刚体角动量守恒定律
- 格式:doc
- 大小:97.00 KB
- 文档页数:4
刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
角动量守恒定律的公式
1. 角动量守恒定律公式。
- 对于质点,角动量L = r× p(其中r是质点相对于某参考点的位矢,p = mv 是质点的动量,×表示矢量叉乘)。
- 在合外力矩M = 0时,角动量守恒,即L_1 = L_2。
- 对于定轴转动的刚体,角动量L = Iω(其中I是刚体对轴的转动惯量,ω是刚体的角速度)。
当合外力矩M = 0时,I_1ω_1=I_2ω_2。
2. 相关知识点(人教版教材相关内容补充)
- 转动惯量。
- 对于离散质点系,I=∑_im_ir_i^2,其中m_i是第i个质点的质量,r_i是该质点到转轴的垂直距离。
- 对于质量连续分布的刚体,I = ∫ r^2dm。
不同形状的刚体转动惯量有不同的计算公式,例如,对于质量为m、半径为R的均匀圆盘绕通过圆心且垂直于盘面的轴转动,其转动惯量I=(1)/(2)mR^2;对于质量为m、长为l的细棒绕通过中心且垂直于棒的轴转动,I=(1)/(12)ml^2。
- 角动量定理。
- 对于质点,M=(dL)/(dt)(M是合外力矩),这表明质点所受合外力矩等于它的角动量对时间的变化率。
- 对于刚体定轴转动,M = Iα(α是角加速度),结合L = Iω也可推导出
M=(dL)/(dt)。
刚体的⾓动量守恒定律§ 5-3 刚体的⾓动量守恒定律教学⽬标:理解转动定律,转动惯量,平⾏轴定理,⾓动量守恒定律重点难点:会求常见刚体的转动惯量,运⽤平⾏轴定理与转动定律⼀、刚体定轴转动的⾓动量刚体上的⼀个质元,绕固定轴做圆周运动⾓动量为:ω2i i i r m L =所以刚体绕此轴的⾓动量为:ω)(2∑∑==ii i iir m LL⼆、转动定律 1. 定律的推导如图所⽰,刚体上某⼀质点i ,质量为i m ?,绕Oz 轴作半径为ir 的圆周运动。
设质点i受外⼒i F 和刚体中其它质点作⽤的内⼒i F '的作⽤,并设这两种⼒均在与Oz 轴相垂直的同⼀平⾯内。
由⽜顿第⼆定律,质点i 的运动⽅程为:i i i i m a F F='+切向⽅程为:θ?τi i i i i i i i r m a m F F ?=?='+sin sin 法向⽅程为:()2cos cos ωθ?i i ini i i i i r m a m F F ?=?='+-上式两边各乘以i r ,得:αθ?2sin sin i i i i i i i i r m r F r F ?='+外⼒矩内⼒矩若考虑所有质点,则由可得βθ='+∑∑∑i i i i i ii i i ii r m r F r F 2sin sinsin ='∑i i ii θr Fα=∴∑∑i i i i i i i i r m r F 2sin令ini ii r F M ?sin 1∑==,它为刚体所受的外⼒矩,令∑=?=i ii rm J 12为转动惯量,则有:αJ M =2. 刚体定轴转动定律表述刚体所受的对于某定轴的合外⼒矩等于刚体对此定轴的转动惯量与刚体在此合外⼒矩作⽤下所获得的⾓加速度的乘积。
3. 讨论(1)和⽜顿第⼆定律相⽐较,地位相当;(2)瞬时性。
同⼀时刻对同⼀刚体,同⼀转轴⽽⾔。
一、刚体的角动量二、转动惯量三、计算转动惯量的三个定理四、定轴转动刚体的角动量定理和转动定理五、刚体定轴转动的角动量守恒定律刚体可以看作是由无数质点组成的质点组.刚体转动状态发生变化的原因是受到力矩的作用,力矩作用的时间累积效应将是什么?z 一、刚体的角动量质点以角速度ω作半径为r 的圆周运动时相对圆心的角动量为ωmr L 2=刚体可看作是特殊的质点系.