尺寸链设计计算表
- 格式:xls
- 大小:208.00 KB
- 文档页数:2
工艺尺寸链计算的基本公式
1.尺寸链总公差计算式
总公差=设计尺寸+最大便宜-最小公差
其中,设计尺寸是产品设计的理论尺寸,最大便宜是指允许的最大超
出设计尺寸的尺寸偏差,最小公差是指允许的最小尺寸偏差。
2.累积公差计算式
累积公差=√(Σ(公差1^2+公差2^2+公差3^2+...+公差n^2))
其中,Σ表示总和,公差1、公差2、公差3...公差n是从设计到加
工过程中每个环节的公差。
3.公差分配计算式
公差分配=(设计尺寸-加工尺寸)/加工余量
其中,设计尺寸是产品设计的理论尺寸,加工尺寸是实际加工得到的
尺寸,加工余量是指设计尺寸与加工尺寸之间的差值。
4.合并公差计算式
合并公差=√(公差1^2+公差2^2)
其中,公差1和公差2是两个相互独立的公差。
5.组合公差计算式
组合公差=(公差1^2+公差2^2+公差3^2+...+公差n^2)^0.5
其中,公差1、公差2、公差3...公差n是不同特征尺寸的尺寸公差。
除了这些基本公式外,还有一些特殊情况下的公式可供使用,如配合
公差的计算、紧配合公差的计算等。
需要注意的是,工艺尺寸链的计算是一个复杂的过程,需要考虑到产
品的设计要求、加工工艺的要求、材料的特性等多个因素。
公式只是工艺
尺寸链计算的一部分,实际使用中还需结合具体情况进行综合计算和分析。
一、概述在工程设计和制造过程中,经常需要进行零件的尺寸链计算,以确保零件之间的配合精度和装配的顺利进行。
而二维尺寸链计算是其中的重要环节之一,通过建立零件之间的尺寸链关系,可以有效地进行设计和检验,提高产品质量和工作效率。
为了简化二维尺寸链计算的过程,我们开发了一份Excel模板,帮助工程师和设计师快速准确地进行二维尺寸链计算。
二、模板介绍1. 模板名称:二维尺寸链计算Excel模板2. 功能:简化二维尺寸链计算的过程,提供方便快捷的计算工具3. 特点:用户友好、操作简单、结果准确、适用范围广泛4. 适用对象:工程师、设计师、制造人员等从事产品设计和制造的专业人士三、模板使用说明1. 输入数据在模板中,用户需要输入待计算的零件尺寸和相关尺寸链的定义。
用户可以根据实际情况逐一输入每个零件的尺寸和尺寸链关系,也可以通过导入外部文件的方式进行批量输入。
2. 计算结果一旦输入完毕,用户只需点击“计算”按钮,即可快速得到二维尺寸链计算的结果。
模板将自动进行数据处理和计算,并生成相应的报告和图表,直观地展示尺寸链之间的关系和计算结果。
3. 修改和保存用户可以在模板中修改输入的数据和计算结果,并支持将结果导出为Excel文件或其他格式,方便用户进行后续处理和存档。
四、模板优势1. 方便快捷模板的操作界面简洁直观,使用者无需繁琐的操作步骤,只需简单的输入和点击,即可完成计算。
节省了大量的时间和精力。
2. 准确可靠模板基于严谨的计算方法和算法,保证了计算结果的准确性和可靠性。
避免了人为的计算误差,提高了计算的精度。
3. 多功能定制模板支持自定义计算设置和输出格式,用户可以根据实际需求灵活调整计算参数和报告内容,满足不同应用场景的需求。
五、模板应用范围该模板可广泛应用于各种产品设计和制造行业,包括但不限于机械、电子、航空航天、汽车等领域。
无论是小型零部件还是大型装配件,都可以通过该模板进行二维尺寸链计算,有效提高工作效率和产品质量。
一.尺寸链公差计算
“公差的计算公式:尺寸公差δ=最大极限尺寸D(d)max-最小极限尺寸
D(d)min=ES(es)-EI(ei)。
公差就是零件尺寸允许的变动范围,合理分配零件的公差,优化产品设计,可以以最小的成本和最高的质量制造产品。
公差的计算方法:1、极值法这种方法是在考虑零件尺寸最不利的情况下,通过尺寸链中尺寸的最大值或最小值来计算目标尺寸的值。
2、均方根法这种方法是一种统计分析法,其实就是把尺寸链中的各个尺寸公差的平方之和再开根而得到目标尺寸的值。
尺寸链(dimensional chain ),是分析和技术工序尺寸的有效工具,在制订机械加工工艺过程和保证装配精度中都起着很重要的作用。
