高一数学必修5试题及答案
- 格式:doc
- 大小:470.50 KB
- 文档页数:6
2021-2022学年湘教版(2019) 高一数学必修第一册 第5章全章综合检测一、单选题1.点()sin913,cos913A ︒︒位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】首先求出913所在象限,然后判断sin913︒和cos913︒符号即可求解. 【详解】∵9132360193︒=⨯︒+︒, ∴913°角为第三象限角, ∴sin9130︒<,cos9130︒<, ∴点sin913,cos 3()91A ︒︒位于第三象限. 故选:C .2.已知1sin cos 8αα=,且5342ππα<<,则cos sin αα-的值为( )A .BC .34-D .34【答案】B【分析】将cos sin αα-平方可求出cos sin αα-=5342ππα<<可判断cos sin 0αα->,即可得出答案.【详解】()213cos sin 12sin cos 144αααα-=-=-=,cos sin αα-∴=, 5342ππα<<,cos sin αα∴>,则cos sin 0αα->,cos sin αα-∴=故选:B.【点睛】本题考查同角三角函数的关系以及三角函数值大小的判断,属于基础题. 3.设MP ,OM 和AT 分别是角1318π的正弦线、余弦线和正切线,则下列式子正确的是( )A . MP AT OM <<B . AT OM MP <<C .0AT MP <<D . 0AT OM <<【答案】B【分析】根据三角函数线的概念即可判断. 【详解】解:分别作角1318π的正弦线、余弦线和正切线,如图,∵13sin018MP π=>,13cos 018OM π=<,13tan 018AT π=<. ∴0MP OM AT >>>. 故选:B . 4.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,且732ππα<<,则cos sin αα+= A 3B 2 C .2- D .3【答案】C 【详解】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴tan α+1tan α=k ,tanα•1tan α=k 2﹣3=1. ∵732ππα<<,∴k >0,∵k 2 =4,∴k=2,∴tanα=1,∴α=3π+4π, 则cosα=2sinα=2cosα+sinα=2-, 故选C .5.已知θ是第二象限角,(,2)P x 为其终边上一点且5cos θ=,则2sin cos sin cos θθθθ-+的值( ) A .5B .52C .32D .34【答案】A【分析】由三角函数的定义可得2cos +4θ=x 1x =-,tan 2θ=-,弦化切2sin cos 2tan 1sin cos tan 1θθθθθθ--=++,代入即可得出结果.【详解】由题意得25cos 5+4θ==x x x ,解得1x =±.又θ是第二象限角,1x ∴=-. tan 2θ∴=-.∴2sin cos 2tan 1415sin cos tan 121θθθθθθ----===++-+.故选:A .【点睛】本题考查了三角函数的定义,考查了运算求解能力,属于一般题目.6.若函数()f x 的图象上存在两个不同点A ,B 关于原点对称,则称A ,B 为函数()f x 的一对友好点,记作(),A B ,规定(),A B 和(),B A 是同一对友好点.已知()()cos ,0lg ,0x x f x x x ⎧≥⎪=⎨--<⎪⎩,则函数()f x 的友好点共有( )A .3对B .5对C .7对D .14对【答案】C【分析】结合题意,将函数()f x 的友好点的对数转化为cos y x =与lg y x =的图象的交点个数,然后利用图像求解即可.【详解】因为函数()lg y x =--的图象与函数lg y x =的图象关于原点对称, 所以函数()f x 的友好点的对数即方程cos lg x x =,0x >的解的个数, 即函数cos y x =与lg y x =的图象的交点个数, 作出函数0)cos (y x x =≥与lg y x =的图象,如图所示:可知共有7个交点,即函数()f x 的友好点共有7对. 故选:C .7.已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象与直线()0y b b A =<<的三个相邻交点的横坐标分别是1,2,4,下列区间是函数()f x 的增区间的是( )A .[]0,3B .3,32⎡⎤⎢⎥⎣⎦C .[]3,6D .93,2⎡⎤⎢⎥⎣⎦【答案】D【分析】首先根据已知条件得到()2cos 3f x A x π=-,再求其单调增区间即可. 【详解】由题知函数的周期2413T πω==-=,解得23πω=. 由0b A <<知,当12322x +==时,函数取得最大值, ∴232322k ππϕπ⨯+=+,解得22k πϕπ=-,k ∈Z∴()22sin +2cos 323f x A x k A x ππππ⎛⎫=-=-⎪⎝⎭, 令222,3k x k k ππππ≤≤+∈Z ,解得3332k x k ≤≤+,k ∈Z , ∴当1k =时,()f x 的增区间是93,2⎡⎤⎢⎥⎣⎦.故选:D8.已知()sin(2)(0)6f x x πωφω=+->同时满足下列三个条件:①T π=;②()6y f x π=+是奇函数;③(0)()3f f π<.若()f x 在[0,)a 上没有最小值,则实数a 的取值范围是A .511(,]612ππ B .5(0,]12π C .11(0,]12πD .511(,]1212ππ 【答案】A【解析】因为函数的周期T π=,计算ω的值,根据函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数,求得,6k k Z πφπ=-+∈,又因为()03f f π⎛⎫< ⎪⎝⎭,可求2,6k k Z πφπ=-+∈,所以()sin 23πf x x ⎛⎫=- ⎪⎝⎭,再根据函数图像判断a 的取值范围.【详解】()f x 的周期T π=,22ππω∴= ,1ω∴=, ()sin 26f x x πφ⎛⎫∴=+- ⎪⎝⎭,6f x π⎛⎫+ ⎪⎝⎭是奇函数,()f x ∴关于,06π⎛⎫⎪⎝⎭对称,2,66k k Z ππφπ∴⨯+-=∈,解得:,6k k Z πφπ=-+∈,()03f f π⎛⎫< ⎪⎝⎭,33sin sin sin cos 6222ππφφφφ⎛⎫⎛⎫∴-<+⇒< ⎪ ⎪⎝⎭⎝⎭ ,即sin 3cos φφ<, ,6k k Z πφπ=-+∈,2,6k k Z πφπ∴=-+∈,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭,当[)0,x a ∈时,2,2333x a πππ⎡⎫-∈--⎪⎢⎣⎭,由图象可知若满足条件,432332a πππ<-≤, 解得:511612a ππ<≤. 故选:A【点睛】本题考查根据函数性质判断参数的取值范围,意在考查函数性质的熟练掌握,以及数形结合分析问题和解决问题的能力,本题的关键是正确求函数的解析式.二、多选题9.若扇形的弧长变为原来的2倍,半径变为原来的2倍,则( ) A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积变为原来的4倍D .扇形的圆心角变为原来的2倍【答案】BC【分析】利用扇形面积公式和弧长公式的变形即可求解.【详解】设原扇形的半径为r ,弧长为l ,圆心角为α,则原扇形的面积为112S lr =,扇形的弧长变为原来的2倍,半径变为原来的2倍后,其面积为212222S l r lr =⋅⋅=,故214S S =,故A 错误,C 正确; 由22l l r rα==,可知扇形的圆心角不变,故B 正确,D 错误. 故选:BC .10.函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则( ).A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Z k ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Z k ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象 【答案】ACD【分析】根据图象可得函数的解析式,然后根据三角函数的性质及图象变换规律逐项分析即得.【详解】由题图可知,2A =,周期2ππ4π3π4T ω⎛⎫==-= ⎪⎝⎭, 所以23ω=,则22sin 3y x ϕ⎛⎫=+ ⎪⎝⎭, 因为当π4x =时,2π2sin 234y ϕ⎛⎫=⨯+= ⎪⎝⎭,即πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π62k ϕ+=+,Z k ∈,即π2π3k ϕ=+,Z k ∈,又0πϕ<<,故π3ϕ=,从而2π2sin 33y x ⎛⎫=+ ⎪⎝⎭,故A 正确;令2ππ33x k +=,Z k ∈,得π3π22x k -=+,Z k ∈,故B 错误;令π2ππ2π2π2332k x k -+≤+≤+,Z k ∈,得πππ3π4534k k x ≤≤+-+,Z k ∈,故C 正确;函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到2π2sin 33y x ⎛⎫=+ ⎪⎝⎭,故D 正确.故选:ACD.11.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD 512AB BC ⎛⎫-= ⎪ ⎪⎝⎭中作正方形ABFE ,以F 为圆心,AB 长为半径作弧BE ;然后在黄金矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作弧EG ;;如此继续下去,这些弧就连接成了斐波那契螺线.记弧BE ,EG ,GI 的长度分别为l ,m ,n ,则下列结论正确的是( )A .l m n =+B .2m l n =⋅C .2m l n =+D .111m l n=+ 【答案】AB【解析】设51AB =,则2BC =,再由14圆弧分别求得l ,m ,n ,然后再逐项判断.【详解】不妨设51AB =,则2BC =, 所以1(51)2(51)4l ππ-=⨯⨯=. 