对于图示刚体,可看作由许多可视为质点的微元组成.i i i i v m r L ∆⨯=定轴转动的整个刚体ωr m v m r L i i i i i i i ⎪⎭⎫ ⎝⎛∆=∆⨯=∑∑2∑∆=i ii r m J 2令O im ∆ωiv ir ωJ L =AωJ L=考虑到定轴转动刚体的特征,第i 个微元令J =mr 2ωr m i i 2∆=2iii r m J ∑∆=二、转动惯量物理意义:刚体定轴转动惯性大小的量度.质量离散分布刚体的转动惯量++=∆=∑2222112r m r m r m J i ii 转动惯量的计算方法质量连续分布刚体的转动惯量⎰⎰==mmmr J J d d 2刚体绕定轴Oz 的转动惯量(rotational inertia).◆质量线分布(质量线密度为λ):d m =λd l ◆质量面分布(质量面密度为σ):d m =σd S ◆质量体分布(质量体密度为ρ):d m =ρd V单位:kg ·m 2量纲:ML 2设棒的线密度为λ,在距离转轴OO'为r 处取线元d r r m d d λ=3d 22ml r r J l==⎰λ1212d 232/2/2ml l r r J l l ===⎰-λλrr m r J d d d 22λ==一质量为m 、长为l 的均匀细长棒,求:(1)通过棒中心并与棒垂直的轴的转动惯量,(2)通过棒端点并与棒垂直的轴的转动惯量.(2)同理,若转轴过端点垂直于棒有例2l 2l -rrd m d rOO'lrrd m d OrO'(1)根据题意作右图.建立Or 坐标系.解线元质量线元转动惯量棒的转动惯量例⎰=mJ J d 一质量为m 、半径为R 的均匀细圆环,求通过盘中心O 并与环面垂直的轴的转动惯量.建立图示直角坐标系θλλd d d R l m ==线元质量θλd d d 32R m R J ==线元绕轴的转动惯量mRO解设圆环线密度为λ圆环绕轴的转动惯量θd πRm 2=λ⎰=πθλ203d R 32R πλ=2mR=xy zθld 在环上取线元d l例5-4⎰=mJ J d 一质量为m 、半径为R 的均匀圆盘,求通过盘中心O 并与盘面垂直的轴的转动惯量.建立图示直角坐标系θσσd d d d r r S m ==面元质量θπσd d 2d d 32r r m r J ==面元绕轴的转动惯量mRO 解1设圆盘面密度为σ,在盘上取面元d S圆盘绕轴的转动惯量rr d +r Sd θθd xyz2πR m σ=⎰⎰=R r σr 0203d d 2πθπ42R σπ=221mR=m⎰=mJ J d 设圆盘面密度为σ,在盘上取半径为r ,宽为d r 的圆环rr m d 2d πσ=圆环质量rr m r J d 2d d 32πσ==圆环绕轴的转动惯量Rr rd O解22πRm σ=⎰=Rr σr 03d 2π42R σπ=221mR=圆盘绕轴的转动惯量几种常见刚体的转动惯量2mrJ =rm质量为m 的质点绕轴转动质量为m 长为l 的均匀细棒绕轴转动2121ml J =轴在中心231mlJ =轴在一端221mR J =RmO 质量为m 半径为R 的均匀圆盘或圆柱体绕轴转动2mR J =R mO质量为m 半径为R 的均匀圆环绕轴转动232mR J =质量为m 半径为R 的均匀薄球壳绕轴转动R mO252mR J =质量为m 半径为R 的均匀球体绕轴转动R mO影响因素◆刚体的总质量:形状、大小和转轴都相同的匀质刚体,总质量越大,则转动惯量越大.◆刚体质量分布:总质量、形状和转轴都相同的刚体,质量分布离轴越远,转动惯量越大.◆转轴位置:同一刚体,对不同位置的转轴,其转动惯量不同,转轴离质心越远,转动惯量越大.三、计算转动惯量的三个定理质心及其确定方法刚体的运动=平动+转动刚体做平动时,刚体上各点运动都相同,可用其上任何一点的运动来代表整个刚体的运动.绝大多数情况下都是用刚体上的一个特殊点——质心的运动代表整个刚体的平动.质心(center of mass)就是质点系或刚体的质量分布中心.