在零件加工或机器装配过程中,由互相联系的尺寸按一定顺序首尾相接排列而成的封闭尺寸组。
组成尺寸链的各个尺寸称为尺寸链的环。
其中,在装配或加工过程最终被间接保证精度的尺寸称为封闭环,其余尺寸称为组成环。
组成环可根据其对封闭环的影响性质分为增环和减环。
若其他尺寸不变,那些本身增大而封闭环也增大的尺寸称为增环,那些本身增大而封闭环减小的尺寸则称为减环。
课题:产品型号:组成环代号描述增环基本尺寸减环基本尺寸T(零件公差)Es(零件上偏差)Ei(零件下偏差)偏差分布曲线e相对不对称系数K相对分布系数∆中间偏差§传递系数T (零件公差平方)A1轴承支撑台阶高度 4.50.50.25-0.25正态分布01-0.25-10.25A2轴承支撑压缩后台阶高度420.40.2-0.2正态分布01-0.2-10.16A3支撑钣金厚度t1.010.20.1-0.1正态分布01-0.1-10.04A4中隔板端部到轴承支撑安装孔中心距距离(含装配误差)53.50.60.3-0.3正态分布010.310.36A5轴承支撑安装孔中心到电机支撑安装孔中心距距离(含装配误差)719.10.40.2-0.2正态分布010.210.16A6电机支撑上两个孔距离(含装配误差)33.50.60.3-0.3正态分布010.310.36A7电机支座安装孔到电机胶圈中心的距离23.50.60.3-0.3正态分布01-0.3-10.36A8电机轴端部到电机胶圈中心的距离2721-1正态分布01-1-14A9橡胶垫厚度 2.50.50.25-0.25正态分布01-0.25-10.25A10连接轴右端面离轴肩长701.2 1.40.7-0.7正态分布1-0.7-11.96L 0(封闭环基本尺寸)T 0(封闭环公差)∆0(封闭环中间偏差)ES 0(封闭环上偏差)EI 0(封闭环下偏差)L (封闭环最大尺寸)L (封闭环最小尺寸)4.4 2.81-2-0.59-3.413.817.81结论尺寸链设计计算三、尺寸链求解统计法1、A0最小尺寸3.81,连接轴轴坚不会磨到轴承座端面;2、A0最小尺寸3.81,连接轴轴坚长25mm,轴承座设计尺寸28mm,最小间隙6.81mm,连接轴端部不会磨到轴承座内表面;3、A0最大尺寸7.81,连接轴轴坚长25mm,插入深度17.19mm,轴承座硬度范围45±5下一步行动计划:挑选最低硬度(40)的轴承座、在插入深度17.19mm的状态下做跌落实验进行验证封闭环A0轴肩与轴承支撑距离尺寸链设计一、装配图及尺寸链图装配图尺寸链图A2A4A1、A2、A3、A7、A8、A9、A10是减环A4、A5、A6是增环A1A0A10A9A7A8A3A6A5。
尺寸链公差计算案例摘要:一、引言二、尺寸链公差计算方法1.尺寸链概念2.尺寸链公差计算公式3.尺寸链公差计算实例三、尺寸链公差在工程中的应用1.零件加工中的应用2.产品设计中的应用四、总结正文:一、引言在机械制造领域,尺寸链公差计算是一项基础且重要的工作。
尺寸链是由一系列相互关联的尺寸组成的,它们在加工和装配过程中相互影响。
为了保证产品的质量和性能,掌握尺寸链公差的计算方法至关重要。
本文将详细介绍尺寸链公差的计算方法及其在工程中的应用。
二、尺寸链公差计算方法1.尺寸链概念尺寸链是指在零件加工和装配过程中,由一系列相互关联的尺寸组成的链式结构。
这些尺寸之间存在一定的相对位置关系,并相互影响。
尺寸链的公差是指各个尺寸之间的允许偏差范围。
2.尺寸链公差计算公式尺寸链公差计算公式为:T=max(Δi)+min(Δj)其中,T表示尺寸链的公差,Δi表示第i个尺寸的允许偏差,Δj表示第j 个尺寸的允许偏差。
3.尺寸链公差计算实例以一个简单的尺寸链为例,假设有一个零件的尺寸分别为A、B、C,它们的允许偏差分别为±0.1mm、±0.2mm、±0.3mm。
根据公式,可以计算出尺寸链的公差为:T=max(ΔA, ΔB, ΔC)+min(ΔA, ΔB,ΔC)=0.3mm+0.1mm=0.4mm。