因为35ED =所以1(35)2(35)4m ππ-=⨯⨯=同理可得1(254)2(254)4n ππ-=⨯⨯=所以l m n =+,2m l n =⋅,2m l n ≠+,111m l n≠+,所以A ,B 正确,C ,D 错误. 故选:AB12.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ≤⎧=⎨>⎩,下列四个结论正确的是( )A .()f x 是以π为周期的函数B .当且仅当()x k k ππ=+∈Z 时,()f x 取得最小值-1C .()f x 图象的对称轴为直线()4x k k ππ=+∈ZD .当且仅当22()2k x k k πππ<<+∈Z 时,20()2f x <≤【答案】CD【解析】求得()f x 的最小正周期为2π,画出()f x 在一个周期内的图象,通过图象可得对称轴、最小值和最大值,即可判断正确答案.【详解】解:函数sin ,sin cos ()cos ,sin cos x x xf x x x x ⎧=⎨>⎩的最小正周期为2π,画出()f x 在一个周期内的图象, 可得当52244k x k ππππ++,k Z ∈时, ()cos f x x =,当592244k x k ππππ+<+,k Z ∈时, ()sin f x x =,可得()f x 的对称轴方程为4x k ππ=+,k Z ∈,当2x k ππ=+或322x k ππ=+,k Z ∈时,()f x 取得最小值1-; 当且仅当22()2k x k k Z πππ<<+∈时,()0f x >,()f x 的最大值为2()42f π=,可得20()2f x <, 综上可得,正确的有CD . 故选:CD .【点睛】本题考查三角函数的图象和性质,主要是正弦函数和余弦函数的图象和性质的运用,考查对称性、最值和周期性的判断,考查数形结合思想方法,属于中档题.三、填空题13.已知tan 2θ=,则()()3sin cos 2sin sin 2πθπθπθπθ⎛⎫++- ⎪⎝⎭⎛⎫--- ⎪⎝⎭的值为______.【答案】2【分析】首先利用诱导公式化简原式2cos sin cos θθθ=-,再利用同角三角函数商数关系求解即可.【详解】原式()()3sin cos cos cos 2cos 2cos sin sin cos sin sin 2πθπθθθθπθθθθθπθ⎛⎫++- ⎪--⎝⎭===--⎛⎫--- ⎪⎝⎭ 22tan 1θ==-.故答案为:214.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧AB 的长度为π,则该勒洛三角形的面积为___________.993π- 【分析】计算出等边ABC 的边长,计算出由弧AB 与AB 所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形ABC 的边长为a ,则3a ππ=,解得3a =,所以,由弧AB 与AB 所围成的弓形的面积为2221193393sin 3232362a a ππππ⨯-⨯=⨯=, 所以该勒洛三角形的面积9339399332S ππ⎛-=⨯= ⎝⎭. 993π-.15.若()cos ,tan 1sin ,tan 1x x f x x x ⎧≥⎪=⎨<⎪⎩,则()f x 的值域为______.【答案】⎡⎢⎣⎦【分析】分tan 1x ≥,tan 1x <两种情况求函数的值域,再整体讨论求解即可.【详解】解:当tan 1x ≥时,可得,,2442x k k k k ππππππππ⎛⎤⎡⎫∈-+-+⋃++ ⎪⎥⎢⎝⎦⎣⎭,k ∈Z ,此时()cos f x x =,则()f x ⎡⎫⎛∈⋃⎪ ⎢⎪ ⎣⎭⎝⎦; 当tan 1x <时,可得,44x k k ππππ⎛⎫∈-++ ⎪⎝⎭,k ∈Z ,此时()sin f x x =,则()f x ⎛∈ ⎝⎭.所以函数()f x 的值域为⎡⎢⎣⎦.故答案为:⎡⎢⎣⎦四、双空题16.函数()2sin 26f x x m π⎛⎫=-- ⎪⎝⎭,若()0f x ≤在0,2x π⎡⎤∈⎢⎥⎣⎦上恒成立,则m 的取值范围是______;若()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不同的解,则m 的取值范围是_________.【答案】 2m ≥ 12m ≤<【分析】将()0f x ≤化为2sin 26m x π⎛⎫≥- ⎪⎝⎭,求出当0,2x π⎡⎤∈⎢⎥⎣⎦时,2sin 26x π⎛⎫- ⎪⎝⎭的最大值可得m 的取值范围,将()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不同的解,化为函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦与y m =的图象有两个交点,再根据函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦的图象可得答案.【详解】因为()0f x ≤可化为2sin 26m x π⎛⎫≥- ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,[]2sin 21,26x π⎛⎫-∈- ⎪⎝⎭,所以2sin 26x π⎛⎫- ⎪⎝⎭的最大值为2,所以2m ≥.因为()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不同的解,等价于函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦与y m =的图象有两个交点,函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦的图象如图:由图可知,12m ≤<. 故答案为:2m ≥;12m ≤<.【点睛】本题考查了不等式恒成立问题,考查了正弦型函数图象的应用,考查了由函数图象的交点个数求参数范围,属于基础题.五、解答题17.在①函数6f x π⎛⎫+ ⎪⎝⎭为偶函数;②33f π⎛⎫= ⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭这三个条件中任选一个,补充在下面的横线上,并解答.已知函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的两个相邻交点间的距离为2π,且______. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的增区间.注:若选择多个条件分别解答,按第一个解答计分.【答案】(1)()2sin 3f x x π⎛⎫=+ ⎪⎝⎭(2)06,π⎡⎤⎢⎥⎣⎦【分析】(1)首先根据()f x 性质可知,()f x 的最小正周期2T π=,然后利用最小正周期求出ω,结合已知条件,若选用条件①,根据三角函数奇偶性和诱导公式即可求解;若选用条件②,根据三角函数值求角并结合ϕ的范围求解即可;若选用条件③,利用()f x 取得最大值时,233k ππϕπ+=+,k Z ∈,并结合ϕ的范围即可求解;(2)利用整体代入法和正弦函数的性质即可求解.【详解】(1)∵()f x 的图象与直线2y =的两个相邻交点间的距离为2π, ∴2T π=,即22ππω=,∴1ω=,∴()()2sin f x x ϕ=+, 选条件①:∵2sin 66f x x ππϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭为偶函数,∴62k ππϕπ+=+,即3k πϕπ=+,k Z ∈,∵02πϕ<<,从而3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;选条件②:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∴233k ππϕπ+=+,k Z ∈或2233k ππϕπ+=+,k Z ∈, ∴2k ϕ=π,k Z ∈或33k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;选条件③:∵x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭,∴6f π⎛⎫⎪⎝⎭为()f x 的最大值, ∴262k ππϕπ+=+,k Z ∈,即23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭.(2)由(1)中知,()2sin 3f x x π⎛⎫=+ ⎪⎝⎭令22232k x k πππππ-+≤+≤+,k Z ∈,得52266k x k ππππ-+≤≤+,k Z ∈令0k =,得566x ππ-≤≤, 从而函数()f x 在[]0,π上的增区间为06,π⎡⎤⎢⎥⎣⎦.18.如图为函数sin()y A x ωϕ=+(0A >,0>ω,ϕπ<)的图象的一段.(1)求其解析式;(2)若将()sin y A ωx φ=+的图象向左平移6π个单位长度后得到函数()f x 的图象,求函数()f x 图象的对称轴方程.【答案】(1)2323y x π⎛⎫=-⎪⎝⎭(2)5122k x ππ=+,k Z ∈【分析】(1)根据图像以及已知条件求出A 和最小正周期T ,然后利用正弦型函数的最小正周期公式求出ω,然后通过代点求出ϕ即可;(2)首先通过平移变换求出()f x ,然后结合正弦函数的性质,利用整体代入法求对称轴即可. 【详解】(1)由图象和已知条件知,3A =52632T πππ=-=, 则T π=,故22Tπω==. 由图像可知,当3x π=时,3sin(2)=03y πϕ⨯+,故223k πϕπ⨯+=,k Z ∈,即223k πϕπ=-,k Z ∈, 又ϕπ<,所以23πϕ=-. 故所求解析式为2323y x π⎛⎫=-⎪⎝⎭. (2)结合(1)中条件可知,()23sin 23sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令232x k πππ-=+,k Z ∈,则5122k x ππ=+,k Z ∈, 故函数()f x 图象的对称轴方程为:5122k x ππ=+,k Z ∈. 19.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,2πϕ<),在同一个周期内,当4x π=时,y 取最大值1,当712x π=时,y 取最小值-1. (1)求函数()f x 的解析式.(2)函数sin y x =的图象经过怎样的变换可得到()y f x =的图象? (3)求方程()()01f x a a =<<在[]0,2π内的所有实数根之和.