质点系的质心∑∑=iii C mr m r直角坐标系中Cx km z m j m y m i mx m ii i i i i iii ∑∑∑∑∑∑++=Cy Cz刚体的质心直角坐标系中⎰⎰=m mr r C d d Cx 可以证明:质量分布均匀、且为对称性的刚体,其质心在对称面或对称轴上,若有对称中心,它就是刚体的质心.如匀质的细棒、圆盘、圆环、球、平行四边形薄板、矩形薄板等,质心分别在其对称中心.若刚体由几部分组成,要确定其质心,应先求每一部分的质心,并认为每一部分的质量集中在其各自的质心上,再将各部分看作质点系,求其总质心.kmm z j m m y i m m x ⎰⎰⎰⎰⎰⎰++=d d d d d d Cy Cz1 平行轴定理如图,刚体的质心为C .CD 为过质心的轴,MN 为与CD 平行的任意轴.d m 是构成刚体的任一质量元,位于点P .过d m 作垂直于二轴的平面与两轴的交点分别为D 、M .ρ'为d m 到MN 轴的垂距.ρ为d m 到OC 轴的垂距.d 为两平行轴间距.C P ρ 'd zx y O mdcr r ρ N MD 以O 为原点建立图示直角坐标系.刚体对MN 轴的转动惯量为⎰'=mm J d 2ρdr r r CD CD CP⊥-= ,ρ⎰⎰⋅=⋅mCP m m r d m d d 2d 2 ρ()⎰⎰-=m c m CP m r r m r d d 质量为m 的刚体,如果对其质心轴的转动惯量为J C ,则对任一与该轴平行,相距为d 的转轴的转动惯量为J C +md 2——平行轴定理2mdJ J C +=CJ J =min ()⎰-=m md d 2 ρ⎰⎰⎰⋅-+=mm m md m d m d 2d d 22ρρ =J C =md 2⎰⎰-=m c m m r m r d d⎰⎰-=mc mm r mmr md d 0=-=c c r m r m =0CPrCPrr 2=x 2+y 2Oz设有如图所示薄板状刚体.2正交轴定理yxmd r 过板上任一点O 建立直角坐标系Oxyz ,薄板在Oxy 平面内.取质量元d m ,位置如图.x y 薄板绕Ox 轴的转动惯量:⎰⎰==mm xx my J J d d 2薄板绕Oy 轴的转动惯量:⎰⎰==mmyy mx JJ d d 2薄板绕Oz 轴的转动惯量:⎰=mz z J J d yx z J J J +=薄板状刚体绕对于板面内的两条正交轴的转动惯量之和,等于薄板对过该二轴交点且垂直于板面的那条轴的转动惯量——正交轴定理.⎰=mmr d 2⎰⎰+=mmmy m x d d 22xJ y JmOR例半径为R ,质量为m 的匀质圆盘,求(1)通过圆盘边缘且与盘面垂直的轴的转动惯量,(2)通过圆盘直径轴的转动惯量.利用转动惯量的定义求解J解1(1)建立图示直角坐标系Oxyz ,原点在盘心,Oxy 与盘同面.m d 任取质量元d m ,位置如图由转动惯量的定义有()⎰⎰⎰⎰⎰⋅-+=-='=mm m m m m d r m d m r m d r m r J d 2d d d d 2222 r xyzr '2221d mR J m r oz m ==⎰222d mR md m dm ==⎰0d d d =⋅=⋅=⋅=⋅⎰⎰⎰c m m m r d m m m r m d m r d m d r 22223021mR mR mR J =++=d过盘边缘且垂直于盘面的轴如图,设盘对它的转动惯量J .mO R (2)建立图示直角坐标系Oxyz ,原点在盘心,Oxy 与盘同面,Ox 和Oy 都是过圆盘直径的轴.r m d θθd r r d +取质量元d m ,位置如图Sm d d σ=由转动惯量的定义有()24203220224141d d sin d d sin d mRR rr r r r m y J RR mx =⋅⋅====⎰⎰⎰⎰⎰πσθθσθσθππ由题意有2R m πσ=θθsin d d d r y r r S ==,又 同理可得2241d mR m x J m y ==⎰xyzRmO利用平行轴定理和正交轴定理求解.