三、尺寸链公差在工程中的应用1.零件加工中的应用在零件加工过程中,尺寸链公差计算有助于确定加工工艺和检验标准。
根据尺寸链公差,加工人员可以合理选择加工设备和工艺参数,以确保零件加工质量。
2.产品设计中的应用在产品设计阶段,尺寸链公差计算有助于优化设计方案,提高产品的可靠性和性能。
设计人员可以根据尺寸链公差,合理设置产品的尺寸参数,使其在满足功能要求的同时,具有良好的制造性和装配性。
四、总结尺寸链公差计算在机械制造领域具有重要的意义。
掌握尺寸链公差的计算方法,有助于保证产品的质量和性能,提高制造过程的效率。
第十章装配精度与加工精度分析任何机械产品及其零部件的设计,都必须满足使用要求所限定的设计指标,如传动关系、几何结构及承载能力等等。
此外,还必须进行几何精度设计。
几何精度设计就是在充分考虑产品的装配技术要求与零件加工工艺要求的前提下,合理地确定零件的几何量公差。
这样,产品才能获得尽可能高的性能价格比,创造出最佳的经济效益。
进行装配精度与加工精度分析以及它们之间关系的分析,可以运用尺寸链原理及计算方法。
我国业已发布这方面的国家标准GB5847—86《尺寸链计算方法》,供设计时参考使用。
第一节尺寸链的基本概念一、有关尺寸链的术语及定义1.尺寸链在机器装配或零件加工过程中,由相互连接的尺寸形成的封闭尺寸组,称为尺寸链。
尺寸链分为装配尺寸链和工艺尺寸链两种形式。
(a)齿轮部件(b)尺寸链图(c)尺寸链图图10-1 装配尺寸链示例图10-1a为某齿轮部件图。
齿轮3在位置固定的轴1上回转。
按装配技术规范,齿轮左右端面与挡环2和4之间应有间隙。
现将此间隙集中于齿轮右端面与挡环4左端面之间,用符号A0表示。
装配后,由齿轮3的宽度A1、挡环2的宽度A2、轴上轴肩到轴槽右侧面的距离A3、弹簧卡环5的宽度A4及挡环4的宽度A5、间隙A0依次相互连接,构成封闭尺寸组,形成一个尺寸链。
这个尺寸链可表示为图10-1b与图10-1c两种形式。
上述尺寸链由不同零件的设计尺寸所形成,称为装配尺寸链。
图10-2a为某轴零件图(局部)。
该图上标注轴径B1与键槽深度B2。
键槽加工顺序如图10-2b所示:车削轴外圆到尺寸C1,铣键槽深度到尺寸C2,磨削轴外圆到尺寸C3(即图10-2a中的尺寸B1),要求磨削后自然形成尺寸C0(即图10-2a中的键槽深度尺寸B2)。
在这个过程中,加工尺寸C1、C2、C3和完工后尺寸C0构成封闭尺寸组,形成一个尺寸链。
该尺寸链由同一零件的几个工艺尺寸构成,称为工艺尺寸链。
(a)轴零件图局部(b)铣键槽工艺顺序图(c)尺寸链图图10-2 工艺尺寸链示例2.环列入尺寸链中的每一个尺寸,称为环。
环 Loop 尺寸中心值(mm)
对称偏差(mm)
尺寸来源:参考零件图番
(增环)A1300.1A20180650(减环)A2-3.50.08A20180650(减环)A3-10.09A20180650(减环)A4-1.50.06A20180622(减环)A5-11.50.1A20180650(减环)A6-0.40.05A20180611(减环)A7-10.09A20180650(减环)A8-40.05A20180656
封闭环B0
7.10.226上极限尺寸(目标)可按需求手动调整7.55N/A 下极限尺寸(目标)可按需求手动调整 6.65N/A 设计西格玛水平(上极限) 6.00N/A 活动间隙B0=7.10±0.226
设计西格玛水平(下极限) 6.00
N/A
过程无偏移时:
设计百万机会缺陷数(上极限)0 PPM 0.00%设计百万机会缺陷数(下极限)0 PPM 0.00%设计百万机会缺陷数0 PPM
0.00%考虑±1.5σ偏移时:
设计百万机会缺陷数(上极限) 3 PPM 0.00%设计百万机会缺陷数(下极限) 3 PPM 0.00%设计百万机会缺陷数
7 PPM
0.00%参考尺寸链:求间隙B0
尺寸链计算模板-活动间隙B0=A1-A2-A3-A4-A5-A6-A7-A8(根据尺寸链调整增环减环)
对应不良率:
对应不良率:。