【答案】(1)()sin 34f x x π⎛⎫=- ⎪⎝⎭(2)答案见解析 (3)112π【分析】(1)结合已知条件可求出A ,最小正周期T ,然后利用最小正周期公式求ω,通过代值求出ϕ即可;(2)利用平移变换和伸缩变换求解即可;(3)利用正弦型函数的对称性求解即可.【详解】(1)设()()sin f x A x ωϕ=+的最小正周期为T ,由题意可知,1A =,1721243T πππ=-=,即223T ππω==,∴3ω=,即()()sin 3f x x φ=+,∵3sin 14πϕ⎛⎫+= ⎪⎝⎭, ∴3242k ππϕπ+=+,k Z ∈, 又2πϕ<,∴4πϕ=-,∴()sin 34f x x π⎛⎫=- ⎪⎝⎭.(2)利用平移变换和伸缩变换可知,sin y x =的图象向右平移4π个单位长度,得到sin 4y x π⎛⎫=- ⎪⎝⎭的图象,再将sin 4y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标缩短为原来的13,纵坐标不变,得到sin 34y x π⎛⎫=- ⎪⎝⎭的图象.(3)∵()sin 34f x x π⎛⎫=- ⎪⎝⎭的最小正周期为23π,∴()sin 34f x x π⎛⎫=- ⎪⎝⎭在[]0,2π内恰有3个周期,∴()sin 3014x a a π⎛⎫-=<< ⎪⎝⎭在[]0,2π内有6个实数根,从小到大设为1x ,2x ,3x ,4x ,5x ,6x ,则12242x x ππ+=⨯=,342112436x x πππ⎛⎫+=+⨯= ⎪⎝⎭,5621922436x x πππ⎛⎫+=+⨯⨯= ⎪⎝⎭, 故所有实数根之和为1119112662ππππ++=.20.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值【答案】(1)21,0⎡⎤⎢⎥⎣⎦(2)265-【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值. 【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫-⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦, 此时sint 2⎡⎤∈-⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立 令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩,解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-.【点睛】本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.21.如图所示,某小区为美化环境,准备在小区内的草坪的一侧修建一条直路OC ,另一侧修建一条休闲大道.休闲大道的前一段OD是函数)0y k =>的图象的一部分,后一段DBC 是函数()sin()x f x A ωϕ=+(0A >,0>ω,2πϕ<,[]4,8x ∈)的图象,图象的最高点为B ⎛ ⎝⎭,且DF OC ⊥,垂足为点F .(1)求函数()sin()x f x A ωϕ=+([]4,8x ∈)的解析式;(2)若在草坪内修建如图所示的矩形儿童乐园PMFE ,点P 在曲线OD 上,其横坐标为43,点E 在OC 上,求儿童乐园的面积. 【答案】(1)83()63f x x ππ⎛⎫=- ⎪⎝⎭,[4,8]x ∈ 323【分析】(1)结合已知条件可求A 以及最小正周期T ,利用最小正周期公式求ω,然后通过代点求出ϕ即可;(2)结合(1)中结论求出D 点坐标,进而求出曲线OD 的方程,结合已知条件求出P 点坐标即可求解.【详解】(1)由题意可知,83A =不妨设()sin()x f x A ωϕ=+最小正周期为T ,由图像知,18534T =-=,即12T =,则()224856T ωπππ===⨯-, ∵点83B ⎛ ⎝⎭在83()6f x x ϕπ⎛⎫+ ⎪⎝⎭的图象上, ∴5262k ϕπ=π+π+,k Z ∈,即23k πϕπ=-,k Z ∈.∵2πϕ<,∴3πϕ=-,故83()63f x x ππ⎛⎫=- ⎪⎝⎭,[4,8]x ∈. (2)在83()63f x x ππ⎛⎫- ⎪⎝⎭中,令4x =,则4y =,故D 点坐标为()4,4, 将()44D ,代入y k x =2k =,从而曲线OD 的方程为:()204y x x =≤≤,当43x =时,则433y =,故P 点坐标为443,33⎛⎫ ⎪ ⎪⎝⎭, ∴矩形PMFE 的面积为4433234339S ⎛⎫=-⨯= ⎪⎝⎭,即儿童乐园的面积为3239. 22.函数()()sin ωϕ=+f x x (0>ω,0ϕπ<<)的部分图象如图所示.(1)求ϕ的值及()f x 的增区间;(2)若()f x 图象的横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位长度,最后向上平移1个单位长度,得到函数()g x 的图象,若在[]0,b ()0b >上函数()g x 的图象与x 轴恰有10个交点,求实数b 的取值范围. 【答案】(1)23πϕ=;7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z (2)5967,1212ππ⎡⎫⎪⎢⎣⎭【分析】(1)由三角函数图象得T π=,进而得2ω=,再待定系数求解得23ϕπ=,最后整体换元求解即可;(2)由三角函数平移变换得2sin 21g x x ,进而得函数()g x 的零点712x k ππ=+或()1112x k k ππ=+∈Z ,再结合三角函数性质分析即可得答案. 【详解】(1)解:由图易知22362T πππ=-=,则T π=,22T πω==,由题意结合图象知2,6k k πϕπ⨯+=∈Z ,又0ϕπ<<,故23ϕπ=, 则()2sin 23f x x π⎛⎫=+ ⎪⎝⎭.令2222,232k x k k πππππ-≤+≤+∈Z ,解得7,1212k x k k ππππ-≤≤-∈Z , 所以()f x 的增区间是7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z . (2)解:(2)由题意知()22sin 212sin 2133g x x x ππ=-++=⎡⎤⎛⎫ ⎪⎢⎥⎝⎣⎦+⎭. 令()0g x =,即1sin 22x =-,即7226x k ππ=+或11226x k ππ=+,得712x k ππ=+或()1112x k k ππ=+∈Z . 所以在[]0,π上函数()g x 的图象与x 轴恰有两个交点,若在[]0,b 上函数()g x 的图象与x 轴恰有10个交点,则b 不小于第10个交点的横坐标,小于第11个交点的横坐标, 即b 的取值范围为115941212b πππ≥+=且76751212b πππ<+=,解得59671212b ππ≤<. 故实数b 的取值范围为5967,1212ππ⎡⎫⎪⎢⎣⎭.。
人教A 版高一数学必修第一册全册复习测试题卷6(共30题)一、选择题(共10题)1. 设集合 A ={x∣ x >1},B ={x∣ 0≤x <3},则 A ∩B = ( ) A . {x∣ 0≤x <3} B . {x∣ 1≤x <3} C . {x∣ 1<x <3}D . {x∣ x ≥0}2. 已知 0<a <1,则方程 a ∣x∣=∣log a x ∣ 的实根个数为 ( ) A . 2 B . 3 C . 4 D .与 a 的值有关3. 已知函数 f (x )=ln(√4x 2+1+2x),则 ( ) A . f (log 314)<f (1)<f (ln 12) B . f (ln 12)<f (log 134)<f (1)C . f (1)<f (ln2)<f (log 34)D . f (ln 12)<f (1)<f (log 34)4. 在 [0,2π] 内,不等式 sinx <−√32的解集是 ( )A . (0,π)B . (π3,4π3) C . (4π3,5π3) D . (5π3,2π)5. ∀x,y,z ∈(0,+∞),4x 2+y 2+1xy ≥−z 2+2z +m ,则 m 的取值范围为 ( ) A . (−∞,2√2−1]B . (−∞,3]C . (−∞,2]D . (−∞,4√2−1]6. 已知 f (x ) 是定义域为 R 的奇函数,且在 (0,+∞) 内的零点有 1003 个,则 f (x ) 的零点的个数为 ( ) A . 1003 B . 1004C . 2006D . 20077. 已知 α 是第二象限角,且 cosα=−35,则 cos (π4−α) 的值是 ( ) A . √210B . −√210C .7√210D . −7√2108. 下列函数是幂函数的是 ( )A . y =2xB . y =2x −1C . y =(x +1)2D . y =√x 239. 已知函数 f(x)={−x 2+2x +1,x <22x−2,x ≥2,且存在不同的实数 x 1,x 2,x 3,使得 f(x 1)=f(x 2)=f(x 3),则 x 1⋅x 2⋅x 3 的取值范围是 ( ) A . (0,3) B . (1,2) C . (0,2) D . (1,3)10. 函数 y =(mx 2+4x +m +2)−14的定义域是全体实数,则实数 m 的取值范围是 ( ) A . (√5−1,2) B . (√5−1,+∞)C . (−2,2)D . (−1−√5,−1+√5)二、填空题(共10题)11. 某公司一年购买某种货物 400 吨,每次都购买 x 吨,运费为 4 万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则 x = 吨.12. 函数 y =x 2+2x −1,当 x = 时有最 值为 . 13. 计算 cot45∘+cot30∘1−cot45∘cot30∘= .14. 已知函数 f (x )=∣∣∣log 2∣∣x −2x ∣∣∣∣∣−a (a >0),其所有的零点依次记为 x 1,x 2,⋯,x i (i ∈N ∗),则 x 1⋅x 2⋯x i = .15. 已知 cos (α+π4)=13,则 sin2α= .16. 求值:sin10∘−√3cos10∘cos40∘= .17. 用二分法求图象连续不断的函数 f (x ) 在区间 [1,5] 上的近似解,验证 f (1)⋅f (5)<0,给定精度 ɛ=0.01,取区间 (1,5) 的中点 x 1=1+52=3,计算得 f (1)⋅f (x 1)<0,f (x 1)⋅f (5)>0,则此时零点 x 0∈ .