(1)由平行轴定理得2mdJ J C +=Rd mR J C ==,2212222321mRmR mR J =+=dJCJ (2)建立图示坐标系,原点位于盘心,盘面与Oxy 同平面.RmOC J xyz221mR J J C z ==由正交轴定理得yx z J J J +=由质量分布对称性有yx J J =241mRJ J y x ==对Oz 轴有解xy Ozα例一质量为m 、长为L 的均匀细棒放在Oxy 平面内,棒与x 轴成α角,其中心在O 点.求棒对x 、y 和z 轴的转动惯量.细棒的质量密度为lm d d λ=在细棒上取长为d l 的质量元由正交轴定理Lm =λ⎰=mx x J J d ()ααλαλλ22232222cos 121cos 121d cos d d mL L ll l x J J L L m my y =====⎰⎰⎰-2121mL J J J y x z =+=ld x ly⎰=ml y d 2λ()⎰-=222d sin L L l l αλαλ23sin 121L =α22sin 121mL =解例解1半径为R ,质量为m 的匀质圆环,求通过沿圆环直径的轴的转动惯量.环的质量密度为R m πλ2=θθd md r在环上取质量元d m θλd d R m =d m 到转轴的距离为θcos R r =R⎰=mm r J d 2解2利用转动惯量的定义求解利用正交轴定理求解对过环心并与环垂直的轴的转动惯量为222d d mR mRm R J mmO ===⎰⎰由对称性有221mRJ J y x ==md R Oyx由正交轴定理有yx O J J J +=()⎰=πθλθ202d cos R R ⎰=πθθλ2023d cos R3R πλ=221mR=设有如图所示刚体,由圆板A 、细杆B 及矩形板C 组成.3组合定理刚体对过圆心O 且垂直于圆板的轴的转动惯量为CB A J J J J ++=由几个部分组成的刚体对某轴的转动惯量,等于刚体各部分对该轴的转动惯量之和——转动惯量的组合定理.ABCO∑∆=2i i r m J ()2222211kk rm r m r m ∆++∆+∆= ()2222221n n k k k k r m r m rm ∆++∆+∆+++++ ()2222221ss n n n n rm rmrm∆++∆+∆+++++ AB C∑∑∑∆+∆+∆=CCiCi BBiBi AAiAi rm r m r m 222∑=iJ J 一般地例一质量为M 、半径为R 的均匀圆盘,沿其直径对称地挖出半径为r 的两个圆孔,孔心距为R .求剩余部分对过盘心且与盘面垂直的轴的转动惯量.采用补偿法,挖孔后的圆盘可看作由三部分组成:R Or O ''r O 'R 半径为R 的匀质圆盘O ,质量为半径为r 的匀质圆盘O ',质量为半径为r 的匀质圆盘O ",质量为解MR M =⋅=21πσ2222RMrr M -=⋅-=πσ2223RMrr M -=⋅-=πσ圆盘质量分布的面密度为2RM πσ=R Or O ''rO 'R 由平行轴定理,匀质圆盘O '和O ''对过O 且垂直于盘面的轴的转动惯量分别为⎪⎪⎭⎫⎝⎛+-=⎪⎭⎫⎝⎛+=21222222222R r Mr R M J J C O ⎪⎪⎭⎫ ⎝⎛+-=++=21212222321R r Mr MR J J J J O O C O 22112121MRR M J C ==24222221RMr r M J C -==它们对各自质心轴(垂直于盘面)的转动惯量分别为24233221RMr r M J C -==由组合定理,挖孔后的盘对过O 且与盘面垂直的轴的转动惯量为⎪⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+=21222222333R r Mr R M J J C Oz四、定轴转动刚体的角动量定理和转动定理∑∑+=iin iiex i M M M ()ω2d