的提出考虑考虑MIMO MIMO MIMO系统系统x Ax Bu y Cx∑=+=ɺ:引入状态反馈u Lv Kx=−解耦问题解耦问题::就是寻求适当的反馈阵K 和输入变换矩阵L ,使得状态反馈传递函数矩阵为对角阵为对角阵。
)(s KF G 1122G ()diag ()()()KF pp s g s g s g s =⋯p q =其中,即系统的输出个数等于输入个数即系统的输出个数等于输入个数。
第六章线性定常系统的综合11()g s 22()g s ()pp g s 1u 2u pu 1y 2y py 能找出一些控制律能找出一些控制律,,每个输出受且只受一个输入的控制一个输入的控制,,称为解耦控制称为解耦控制。
第六章线性定常系统的综合引入状态反馈u Lv Kx=−状态反馈系统的传递函数矩阵为1()[()]KF G s C sI A BK BL−=−−()()xAx B Lv Kx A BK x BLv =+−=−+ɺCx y =状态反馈系统的状态空间表达式为第六章线性定常系统的综合6.5.2 6.5.2 实现解耦控制的条件和主要结论实现解耦控制的条件和主要结论1) 1) 已知传递函数阵已知传递函数阵111212122212() ()()() ()()() () ()()p p p p pp g s g s g s g s g s g s G s g s g s g s=⋯⋯⋯⋯⋮⋮⋮⋯⋯是的分母的次数与分子的次数之差的分母的次数与分子的次数之差。
现代控制理论知到章节测试答案智慧树2023年最新哈尔滨工程大学绪论单元测试1.经典控制理论以单变量线性定常系统作为主要的研究对象,以时域法作为研究控制系统动态特性的主要方法。
参考答案:错2.1892年俄国数学家李亚普诺夫发表了论文《运动稳定性的一般问题》,用严格的数学分析方法全面地论述了稳定性问题。
参考答案:对3.现代控制理论以多变量线性系统和非线性系统作为研究对象,以时域法,特别是状态空间方法作为主要的研究方法。
参考答案:对4.研究系统控制的一个首要前提是建立系统的数学模型,线性系统的数学模型主要有两种形式,即时间域模型和频率域模型。
参考答案:对5.下述描述中哪些作为现代控制理论形成的标志()。
参考答案:最优控制中的Pontriagin极大值原理和Bellman动态规划;用于系统的整个描述、分析和设计过程的状态空间方法;随机系统理论中的Kalman滤波技术第一章测试1.输入输出描述是描述系统输入变量和输出变量关系的模型。
参考答案:对2.状态空间描述能完全表征系统的一切动力学特征。
参考答案:对3.系统的状态是指能够完全表征系统时间域行为的一个最小内部变量组。
参考答案:对4.系统的状态空间描述是唯一的。
参考答案:错5.坐标变换是指将系统在状态空间的一个基底上的表征,化为另一个基底上的表征。
参考答案:对6.当状态空间描述中的A矩阵有相同的特征值时,一定不能将其化成对角规范形。
参考答案:错7.并联组合系统的传递函数矩阵为各并联子系统的传递函数矩阵之和。
参考答案:对8.若两个子系统输出向量的维数相同,则可实现反馈连接。
参考答案:错9.线性定常系统线性非奇异变换后()。
参考答案:系统的特征值不变10.考虑如图所示的串联组合系统,下列论述正确的是()。
参考答案:串联组合后系统的状态方程为第二章测试1.一般线性系统状态方程的解由两部分组成,第一部分反映系统初态的影响,第二部分反映系统输入对状态的影响。
参考答案:对2.零初态响应指系统初始状态为零时,由系统输入单独作用所引起的运动。
现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。
互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。
方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。
4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。
5、什么是实现问题什么是最小实现说明实现存在的条件。
第一章控制系统的状态空间表达式1. 状态空间表达式n 阶 DuCx y Bu Ax x +=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。
② 由系统的机理出发建立状态空间表达式:如电路系统。
通常选电容上的电压和电感上的电流作为状态变量。
利用KVL 和KCL 列微分方程,整理。
③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。