(填区间)18. 已知 f (x )={sinπx,x <0f (x −1)−1,x >0,则 f (−116)+f (116) 的值为 .19. 设函数 f (x )=cos (ωx −π6)(ω>0).若 f (x )≤f (π4) 对任意的实数 x 都成立,则 ω 的最小值为 .20. 已知 a >0,函数 f (x )={x 2+2ax +a,x ≤0−x 2+2ax −2a,x >0.若关于 x 的方程 f (x )=ax 恰有 2 个互异的实数解,则 a 的取值范围是 .三、解答题(共10题)21. 某公司要在一条笔直的道路边安装路灯,要求灯柱 AB 与地面垂直,灯杆 BC 与灯柱 AB 所在的平面与道路走向垂,路灯 C 采用锥形灯罩,射出的光线与平面 ABC 的部分截面如图中阴影部分所示.已知 ∠ABC =23π,∠ACD =π3,路宽 AD =24 米.设 ∠BAC =θ(π12≤θ≤π6).(1) 求灯柱 AB 的高 ℎ(用 θ 表示);(2) 此公司应该如何设置 θ 的值才能使制造路灯灯柱 AB 与灯杆 BC 所用材料的总长度最小?最小值为多少?(结果精确到 0.01 米)22. 请回答:(1) 若 f(√x +1)=x +2√x ,试求函数 f (x ) 的解析式;(2) 若 f (x ) 为二次函数,且 f (0)=3,f (x +2)−f (x )=4x +2,试求函数 f (x ) 的解析式.23. 如图所示,ABCD 是边长为 60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 A ,B ,C ,D 四个点重合于图中的点 P ,正好形成一个正四棱柱形状的包装盒,E ,F 在 AB 上是被切去的等腰直角三角形斜边的两个端点,设 AE =FB =x cm .(1) 若广告商要求包装盒侧面积 S (cm 2)最大,试问 x 应取何值?(2) 若广告商要求包装盒容积 V (cm 3) 最大,试问 x 应取何值?并求出此时包装盒的高与底面边长的比值.24. 以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在 6 元基础上按月份随正弦曲线波动的,已知 3 月份出厂价格最高为 8 元,7 月份出厂价格最低为 4 元,而该商品在商店的销售价格是在 8 元基础上按月随正弦曲线波动的,并已知 5 月份销售价最高为 10 元,9 月份销售价最低为 6 元,假设某商店每月购进这种商品 m 件,且当月售完,请估计哪个月盈利最大?并说明理由.25. 已知函数 f (x )=x 2−mx +m ,m,x ∈R .(1) 若关于 x 的不等式 f (x )>0 的解集为 R ,求 m 的取值范围;(2) 若实数 x 1,x 2 数满足 x 1<x 2,且 f (x 1)≠f (x 2),证明:方程 f (x )=12[f (x 1)+f (x 2)] 至少有一个实根 x 0∈(x 1,x 2);(3) 设 F (x )=f (x )+1−m −m 2,且 ∣F (x )∣ 在 [0,1] 上单调递增,求实数 m 的取值范围.26. 已知 f (x )=log a x ,g (x )=2log a (2x +t −2)(a >0,a ≠1,t ∈R ).(1) 若 f (1)=g (2),求 t 的值;(2) 当 t =4,x ∈[1,2],且 F (x )=g (x )−f (x ) 有最小值 2 时,求 a 的值; (3) 当 0<a <1,x ∈[1,2] 时,有 f (x )≥g (x ) 恒成立,求实数 t 的取值范围.27. 设函数 f (x )=3x ,g (x )=√2−x ,求:(1) f (1)+g (1); (2) f (2)+g (2); (3) f (x )+g (x ).28. “学习曲线”可以用来描述学习某一任务的速度,假设函数 t =f (N ),f (N )=−144lg (1−N90),其中 t 表示达到某一英文打字水平(字/分)所需的学习时间(时),N 表示每分钟打出的字数(字/分).(1) 计算要达到 20 字分、 40 字/分水平所需的学习时间.(精确到“时”) (2) 判断函数 t =f (N ) 的单调性,并说明理由.29. 设 x ∈R ,解方程 √10+x 4+√7−x 4=3.30. 设函数 f (x )={2x −a,x <14(x −a )(x −2a ),x ≥1.(1) 若 a =1,求 f (x ) 的最小值;(2) 若 f (x ) 恰有 2 个零点,求实数 a 的取值范围.答案一、选择题(共10题)1. 【答案】C【知识点】交、并、补集运算2. 【答案】A【解析】设y1=a∣x∣,y2=∣log a x∣,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a∣x∣=∣log a x∣有两个根.【知识点】函数零点的概念与意义3. 【答案】D【解析】函数的定义域为R,且f(−x)+f(x)=ln(√4x2+1−2x)+ln(√4x2+1+2x)=ln(√4x2+1−2x)(√4x2+1+2x)=ln(4x2+1−4x2)=ln1=0,得f(−x)=−f(x),即f(x)是奇函数,且f(x)在R上是增函数,因为ln12<1<log34,所以f(ln12)<f(1)<f(log34).【知识点】对数函数及其性质、函数的单调性、函数的奇偶性4. 【答案】C【解析】画出y=sinx,x∈[0,2π]的草图如下:因为sinπ3=√32,所以sin(x+π3)=−√32,sin(2π−π3)=−√32.即在[0,2π]内,满足sinx=−√32的值为x=4π3或x=5π3,可知不等式sinx<−√32的解集是(4π3,5π3).故选C .【知识点】三角方程与不等式5. 【答案】B【解析】因为 x,y ∈(0,+∞),所以 4x 2+y 2+1xy ≥2√4x 2y 2+1xy =4xy +1xy ≥2√4=4(当且仅当 {4x 2=y 2,4xy =1xy时等号成立),又 (−z 2+2z +m )max =m +1, 所以 m +1≤4,即 m ≤3.故选B . 【知识点】均值不等式的应用6. 【答案】D【解析】根据奇函数的图象关于原点对称可得 f (x ) 在 (−∞,0) 内的零点有 1003 个,又 f (0)=0,故选D . 【知识点】函数的零点分布7. 【答案】A【知识点】两角和与差的余弦8. 【答案】D【解析】由幂函数的概念可知D 正确. 【知识点】幂函数及其性质9. 【答案】A【解析】 f(x)={−x 2+2x +1,x <22x−2,x ≥2的图象如图所示:设 x 1<x 2<x 3,又当 x ∈[2,+∞] 时,f(x)=2x−2 是增函数,当 x =3 时,f(x)=2,设f(x 1)=f(x 2)=f(x 3)=t ,1<t <2,即有 −x 12+2x 1+1=−x 22+2x 2+1=2x 3−2=t ,故x 1x 2x 3=(1−√2−t)(1+√2−t)(2+log 2t)=(t −1)(2+log 2t),设 g(t)=(t −1)(2+log 2t),1<t <2,可得 gʹ(t)=2+log 2t +t−1tln2>0,即 g(t) 在 (1,2) 上单调递增,又 g(1)=0,g(2)=3,可得 g(t) 的范围是 (0,3). 【知识点】函数的零点分布10. 【答案】B【解析】函数 y =(mx 2+4x +m +2)−14=√1mx 2+4x+m+24,因此,要使函数 y =(mx 2+4x +m +2)−14 的定义域为全体实数,需满足 mx 2+4x +m +2>0 对一切实数都成立,即 {m >0,42−4m (m +2)<0, 解得 m >√5−1.故选:B .【知识点】恒成立问题、函数的定义域的概念与求法二、填空题(共10题) 11. 【答案】 20【解析】每次都购买 x 吨,则需要购买400x次.因为运费为 4 万元/次,一年的总存储费用为 4x 万元, 所以一年的总运费与总存储费用之和为 4×400x+4x 万元.因为4×400x +4x≥160,当且仅当4x=4×400x时取等号,所以x=20吨时,一年的总运费与总存储费用之和最小.【知识点】均值不等式的实际应用问题12. 【答案】−1;小;−2【知识点】函数的最大(小)值13. 【答案】−2−√3【知识点】两角和与差的正切14. 【答案】16【解析】函数f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a(a>0)的零点,即f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a=0,所以∣∣∣log2∣∣x−2x∣∣∣∣∣=a.去绝对值可得log2∣∣x−2x ∣∣=a或log2∣∣x−2x∣∣=−a,即2a=∣∣x−2x ∣∣或2−a=∣∣x−2x∣∣.去绝对值可得2a=x−2x 或−2a=x−2x,2−a=x−2x或−2−a=x−2x.当2a=x−2x,两边同时乘以x,化简可得x2−2a⋅x−2=0,设方程的根为x1,x2,由韦达定理可得x1⋅x2=−2;当−2a=x−2x,两边同时乘以x,化简可得x2+2a⋅x−2=0,设方程的根为x3,x4,由韦达定理可得x3⋅x4=−2;当2−a=x−2x,两边同时乘以x,化简可得x2−2−a⋅x−2=0,设方程的根为x5,x6,由韦达定理可得x5⋅x6=−2;当−2−a=x−2x,两边同时乘以x,化简可得x2+2−a⋅x−2=0,设方程的根为x7,x8,由韦达定理可得x7⋅x8=−2.综上可得所有零点的乘积为x1⋅x2⋅x3⋅x4⋅x5⋅x6⋅x7⋅x8=(−2)4=16.【知识点】对数函数及其性质、函数的零点分布15. 【答案】79【解析】因为cos(α+π4)=13,所以cos(α+π4)=√22cosα−√22sinα=13=√22(cosα−sinα)=13,所以cosα−sinα=√23,因为{cosα−sinα=√23,cos2α+sin2α=1⇒(cosα−sinα)2=cos2α+sin2α−2sinαcosα=1−2sinαcosα=29,所以sin2α=2sinα⋅cosα=1−29=79.【知识点】二倍角公式16. 【答案】−2【解析】sin10∘−√3cos10∘cos40∘=2(12sin10∘−√32cos10∘)cos40∘=2sin(10∘−60∘)cos40∘=−2sin50∘cos40∘=−2.【知识点】两角和与差的正弦17. 