d d d i i i i r m t t L M ∆==如图,第i 个微元定轴转动刚体的角动量定理in iex i i M M M +=()ωJ tt L M d d d d ==刚体绕定轴转动时,作用于刚体的合外力矩等于刚体绕此定轴的角动量随时间的变化率——刚体定轴转动的角动量定理(微分形式).O im ∆ωiv ir A对整个刚体而言⎪⎭⎫ ⎝⎛∆==∑∑ω i i i i ex i r m t M 2d d =0刚体绕给定轴转动时,作用在刚体上的合外力矩的冲量距等于刚体对该轴的角动量的增量——刚体定轴转动的角动量定理(积分形式).12122121d d ωω J J L L L t M t t t t -=-==⎰⎰非刚体定轴转动的角动量定理112221d ωJ ωJ t M t t -=⎰()ωJ t M d d =⎰21d t t t M为t 1到t 2时间间隔内合外力矩与时间的乘积,称为刚体相对于给定轴的冲量矩.力矩在一段时间间隔内的累积效应刚体定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =定轴转动刚体的转动定理t L M d d =(刚体定轴转动时J 为常量)刚体所受的相对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩作用下所获得的角加速度的乘积——定轴转动刚体的转动定理.()ω J t d d =tJd d ω =应用转动定理和牛顿第二定律解题的思路(1)明确已知条件和待求量,确定研究对象;(2)取隔离体,受力分析;(3)选坐标,应用转动定理或牛顿第二定律列方程;(4)计算力矩和转动惯量;(5)由约束关系补充运动学方程;(6)求解,讨论.如图A 所示,滑轮与轴间无摩擦,质量为m 的物体由轻绳悬挂滑轮下面,绳与滑轮间无相对滑动.若以大小为F =mg 的力代替物体m ,则滑轮转动的角加速度().A .βA <βB B .βA >βB C .βA =βB D .无法确定例设物体滑轮半径和转动惯量分别为r 和J .解由刚体定轴转动定理有A A J rT β=由牛顿第二定律有对图A :设物体加速度大小为a ,轻绳张力大小为T A ,则maT mg A =-滑轮边缘线加速度大小m A FB Ar a β=2mrJ rmgA +=β对图B :轻绳张力大小为T B ,则由刚体定轴转动定理有B B J rT β=由轻绳性质有F T B =由题意有mgF =Jrmg B =βA BA ββ<飞轮的质量为什么大都分布于外轮缘?2mRJ =圆环221mR J =圆盘刚体定轴转动定理βJ M =在同样质量和半径的情况下,圆环比圆盘更稳定!⎪⎪⎩⎪⎪⎨⎧====222mR M J M mR M J M 圆环圆环圆盘圆盘ββ圆环圆盘ββ>在同样半径的情况下,要获得同样的角加速度,圆环比圆盘更轻!Oθ竿子长些还是短些较安全?细竿对过支点O 的轴刚体定轴转动定理βJ M =231Lm J 竿竿=N F g m 杆g m 人演员对过支点O 的轴2Lm J 人人=总转动惯量竿人J J J +=J M =β细竿的重力矩()向里竿竿sin 21θgL m M =演员的重力矩()向里人人 sin θgL m M =总力矩竿人M M M +=()()Lm m θg m m 3sin 2竿人竿人++=L越大β越小,系统越稳定.即竿越长越安全!走钢丝的演员总是伸开双臂或横握一根长竿,也是同样的道理.C员演C 3m A B R例5-5如图,一轻绳跨过一定滑轮C ,滑轮视为匀质圆盘,绳的两端分别悬有质量为m 1和m 2的物体A 和物体B ,m 1<m 2.设滑轮的质量为m 3,半径为R ,滑轮与轴承间的摩擦力可略去不计,绳与滑轮之间无相对滑动.试求:(1)物体的加速度和绳的张力;(2)若不计滑轮质量,结果如何?