【答案】(1,3)【解析】由f(1)⋅f(5)<0,f(1)⋅f(x1)<0及f(x1)⋅f(5)>0可知f(1)与f(x1)异号,f(x1)与f(5)同号,则x0∈(1,x1)即x0∈(1,3).【知识点】零点的存在性定理18. 【答案】−2【知识点】诱导公式19. 【答案】23【解析】结合余弦函数的图象得π4ω−π6=2kπ,k∈Z,解得ω=8k+23,k∈Z,又因为ω>0,所以当k=0时,ω取得最小值,最小值为23.【知识点】Asin(ωx+ψ)形式函数的性质20. 【答案】(4,8)【知识点】函数的零点分布三、解答题(共10题)21. 【答案】(1) 在△ACD中,∠CDA=θ+π6,由ADsin∠ACD =ACsin∠CDA,得AC=AD⋅sin∠CDAsin∠ACD=16√3sin(θ+π6);在△ABC中,∠ACB=π3−θ,由ABsin∠ACB =ACsin∠ABC,得ℎ=AC⋅sin∠ACBsin∠ABC=32sin(θ+π6)sin(π3−θ)(π12≤θ≤π6).(2) △ABC中,由BCsin∠BAC =ACsin∠ABC,得BC=AC⋅sin∠BACsin∠ABC=32sin(θ+π6)sinθ,所以AB+BC=32sin(θ+π6)sin(π3−θ)+32sin(θ+π6)sinθ=16sin2θ+8√3,因为π12≤θ≤π6,所以π6≤2θ≤π3,所以当θ=π12时,AB+BC取得最小值8+8√3≈21.86.故制造路灯灯柱AB与灯杆BC所用材料的总长度最小,最小值约为21.86米.【知识点】三角函数模型的应用22. 【答案】(1) 令t=√x+1,则t≥1,x=(t−1)2,所以f(t)=(t−1)2+2(t−1)=t2−1,所以f(x)=x2−1,x∈[1,+∞).(2) 设f(x)=ax2+bx+c(a≠0),所以f(x+2)=a(x+2)2+b(x+2)+c,所以f(x+2)−f(x)=4ax+4a+2b=4x+2,所以{4a=4,4a+2b=2⇒{a=1,b=−1.又f(0)=3⇒c=3,所以f(x)=x2−x+3.【知识点】函数的解析式的概念与求法23. 【答案】(1) 设包装盒的高为ℎcm,底面边长为a cm,由已知得a=√2x,ℎ=√2=√2(30−x),0<x<30,S=4aℎ=8x(30−x)=−8(x−15)2+1800,所以当x=15时,S取得最大值.(2) 由题意,可得V=a2ℎ=2√2(−x2+30x2),则Vʹ=6√2x(20−x),由Vʹ=0得x=0(舍去)或x=20,当x∈(0,20)时,Vʹ>0,V在(0,20)上单调递增;当x∈(20,30)时,Vʹ<0,V在(20,30)上单调递减,所以当x=20时,V取得极大值,也是最大值,此时ℎa =12,即当x=20时,包装盒的容积最大,此时包装盒的高与底面边长的比值为12.【知识点】函数模型的综合应用、利用导数处理生活中的优化问题24. 【答案】设月份为x,由条件可得:出厂价格函数为:y1=2sin(π4x−π4)+6,销售价格函数为:y2=2sin(π4x−3π4)+8,则每期的利润函数为:y=m(y2−y1)=m[2sin(π4x−3π4)+8−2sin(π4x−π4)−6]=m(2−2√2sinπ4x),所以,当x=6时,y max=(2+2√2)m,即6月份盈利最大.【知识点】三角函数模型的应用25. 【答案】(1) 因为f(x)>0的解集为R,所以Δ=m2−4m<0,解得0<m<4.(2) 证明:令g(x)=f(x)−12[f(x1)+f(x2)],易知g(x)在其定义域内连续,且g(x1)⋅g(x2)={f(x1)−12[f(x1)+f(x2)]}⋅{f(x2)−12[f(x1)+f(x2)]}=−14[f(x1)−f(x2)]2<0,则g(x)=f(x)−12[f(x1)+f(x2)]在(x1,x2)上有零点,即方程f(x)=12[f(x1)+f(x2)]至少有一个实根x0∈(x1,x2).(3) F(x)=f(x)+1−m−m2=x2−mx+1−m2,Δ=m2−4(1−m2)=5m2−4,函数F(x)的对称轴为直线x=m2,①当 Δ=0 时,5m 2−4=0,即 m =±2√55, 若 m =2√55,则对称轴为 x =√55∈[0,1],则在 [0,1] 上不单调递增,不满足条件;若 m =−2√55,则对称轴为 x =−√55<0,则在 [0,1] 上单调递增,满足条件; ②当 Δ<0 时,−2√55<m <2√55,此时 F (x )>0 恒成立,若 ∣F (x )∣ 在 [0,1] 上单调递增,则 x =m 2≤0,即 m ≤0,此时 −2√55<m ≤0;③当 Δ>0 时,m <−2√55或 m >2√55,对称轴为 x =m2,当 m <−2√55时,对称轴为 x =m 2<0,要使 ∣F (x )∣ 在 [0,1] 上单调递增,则只需要 F (0)≥0 即可,此时 F (0)=1−m 2≥0,得 −1≤m ≤1, 此时 −1≤m <−2√55;当 m >2√55时,对称轴为 x =m 2>0,则要使 ∣F (x )∣ 在 [0,1] 上单调递增,此时 F (0)=1−m 2≤0,且对称轴 m 2≥1,所以 m ≥2.此时 m ≥2; 综上,−1≤m ≤0 或 m ≥2.【知识点】二次函数的性质与图像、函数的单调性26. 【答案】(1) 因为 f (1)=g (2), 所以 0=2log a (2+t ), 所以 t +2=1,即 t =−1. (2) 因为 t =4,F (x )=g (x )−f (x )=2log a (2x +2)−log a x =log a4(x+1)2x=log a 4(x +1x +2).又因为 y =x +1x 在 x ∈[1,2] 单调递增, 所以当 a >1 时,F (x ) 在 x ∈[1,2] 也单调递增, 所以 F (x )min =log a 16=2,解得 a =4,当 0<a <1 时,F (x ) 在 x ∈[1,2] 也单调递减, 所以 F (x )min =log a 18=2, 解得 a =√18=3√2(舍去), 所以 a =4.(3) f (x )≥g (x ),即 log a x ≥2log a (2x +t −2), 所以 log a x ≥log a (2x +t −2)2, 因为 0<a <1,x ∈[1,2], 所以 x ≤(2x +t −2)2, 所以 √x ≤2x +t −2, 所以 √x −2x +2≤t ,所以 √x −2x +2≤t ,依题意有 (√x −2x +2)max ≤t , 而函数 y =√x −2x +2=−2(√x −14)2+178,因为 x ∈[1,2],√x ∈[1,√2],y max =1, 所以 t ≥1.【知识点】函数的最大(小)值、对数函数及其性质27. 【答案】(1) f (1)+g (1)=4. (2) f (2)+g (2)=6.(3) 因为 f (x ) 的定义域是 R ,g (x ) 的定义域是 (−∞,2],交集是 (−∞,2], 所以 f (x )+g (x )=3x +√2−x ,定义域是 (−∞,2]. 【知识点】函数的相关概念28. 【答案】(1) t =f (20)≈16(时),t =f (40)≈37(时);所以,要达到这两个水平分别需要学习 16 小时和 37 小时.(2) 任取 0≤N 1<N 2<90,f (N 1)−f (N 2)=144lg 90−N290−N 1,因为 0≤90−N 2<90−N 1,所以 f (N 1)−f (N 2)=144lg 90−N290−N 1<0,即 f (N 1)<f (N 2),函数 t =f (N ) 在定义域内递增.【知识点】函数模型的综合应用29. 【答案】设 {√10+x 4=u,√7−x 4=v,则 {u +v =3,u 4+v 4=17,解得 {u =2,v =1或 {u =1,v =2, 即 x =−9 或 x =6.【知识点】幂的概念与运算30. 【答案】(1) 当 a =1 时,f (x )={2x −1,x <14(x −1)(x −2),x ≥1.当 x <1 时,f (x )∈(−1,1),无最小值; 当 x ≥1 时,f (x )=4(x −32)2−1,所以函数 f (x ) 在 [1,32] 上单调递减,在 (32,+∞) 上单调递增.所以 f (x ) 的最小值为 f (32)=−1. 综上,当 x =32 时,f (x ) 取得最小值 −1. (2) 当 x <1 时,f (x )∈(−a,2−a ).①若 g (x )=2x −a 在 x <1 时与 x 轴有一个交点则 {a >0,g (1)=2−a >0,所以 0<a <2.ℎ(x )=4(x −a )(x −2a ) 与 x 轴有一个交点. 所以 2a ≥1 且 a <1, 所以 12≤a <1.②若 g (x ) 与 x 轴无交点,则 ℎ(x ) 在 x ≥1 时与 x 轴有两个交点,当 g (1)=2−a ≤0 时 a ≥2,ℎ(x )=4(x −a )(x −2a ) 与 x 轴有两交点且两交点均在 [1,+∞) 内.由上可知 12≤a <1 和 a ≥2.【知识点】函数的零点分布、函数的最大(小)值。
等比数列测试题A 组一.填空题(本大题共8小题,每小题5分,共40分)1.在等比数列{}n a 中,3620,160a a ==,则n a = .1.20×2n-3.提示:q 3=16020=8,q=2.a n =20×2n-3. 2.等比数列中,首项为98,末项为13,公比为23,则项数n 等于 .2.4. 提示:13=98×(23)n-1,n=4.3.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于 ..提示:由题设知a n q 2=a n +a n q,得. 4.在等比数列{a n }中,已知S n =3n +b ,则b 的值为_______.4.b=-1.提示:a 1=S 1=3+b ,n ≥2时,a n =S n -S n -1=2×3n -1.a n 为等比数列,∴a 1适合通项,2×31-1=3+b ,∴b =-1. 5.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a +=5.4.提示:∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴5636364324a a ⨯+==. 6.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为31的等比数列,则a n 等于 。
6.23(1-n 31).提示:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=23(1-n 31)。
7.等比数列 ,8,4,2,132a a a 的前n 项和S n = .7. 1,,21(2)1a 122n nn a S a a⎧=⎪⎪=⎨-⎪≠⎪-⎩,。
提示:公比为a q 2=, 当1=q ,即21=a 时,;,12n S a n == 当1≠q ,即21≠a 时,12≠a ,则a a S n n 21)2(1--=.8. 已知等比数列{}n a 的首项为8,n S 是其前n 项和,某同学经计算得224S =,338S =,465S =,后来该同学发现其中一个数算错了,则算错的那个数是__________,该数列的公比是________.8.2S ;32。
一、选择1.的值为( ).A. B. C. D.答案:B..2.已知,则( ).A. B. C. D.答案:C.解析:由,得,∴.∵,∴,∴.3.若,则的值为( ).A. B. C. D.答案: C.解析:∵,得,∴4.化简的结果是( ).A. B. C.4 D.8.答案:D.原式5.已知,,则的值等于( ).A. B. C. D.答案:C.由得,化简得,∴,即.∵,∴,即.6.函数的值域为( ).A. B. C. D.答案:B.解析:∵,∴..7.若直线平行于直线,则实数等于( ).A.-2B.-1C.1D.2答案:D.解析:利用两条直线平行斜率相等,或一般式方程表示的直线平行的条件来求.8.直线的倾斜角为.A. B. C. D.答案:C.解析:∵直线可化为,∴它的斜率,倾斜角.9.若直线过点(-1,2)且与直线垂直,则直线的方程是( ).A. B. C. D.答案:A.解析:由直线的斜率为得,直线的斜率为,∴直线的方程为,整理得.二、填空题1.计算: .答案:.解析:.2.化简: .原式.3.已知是的最小内角,则函数的值域为.答案:.解析:,∵,∴,∴,∴.4.当函数取得最大值时, .答案:.∵,∴当且仅当时,函数取得最大值2.5.若,,,,则.解析:∵,,,,∴,.∵,∴三、解答题1.在中,,试判断的形状.答案:钝角三角形.解析:由得.又∵,∴,∴,∴为钝角三角形.2.已知,且,,求的值.答案:.解析:∵,∴,.又∵,,∴,,∴.3.若直线平行于直线,则实数等于( ).A.-2B.-1C.1D.2 答案:D4.化简:.答案:.解析:.5.求函数的单调区间.解析:∵,令得,∴的单调增区间为,单调递减区间为.6.已知函数,,且.⑴求的值;⑵设,,,求的值.答案:⑴2;⑵.解析:⑴∵,∴;⑵∵,∴.由得.∵,∴,,∴.7.已知函数.⑴求函数的最大值;⑵求函数零点的集合.解析:⑴∵,∴当且仅当时,有最大值1;⑵令,得,∴或,∴或.∴函数零点的集合为.8.已知函数.⑴求函数的最小正周期;⑵求函数在区间上的最大值和最小值.解析:⑴∵,∴函数的最小正周期.⑵∵,∴,∴,∴,∴函数在区间上的最大值为,最小值为.9.已知函数.⑴求的值;⑵求的最大值和最小值.解析:⑴;⑵∵,∴当时,,当时,.1.已知,则与方向相同的单位向量为.答案:.解析:∵,∴与方向相同的单位向量.2..已知:,与的夹角为,则在方向上的投影为.答案:.解析:在方向上的投影为.3.已知,若,试求实数的值.解析:∵,∴,即,得.4.若向量,满足条件,则=( ).A.6B.5C.4D.3 解析:∵,∴.5.已知向量,若,则实数的值为________.解析:由题意得,,∴,∴.1.已知,则的值是( ).A. B. C. D.或解析:∵,∴,∴.2.若,则的值为( ).A. B. C. D.1答案:C.解析:∵,∴,∴. 3..已知,计算的值.解析:对分子、分母同时除以得,. 4.已知的值为()A.-2 B.2 C. D.-答案:D5.若,则( ).A. B. C. D.解析:∵,∴,又∵,,∴,解得,由得,.6.若满足,则的值为.解析:由得,∴,而,∴,∴.7.已知,.⑴求的值;⑵求的值.解析:⑴∵,∴,∴.⑵.8.已知,则( ).A. B. C. D.答案:A.解析:.9.已知,则等于( ).A. B. C. D.解析:∵,又∵,∴,∴.10.若,那么的值为( ).A.0B.1C.D.答案:C.解析:.11.=解析:.12.= .解析:利用倒序相加可得:上式=.13.函数在上既是奇函数又是周期函数,若的最小正周期为,且当时,,则的值为( ).A. B. C. D.解析:.14.已知函数,,则 .解析:∵,,∴.15.函数的一个对称中心是( ).A. B. C. D.解析:的零点是,即,∴选C.16.函数的定义域是解析:由得,.17.函数,,若对任意,都有,则解析:依题意知,是的对称轴,∴,即,∴.18.下图是()的一段图象,则函数的解析式为答案:.解析:依题意得,∵,∴.又∵,∴.19.已知是三角形的一个内角,且,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形答案:B20.已知,那么的值为()A. B.- C.或- D.以上全错答案:C 21.已知则22.已知,则=23.已知,则 ( )A. B. C. D.答案:B24.若函数,则下列等式恒成立的是()A. B.C. D.答案:D25.已知, 则 ( )A. B. C. D.答案:B26.已知,则 ( )A.0B.2C.D.答案:D27..化简的结果为 ( )A. B. C. D.答案:D28.ABC中,已知,则ABC的形状为 ( )A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形答案:C29.函数R部分图象如图,则函数的表达式为 ( )A. B.C. D. 答案:C30.将函数图象上的所有点的横纵坐标都伸长到原来的2倍,再按向量平移后得到的图象与的图象重合,则函数的解析式为 (B)A. B. C. D.1.求函数的最大值和最小值解:当时,有最大值当时,有最小值-4.2.求函数的定义域、最小正周期及单调增区间.解:由得.故的定义域为,故最小正周期为由得故单调增区间为、3.的值为( ).A. B. C. D.答案:B.解析:原式.4.已知,,则等于( ).A. B. C. D.答案:C.解析:由得5.函数的最小值是( ).A. B. C. D.答案:B.解析:∵,∴的最小值为.6.若,,则.解析:.7.已知均为锐角,且,则 1解析:∵,∴,∴,∴.8.若的内角满足,则( ).A. B. C. D.答案:A.解析:∵,又∵,,∴.9.若则的值为( ).A.2B.C.D.答案:B.解析:由得,解得,∴.10.若,则的值为( ).A. B. C. D.答案:C.解析:.11.已知,则等于( ).A. B. C. D.答案:D.解析:两式平方得,两式相加得,∴.12.函数的最小值是.答案:.解析:.13.函数的最大值为.答案:.解析:14.若,则.解析:∵,∴..15.已知是两个不共线的向量,而与是两个共线向量,则实数=或.解析:由题设知,∴,解得或.16.已知向量满足,且,则与的夹角为解析:由得,即,∴.17.已直线与圆O:相交于A、B两点,且,则=.解析:∵,∴,∴.18.在平面直角坐标中,已知点和点,其中,若,求的值.答案:或.解析:∵,∴,即,整理得,∴或0.又∵,∴或.19.已知,则.解析:由得,.20.在中,,则这个三角形的形状是等腰三角形或直角三角形.解析:由题意得,或,∴为等腰三角形或直角三角形.21.函数的定义域是.解析:由题意得,根据图象可得.22..ABC中,已知则下列正确的结论为 ( )A. B. C. D.答案:C23.已知函数,则的值域为 ( )A.[-4,4]B.[-5,5]C.[-4,5]D.[-5,4]答案:C24.已知.(1)求的值; (2) 求的值.解: (1) .(2)原式25.若为锐角,求.解:且,否则,若而则与条件不符26. 已知.(Ⅰ)求的值;(Ⅱ)求的值.解:(Ⅰ)由得,即,又,所以为所求.(Ⅱ)====.1.在平面直角坐标系中,若不等式组(为常数)所表示的平面区域面积等于2,则的值为( ).A.-5B.1C.2D.3. 答案:D.解析:直线的斜率为,恒过定点(0,1),由作图可知,只有当时,不等式组表示的平面区域才是封闭的,如图,可求得点坐标为(1,),∴,解得.2.已知,则的最小值是( ).A.2B.C.4D.5 答案:C.解析:,当且仅当,且,即时取“=”号.3.若正数满足,则的最小值是( ).A. B. C.5 D.6 答案:C.解析:∵,,∴,∴,当且仅当时取“=”号.4.已知,则( ).A. B. C. D.答案:A.解析:∵,且函数在上是减函数,∴.又∵指数函数在是是增函数,∴,∴答案应选A.5.不等式对任意实数恒成立,则实数的取值范围是( ).A. B. C. D.答案:A.解析:∵表示数轴上坐标为的点到坐标分别为的两点的距离之差,∴对,,当时,. ∵不等式对任意实数恒成立,∴,解得,或.6.若的三个内角满足,则的形状( ).A.一定是锐角三角形.B.一定是直角三角形.C.一定是钝角三角形.D.可能是锐角三角形,也可能是钝角三角形答案:C 解析:由及正弦定理得;由余弦定理得,∴角C为钝角,∴是钝角三角形.7.若的内角所对的边满足,且,则的值为( ).A. B. C. D.答案:A.解析:由得,由余弦定理得,∴,∴.8.在中,,则的取值范围是( ).A. B. C. D.答案:C.解析:由已知条件及正弦定理得,∴,即,∴.9.在中,角所对的边分别为,且满足,若.则的面积为( ).A. B. C. D.答案:C.解析:∵,∴,又∵,∴,而,∴,∴的面积为.10. 方程有两个不相等的实数根,则实数m的取值范围是()A. B. C. D.答案:D11. 若0<a<1,则不等式的解是()A. B. C. D. 答案:D12. 一元二次不等式ax+bx+20的解集是(-, ),则a+b的值是( )A.10B.-10C.14D.-14 答案:A13. a,b是正数,则三个数的大小顺序是()A.B.C.D.答案:C14. 设的最小值是( )A. 10B.C.D. 答案:D15.如果,那么的最小值是()A.4 B. C.9 D.18 答案:D16.若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10 B.=﹣4 =﹣9 C.=﹣1 =9 D.=﹣1 =2 答案:B 17.△ABC中,若,则△ABC的形状为()A.直角三角形 B.等腰三角形 C.等边三角形 D.锐角三角形答案:B18.设变量、满足约束条件,则的最大值为1819.△ABC中,是A,B,C所对的边,S是该三角形的面积,且(1)求∠B的大小;(2)若=4,,求的值。