(1)分别取A 、B 为质点,取图示Oy 坐标系,受力分析如图gm 1gm 22T a 1'T2'T 1T a-βC 绕定轴转动,由转动定理得由角加速度和切向加速度的关系得⎩⎨⎧-=-=-a m g m T am g m T 222111 :B :A βJ R T'R T'=-12βR a =由牛顿第二定律得C 为刚体,受力分析如图Oy解联立以上各式得gm m m m m a 232112++-=22112321T T'T T'R m J ===,,gm m m m m m m T 22232113211+++=gm m m m m m m T 22232123212+++=(2)当m 3=0时有gm m m m T T 2121212+==gm m m m a 2112+-=T 1≠T 2Oθ例5-6如图,一长为l 、质量为m 匀质细杆竖直放置,其下端与一固定铰链O 相接,并可绕其转动.由于此竖直放置的细杆处于非稳定平衡状态,当其受到微小扰动时,细杆将在重力作用下由静止开始绕铰链O 转动.试计算细杆转动到与竖直线成θ角时的角加速度和角速度.()J βθmgl =-πsin 21l2l ()32ml J =t ωβd d =θlg βsin 23=由角加速度的定义θθlg ωωd sin 23d =代入初始条件积分得()θlgωcos 13-=N F P由题意,t =0时,θ=0,ω=0,β=0.细杆受重力和铰链对细杆的约束力作用.PN F由转动定理得t θθωd d d d ⋅=θωωd d =解()ωJ t t L Md d d d ==112221d ωJ ωJ t M t t -=⎰五、刚体定轴转动的角动量守恒定律➢角动量守恒定律是自然界的一个基本定律.➢内力矩不改变刚体的角动量.讨论刚体所受的合力矩为零,或不受外力矩作用时,刚体的角动量保持不变——质点的角动量守恒定律.恒量,则若===ωJ L M 0➢守恒条件:0=M 若J 不变,不变;若J 变,也变,但不变.ω ω ωJ L =➢在冲击等问题中,恒量.,≈∴>>L M M ex in应用举例跳水运动员茹科夫斯基凳ωJ L =21ωω<⇒图1图20=轴M2211ωωJ J =⇒21L L =⇒∑=2ii r m J 21J J >⇒茹科夫斯基凳分析例5-7如图,一杂技演员M 由距水平跷板高为h 处自由下落到跷板的一端A ,并把跷板另一端的演员N 弹了起来.设跷板是匀质的,长度为l ,质量为m',跷板可绕中部支撑点C 在竖直平面内转动,演员的质量均为m ,假定演员M 落在跷板上,与跷板的碰撞是完全非弹性碰撞.问演员N 可弹起多高?碰撞前M 落在A 点的速率ghv M 2=2l lhMC NAB 222l mu J ωl mv M +=系统角动量守恒系统:M 、N 和跷板.由于是完全非弹性碰撞,设碰撞后的瞬间系统角速度为ω.2ωl u =122l m J '=ωml ωl m gh ml 2221121221+'=解碰撞后的瞬间M 、N 具有相同的线速率u()lm m gh m ω626+'=解得m m gh m u 623+'=演员N 以u 起跳,达到的高度22632⎪⎭⎫ ⎝⎛+'=='m m m h g u h例5-8如图,宇宙飞船对其中心轴的转动惯量为J =2×103k g ·m 2,它以ω=0.2rad·s -1的角速度绕中心轴旋转.宇航员想用两个切向的控制喷管使飞船停止旋转.每个喷管的位置与轴线距离都是r =1.5m .两喷管的喷气量恒定,共是α=2kg·s -1.废气的喷射速率(相对于飞船周边)u =50m·s -1,并且恒定.问喷管应喷射多长时间才能使飞船停止旋转?