⾼中数学必修⼀第五章三⾓函数单元测试(1)(含答案解析)⾼中数学必修⼀第五章三⾓函数单元测试 (1)⼀、选择题(本⼤题共9⼩题,共45.0分)1.以罗尔中值定理、拉格朗⽇中值定理、柯西中值定理为主体的“中值定理”反映了函数与导数之间的重要联系,是微积分学重要的理论基础,其中拉格朗⽇中值定理是“中值定理”的核⼼内容,其定理陈述如下:如果函数y=f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内⾄少存在⼀个点x0∈(a,b),使得f(b)?f(a)=f?(x0)(b?a),x=x0称为函数y= f(x)在闭区间[a,b]上的中值点,则函数f(x)=sinx+√3cosx在区间[0,π]上的“中值点”的个数为参考数据:√2≈1.41,√3≈1.73,π≈3.14.A. 1B. 2C. 3D. 42.若α∈(π2,π),cos?2α=?13,则tan?α=()A. ?√33B. ?√3 C. ?√2 D. ?√223.cos20o cos40°?sin20°sin40°=()A. 1B. 12C. ?12D. √324.为了得到函数f(x)=sin(2x+3π4)的图象,可以将函数g(x)=cos2x的图象()A. 向右平移π4个单位 B. 向左平移π4个单位5.在△ABC中,⾓A,B,C的对边分别为a,b,c,若2c?ba =cosBcosA,a=2√3,则△ABC⾯积的最⼤值为()A. √3B. 2√3C. 3√3D. 4√36.已知sinα?cosα=13,则cos2(π4α)=()A. 1718B. 19C. √29D. 1187.若将函数f(x)=sin(2x+φ)+√3cos(2x+φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点(π2,0)对称,则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值()A. ?12B. ?√3228.若函数f(cos x)=cos2x+1,则f(cos30°)的值为()A. 12B. 32C. 72D. 49.3?sin110°8?4cos210°=()A. 2B. √22C. 12D. √32⼆、填空题(本⼤题共5⼩题,共25.0分)10.已知cos?(α+π4)=13,α∈(0,π4),则cos2α=________.11.已知△ABC的内⾓A,B,C所对的边分别为a,b,c,B=π4,tan(π4A)=12,且△ABC的⾯积为25,则a+b=_________.12.函数y=√3sin2x?cos2x的图象向右平移φ(0<φ<π)个长度单位后,得到函数g(x)的图象,若函数g(x)为偶函数,则φ的值为___________.13.在ΔABC中,cosB+√3sinB=2,且cosBb +cosCc=2√3sinA3sinC,则a+c的取值范围是________.14.已知函数f(x)=sinxcos(x+π3)+√34,x∈[?π3,π6],则函数的单调减区间为___________,函数的值域为____________.三、解答题(本⼤题共6⼩题,共72.0分)15.如图,在四边形ABCD中,已知∠DAB=π3,AD︰AB=2︰3,BD=√7,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的最⼩值为?3,若f(x)图象相邻的最⾼点与最低点的横坐标之差为2π,且f(x)的图象经过点(0,32).(2)若⽅程f(x)?k=0在x∈[0,11π3]上有两个零点x1,x2,求k的取值范围,并求出x1+x2的值.17.在△ABC中,⾓A,B,C的对边分别为a,b,c.已知向量m =(b,a?2c),n?=(cosA?2cosC,cosB),且n?⊥m .(1)求sinCsinA的值;(2)若a=2,|m |=3√5,求△ABC的⾯积S.18.化简,求值:(1)已知tanα=34,求tan(α+π4)的值;(2)sin20°sin40°?cos20°cos40°.19.在△ABC中,内⾓A,B,C对边的边长分别是a、b、c,△ABC的⾯积为S⑴若c=2,C=π3,S=√3,求a+b;)=a,求⾓A;⑴若√3(bsinC?ccosBtanC20.如图,某住宅⼩区的平⾯图呈圆⼼⾓为120°的扇形AOB,⼩区的两个出⼊⼝设置在点A及点C处,且⼩区⾥有⼀条平⾏于BO的⼩路CD.(1)已知某⼈从C沿CD⾛到D⽤了10分钟,从D沿DA⾛到A⽤了6分钟,若此⼈步⾏的速度为每分钟50⽶,求该扇形的半径OA的长(精确到1⽶);(2)若该扇形的半径为OA=a,已知某⽼⼈散步,从C沿CD⾛到D,再从D沿DO⾛到O,试确定C的位置,使⽼⼈散步路线最长.-------- 答案与解析 --------本题考查导数运算、余弦函数性质,属于中档题.求出f(x)的导数,利⽤f′(x0)=f(b)?f(a)b?a,可得结合余弦函数性质易知⽅程在区间(0,π)内有2解,【解答】解:由知由拉格朗⽇中值定理:令f′(x0)=f(b)?f(a)b?a,即,由?√3π∈(?1,?12),结合余弦函数性质易知⽅程在区间(0,π)内有2解,故在区间[0,π]上的“中值点”有2个,故选B.2.答案:C解析:【分析】本题考查三⾓函数的化简求值,考查同⾓三⾓函数基本关系式和⼆倍⾓公式,是基础题.由已知可得tanα<0,再由⼆倍⾓公式和同⾓三⾓函数基本关系可得tanα的⽅程,解之可得答案.【解答】解:∵α∈(π2,π),且cos2α=?13,∴tanα<0,且cos2α=cos2α?sin2α=cos2α?sin2αcos2α+sin2α=1?tan2α1+tan2α=?13,解得tanα=?√2.故选C.3.答案:B本题考查两⾓和与差的三⾓函数公式,属于基础题.由题直接计算求解即可得到答案.【解答】解:cos20o cos40°?sin20°sin40°=cos(20°+40°) =cos60°=12.故选B . 4.答案:D解析:【分析】本题考查三⾓函数的图象变换规律,是基础题.根据题意,进⾏求解即可.【解答】解:,,⼜,∴只需将函数g(x)=cos2x 的图象向左平移π8个单位即可得到函数f(x)=sin?(2x +3π4)的图象.故选D . 5.答案:C解析:【分析】本题考查正余弦定理、三⾓形⾯积公式,两⾓和的正弦公式和基本不等式,属于中档题.先由正弦定理和两⾓和的正弦公式得出cosA =12,再由余弦定理和基本不等式解得bc ≤12,最后由三⾓形⾯积公式求得△ABC ⾯积的最⼤值.【解答】解:由已知可得(2c ?b)cosA =acosB ,由正弦定理可得(2sinC ?sinB)cosA =sinAcosB ,所以2sinCcosA =sinBcosA +sinAcosB =sin(A +B)=sinC ,由sinC ≠0可得cosA =12,则,由余弦定理可得12=b 2+c 2?2bc ×12=b 2+c 2?bc ,由基本不等式可得12=b 2+c 2?bc ≥2bc ?bc =bc ,解得bc ≤12,当且仅当b =c =2√3时,取等号,故△ABC ⾯积S =12bcsinA =√34bc ≤√34×12=3√3.故选C .6.答案:A解析:【分析】本题主要考查⼆倍⾓公式、诱导公式以及同⾓三⾓函数基本关系的应⽤,属于基础题.由条件利⽤⼆倍⾓公式可得sin2α=81+cos(π22α)2=12+sin2α2,计算求得结果.【解答】解:∵sinα?cosα=13,∴1?2sinαcosα=1?sin2α=19,∴sin2α=89,则cos2(π4?α)=1+cos(π22α)2=12+sin2α2=1718,故选A.7.答案:D解析:【分析】本题主要考查函数y=Asin(ωx+φ)的图像变换规律、诱导公式和三⾓函数的性质.3]=2cos(2x+φ+π3),再根据图像关于点(π2,0)对称,得到φ=π6,得到g(x)=cos(x+π6),进⽽求出g(x)的最⼩值.【解答】解:∵f(x)=sin?(2x+φ)+√3cos?(2x+φ)=2sin?(2x+φ+π3),∴将函数f(x)的图像向左平移π4个单位长度后,得到图像的函数解析式为y=2sin?[2(x+π4)+φ+π3]=2cos?(2x+φ+π3).∵函数y=2cos(2x+φ+π3)的图像关于点(π2,0)对称,∴2cos(2×π2+φ+π3)=0,所以π+φ+π3=kπ+π2解得φ=kπ?5π6,k∈Z.∵0<φ<π,∴φ=π6,∴g(x)=cos(x+π6).∵x∈[?π2,π6],∴x+π6∈[?π3,π3],∴cos(x+π6)∈[12,1],则函数g(x)=cos(x+φ)在[?π2,π6]上的最⼩值是12.故选D.8.答案:B解析:【分析】本题主要考查⼆倍⾓公式的应⽤,属于基础题.利⽤⼆倍⾓公式,然后求出函数值即可.【解答】解:∵f(cos x)=cos 2x +1=2cos 2x ,∴f(cos?30°)=2cos 230°32)2=32.故选B . 9.答案:C解析:【分析】本题考查三⾓函数的化简求值问题,属于基础题.根据诱导公式与⼆倍⾓的余弦公式即可求出结果.【解答】解:原式=3?sin110°8?4cos 210°=3?cos20°8?2(1+cos20°)=3?cos20°6?2cos20°=12.故选C .10.答案:4√29解析:解:因为cos(α+π4)=13,α∈(0,π4),所以sin(α+π4)=2√23,所以cos2α=cos[2(α+π4)?π2]=sin2(α+π4) =2sin(α+π4)cos(α+π4)=2×2√23×13=4√29.答案:4√29由诱导公式可知cos2α=cos[2(α+π4)?π2]=sin2(α+π4),然后结合⼆倍⾓的正弦公式展开可求.本题主要考查函数值的计算,利⽤三⾓函数的倍⾓公式是解决本题的关键. 11.答案:5+5√5解析:【分析】本题考查两⾓和与差的三⾓公式的应⽤,考查正弦定理及三⾓形⾯积公式的应⽤,属中档题.依题意,根据两⾓和与差的三⾓公式求得tanA =13,进⽽得sin?A ,cos?A .⼜B =π4,求得sinC ,再结合三⾓形⾯积及正弦定理求解即可.【解答】解:因为tan?(π4?A)=12,所以1?tan?A1+tan?A =12,则tan?A =13,因此sinA =√1010,cosA =3√1010.所以sinC =sin (A +B )=sinAcosB +cosAsinB =√1010×√22+3√1010×√22=2√55,根据△ABC 的⾯积为25,得12absinC =12ab ×2√55=25,得ab =25√5,⼜由正弦定理得a sinA =bsinB ,得b =√5a ,联⽴{ab =25√5b =√5ab =5√5,所以a +b =5+5√5.