系统:飞船和排出的废气设废气质量为m ,由于m 远小于飞船质量,可认为系统绕飞船中心轴的初始角动量近似等于飞船自身的角动量,即ωJ L =0ru -0L gL u2d m 2d m ω整个喷气过程中喷出废气的总角动量设喷管随飞船自转的线速率为v ,d m 为喷气过程中t →t +d t 时间内喷出的气体,则这些气体绕飞船中心轴转动的角动量()v u r m L g +⋅=d d rum L r v u g ⋅≈∴=>>d d ω mruru m L m g =⋅=⎰0d 解所需时间为当飞船停止旋转时,飞船的角动量为零,系统此时的总角动量即为废气总角动量整个喷气过程中,系统所受的对飞船中心轴的合外力矩为零,系统绕飞船中心轴的角动量守恒mruL L g ==mruJ L L =∴=ω 0ruJ m ω=tm α= ()s 67.2≈==ru J mt αωαm R Omh00=v M如图,一个质量为M 、半径为R 的定滑轮(当作均匀圆盘)上面绕有细绳,绳的一端固定在滑轮边上,另一端挂一质量为m 的物体而下垂.忽略轴处摩擦,求物体m 由静止下落高度h 时的速度大小和此时滑轮的角速度.maT mg =- 221 MRJ J TR M ===β'Mm mgh R R v +==241ω242Mm mghah v +==g Mm ma +=22例对M 由转动定理有对m 由牛顿第二定律有联立以上方程解得gm T -TOyβ对m 和M :βR a =解θO一根长为l 、质量为m 的均匀细直棒,其一端有一固定的光滑水平轴O ,因而可以在竖直平面内转动.最初棒静止在水平位置.求它由此下摆θ角时的角加速度和角速度.棒下摆为加速过程,外力矩为重力对O 的力矩.棒上取质元d m ,当棒处在下摆θ角时,重力矩为:⎰⎰=mx g m gx M d d =Cmgx M =∴ 据质心定义cmxm x =⎰d θcos 21l x c =θcos 21mgl M =l g ml mgl J M 2cos 331cos 212θθβ===例md gm d xx解由转动定理有t d d ωβ=ωωθθd d cos 23=lg⎰⎰=ωθωωθθ00d d cos 23lg221sin 23ωθ=l g lg θωsin 3=d d ωωθβ=再求角速度d d d d t θθω=d d θωω=如图,一长为l 、质量为M 的匀质细棒,以顶端静止悬挂于O 处,并可绕其转动.一质量为m 的子弹以速率v 0沿水平方向射入棒的下端,穿出后速度损失3/4,求子弹穿出后棒的角速度ω.例0vmMOvml利用动量定理和角动量定理求解()43d 0mvv v m t F -=-=⎰μ设子弹对棒的反作用力为F ,碰撞后棒的角速度为ω,对棒由刚体绕定轴转动的角动量定理有J ωt F l t Fl ==⎰⎰d d 而F=-F μ,代入上述两式可解得430l mv J ω=32Ml J =Mlmv ω490=设棒对子弹的阻力为F μ,对子弹由动量定理有解1利用角动量守恒定理求解0mlv L =末态角动量mlvJL +=ω联立上述三式得430l mv J ω=32Ml J =解2Mlmv ω490=取子弹和细棒为系统.设子弹穿出瞬间棒的角速度为ω.系统初始角动量细棒的初始和末态角速度分别为0和ω由题意有:子弹的初始速率为v 0,末态速率为v=v 0-3v 0/4=v 0/4子弹与棒的相互作用力为内力,所以系统角动量守恒,即LL =。
转动动能定理、角动量守恒原理
一,转动动能定理:
1, 力矩的功
设刚体在外力F 作用下发生角位移d φ 由功的定义:相应的元功为:
ϕθϕθMd Frd ds F ds F dA o ==-⋅=⋅=sin )90cos(
所以力矩的功为:
⎰⎰==2
1
ϕϕϕMd dA A
2, 转动动能定理
设M 为作用刚体上的合外力矩。
将转动定律应用于功的定义中:
2
22
121)(0ωωωωϕωϕβϕωωJ J d J d dt d J d J Md A -=====⎰⎰⎰⎰ 所以转动动能定理为:
2
22
121ωωϕJ J Md -=⎰ 说明,(1)⎰ϕMd 为合外力矩的功,是过程量
22
1
ωJ E K =
为刚体在t 时刻的转动动能。
是时刻量。
(2)其中M 、J 、ω必须相对同一惯性系,同一转轴。
【例】:质量为m 长度为l 的匀质细棒,可绕端轴o 在铅垂铅垂面内自由摆动,求细棒自水平位置自由下摆到铅垂位置时的角速度。
解:取细棒为研究对象,视之为刚体。
细棒下摆到 任意θ位置时受外力有:重力mg ,端轴支持力N (对o 不成矩) 。
由功的定义:
2
cos 2)90sin(2900l mg d l mg d l
mg Md o o ===-=⎰⎰⎰θθθθθ
由转动动能定理:
l
g
ml J l mg 331210212222=
∴
⎪⎭
⎫
⎝⎛=-=ωωω
二,角动量守恒定律
设M 为作用于刚体的合外力矩,由定轴转动定律:
dt
dL
dt J d dt d J J M =
===)(ωωβ 所以,刚体定轴角动量定理为
00
L L dL Mdt L
L t
t -==⎰⎰
特别当整个过程中合外力矩为零时,刚体的角动量守恒。
即刚体定轴转动角动量守恒定律为:
常矢==L M 0
说明:(1)刚体定轴角动量守恒条件是整个过程中合外力矩为零。
(2)守恒式各量(M 、J 、ω)均需是对同一惯性系中的同一转轴。
(3)⎩
⎨⎧==都变,但乘积不变、都不变、ωωωJ J const I L
(4)角动量守恒定律也是自然界基本定律之一。
不仅适用宏观领域,
也适用微观领域。
【例】质量为m 的人站在质量为M ,半径为R 的水平匀质圆盘边沿,随圆盘以角速度0Ω旋转,当他运动到半径r 处时,系统的角速度变为多少?
解:系统转动过程中所受外力:重力Mg 、mg 、以及转轴的支持力N 均对转轴不成矩,故系统角动量守恒。
2
22
22022220222)2()
2
1()21()2
1
()21(Ω++=+Ω+=ΩΩ+=Ω+
MR
mr R M m MR mr MR mR MR mr MR mR
【例】:质量为M 、半径为R 的水平圆盘可绕通过圆心的铅直轴转动,盘上 距轴r(r<R)处有一质量为m 的人,开始盘与人均静止,当人以相对于盘的速度u 作半径为r 的圆周运动时圆盘的角速度为多大?
解:设圆盘角速度为Ω,系统转动过程中所受外力:重力Mg 、mg 、以及转轴的支持力N 均对转轴不成矩, 故系统角动量守恒。
人对盘的角速度:r u =ω, 人对地的角速度:ωϖ-Ω=
)2/(2210)(212222222mr MR mur mr MR r u mr mr MR +=ΩΩ⎪⎭
⎝⎛+=⎪⎭⎫ ⎝⎛=-Ω+Ωω
【例】:质量为
M 长度为l 的匀质细棒静止在铅垂位置,一质量为m 的子弹以速度v 水平地射入细棒下端,试求细棒(含子弹)上摆高度h=?
解:子弹射入细棒的过程很快完成,故认为细棒来不及运动。
系统所受
外力有:重力Mg 、mg 以及悬挂点支持力N ,它们对o 均不成矩。
故过程的角动量守恒:
)
1.......()
3
1
(.)3
1
(2222Ml ml mvl
Ml ml mvl +=+=ωω
)
2.........()2
1
(21)cos 2
2()cos ()31(21222h Mg mg Mgh mgh l
l Mg l l mg Ml ml +=+-+-=+θθω
联立(1)、(2)得:
)
2
1)(31(2)(222
Mg mg Ml ml mvl h ++=
【例】:转动惯量为J 1、角速度为ω0的飞轮与半径相同转动惯量为J 2的静
止飞轮接触后,角速度将变为多少?
解:设接触Δt 时间后角速度分别为ω1、ω2,接触过程中各自受力如图。
但 对各自的转轴具有力矩的只有f 12、f 21。
)1( (22110121)
1222210
11112ωωωωωωJ J J f f J t R f J J t R f -=∴-==∆-=∆
2
11
2121ωωω
ωωωωJ J J R
R -=∴==∴=
思考:1,有人认为(1)式也可以利用系统角动量守恒定律得出,对吗? 上例中的两轮换成下图所示情况,可以利用定轴转动角动量守恒定律求解吗?
2,试分析单摆和圆锥摆中质点的动能、动量和角动量的守恒情况。
2山
1山ω。