故答案为5+5√5.12.答案:π6解析:【分析】先将y =√3sin2x ?cos2x 化为y =2sin(2x ?π6),然后再利⽤图象平移知识,求出g(x),根据g(x)是偶函数,则g(0)取得最值,求出φ.本题考查三⾓函数图象变换的⽅法以及性质,将奇偶性、对称性与函数的最值联系起来,是此类问题的常规思路,属于中档题.【解答】解:由已知得y =√3sin2x ?cos2x =2(sin2x ?√32cos2x 12)=2sin(2x π6).所以g(x)=2sin[2(x ?φ)?π6],由g(x)是偶函数得g(0)=2sin(?2φ?π6)=±2,∴?2φ?π6=π2+kπ,k ∈Z ,∴φ=?π3kπ2,k ∈Z ,当k =?1时,φ=π6即为所求.故答案为:π6.13.答案:(√32,√3]解析:【分析】本题考查正、余弦定理,三⾓函数恒等变换的应⽤,正弦函数的性质,考查了计算能⼒和转化思想,属于中档题.由题意可得⾓B和边b,然后利⽤正弦定理,三⾓函数恒等变换的应⽤可求a+c=√3sin(A+π6),66<5π6,利⽤正弦函数的性质可求其取值范围.【解答】解:∵在ΔABC中,cosB+√3sinB=2,∴2(12cos?B+√32sin?B)=2,即2sin(B+π6)=2,所以B+π6=π2,B=π3,⼜cosBb +cosCc=2√3sinA3sinC=2√3a3c,所以ccosB+bcosC=2√33ab,故c?a2+c2?b22ac +b?a2+b2?c22ab=2√3即a=2√33ab,解得b=√32,∴由正弦定理可得bsinB =√32√32=1=asinA=csinC,故a=sinA,c=sinC,所以a+c=sinA+sinC=sinA+sin(2π3A)=sinA+√32cosA+12sinA=32sinA+√32cosA=√3sin(A+π63,π66<5π6,所以sin(A+π6)∈(12,1]∴a+c=√3sin(A+π6)∈(√32,√3].故答案为(√32,√3].14.答案:;[?√34,12]解析:【分析】本题主要考查了两⾓和与差的三⾓函数公式、⼆倍⾓公式、函数的单调区间以及函数的值域,属于基础题.由题意化简可得,且,,由此即可得到函数的单调减区间以及值域.【解答】解:=sinx (12cosx ?√32sinx)+√34=14sin2x ?√32sin 2x +√34 =14sin2x +√34cos2x ,令,解得,,令k =0,可得,即函数的单调减区间为,此时,,即函数的值域为[?√34,12],故答案为;[?√34,12].15.答案:解:(1)由题意可设AD =2k ,AB =3k(k >0).∵BD =√7,∠DAB =π3,∴由余弦定理,得(√7)2=(3k)2+(2k)2?2×3k ×2kcos π3,解得k =1,∴AD =2,AB =3..(2)∵AB ⊥BC ,,,,∴CD =√7×2√77√32=4√33.解析:本题主要考查了余弦定理,⽐例的性质,正弦定理,同⾓三⾓函数之间的关系以及特殊⾓的三⾓函数值在解三⾓形中的综合应⽤,考查了计算能⼒和转化思想,属于中档题.(1)在△ABC 中,由已知及余弦定理,⽐例的性质即可解得AD =2,AB =3,由正弦定理即可解得sin∠ABD 的值;(2)由(1)可求cos∠DBC ,利⽤同⾓三⾓函数关系式可求sin∠DBC 的值,利⽤正弦定理即可计算得解.16.答案:解:(1)由题意得:A =3,T2=2π,则T =4π,即ω=2πT=12,所以f(x)=3sin(12x +φ),⼜f(x)的图象经过点(0,32),则32=3sinφ,由|φ|<π2得φ=π6,所以f(x)=3sin(12x +π6); (2)由题意得,f(x)?k =0在x ∈[0,11π3]有且仅有两个解x 1,x 2,即函数y =f(x)与y =k 在x ∈[0,11π3]且仅有两个交点,由x ∈[0,11π3]得,12x +π6∈[π6,2π],则f(x)=3sin(12x +π6)∈[?3,3],设t =12x +π6,则函数为y =3sint ,且t ∈[π6,2π],画出函数y =3sint 在t ∈[π6,2π]上的图象,如图所⽰:由图可知,k 的取值范围为:k ∈(?3,0]∪[3 2,3),当k ∈(?3,0]时,由图可知t 1,t 2关于t =3π2对称,即x =83π对称,所以x 1+x 2=16π3当k ∈[32,3)时,由图可知t 1,t 2关于t =π2对称,即x =23π对称,所以x 1+x 2=4π3,综上可得,x 1+x 2的值是16π3或4π3.解析:(1)由题意求出A 和周期T ,由周期公式求出ω的值,将点(0,32)代⼊化简后,由φ的范围和特殊⾓的三⾓函数值求出φ的值,可得函数f(x)的解析式;(2)将⽅程的根转化为函数图象交点问题,由x 的范围求出12x +π6的范围,由正弦函数的性质求出f(x)的值域,设设t =12x +π6,函数画出y =3sint ,由正弦函数的图象画出y =3sint 的图象,由图象和条件求出k 的范围,由图和正弦函数的对称性分别求出x 1+x 2的值.本题考查了形如f(x)=Asin(ωx +φ)的解析式的确定,正弦函数的性质与图象,以及⽅程根转化为函数图象的交点问题,考查分类讨论思想,数形结合思想,以及化简、变形能⼒.17.答案:解:(1)由m⊥n ? ,可得b(cosA ?2cosC)+(a ?2c)cosB =0,根据正弦定理可得,sinBcosA ?2sinBcosC +sinAcosB ?2sinCcosB =0∴(sinBcosA +sinAcosB)?2(sinBcosC +sinCcosB)=0∴sin(A +B)?2sin(B +C)=0,∵A +B +C =π,∴sinC ?2sinA =0,所以(2)由(1)得:c =2a ,因为a =2,|m |=3√5,所以c =4,b =3,所以cosA =32+42?222×3×4=78,因为A ∈(0,π),所以sinA =√1?(78)2=√158,所以△ABC 的⾯积为=12bcsinA =12×3×4×√158=3√154解析:本题考查平⾯向量的数量积、垂直的应⽤、考查两⾓和与差的三⾓函数、正弦定理、余弦定理以及三⾓形⾯积公式的运⽤,考查计算能⼒和转化能⼒,属于中档题.(1)由⊥m n?,可得b(cosA?2cosC)+(a?2c)cosB=0,根据正弦定理可得,sinBcosA?2sinBcosC+sinAcosB?2sinCcosB=0,化简即可;(2)由(1)c=2a可求c,由|m |=3√5可求b,结合余弦定理可求cos A,利⽤同⾓平⽅关系可求sin A,代⼊三⾓形的⾯积公式S=12bcsinA可求.18.答案:解:(1)∵tan?α=34,∴tan?(α+π4)=tanα+tanπ41?tanα·tanπ4=34+11?34×1=7.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°)=?cos(?20°+?40°)=?cos60°=?12.解析:本题主要考查了两⾓和差公式,三⾓函数的化简与求值,属于较易题.(1)利⽤两⾓和的正切公式直接代值求解.(2)sin?20°sin?40°?cos?20°cos?40°=?(cos?20°cos?40°?sin20°sin40°),利⽤两⾓和的余弦公式求解.19.答案:解:,∴ab=4 ①,⼜c2=a2+b2?2abcosC,c=2,∴a2+b2?2ab=4 ②,由①②得a+b=4;(2)∵√3(bsinC?ccosBtanC)=a,∴∵√3(sinBsinC?sinCcosBcosCsinC)=sinA,∴?√3cos(B+C)=sinA,∴tanA=√3,⼜,.解析:本题考查解三⾓形和三⾓恒等变换,考查推理能⼒和计算能⼒,属于⼀般题.(1)利⽤三⾓形的⾯积公式和余弦定理即可求解;(2)由正弦定理和三⾓恒等变换公式得tanA=√3,结合范围即可求出A.20.答案:解:(1)设该扇形的半径为r⽶,连接CO.由题意,得CD=500(⽶),DA=300(⽶),∠CDO=60°,在△CDO中,CD2?+OD2?2CD?OD?cos60°=OC2,即,5002+(r?300)2??2×500×(r?300)×1 2=r?2,解得r=490011≈445(⽶).(2)连接OC,设∠DOC=θ,θ∈(0,2π3),在△DOC中,由正弦定理得:CDsinθ=DOsin(2π3θ)=OCsinπ3=√3,于是CD=3,DO=3sin(2π3θ),则DC+DO=√3+sin(2π3θ)]=2asin(θ+π6),θ∈(0,2π3),所以当θ=π3时,DC+DO最⼤为 2a,此时C在弧AB的中点处.解析:本题主要考查解三⾓形在实际问题中的运⽤,属于中档题.(1)连接OC,由CD//OB知∠CDO=60°,可由余弦定理得到OC的长度.(2)连接OC,设∠DOC=θ,θ∈(0,2π3),由正弦定理,三⾓恒等变换可求DC+DO=2asin(θ+π6),θ∈(0,2π3),利⽤正弦函数的性质可求最⼤值,即可得解.。
高一数学必修五第一章试题——解三角形一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c 分别是△ABC 中∠A ,∠B ,∠C 所对边的边长,则直线x sin A +ay +c =0与bx -y sin B +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直2.在△ABC 中,已知a -2b +c =0,3a +b -2c =0,则sin A ∶sin B ∶sin C 等于( )A .2∶3∶4B .3∶4∶5C .4∶5∶8D .3∶5∶73.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( )A .4 3B .5C .5 2D .624.已知关于x 的方程x 2-x cos A ·cos B +2sin 2C2=0的两根之和等于两根之积的一半,则△ABC 一定是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形5.△ABC 中,已知下列条件:①b =3,c =4,B =30°;②a =5,b =8,A =30°;③c =6,b =33,B =60°;④c =9,b =12,C =60°.其中满足上述条件的三角形有两解的是( )A .①②B .①④C .①②③D .③④6.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =1,sin B =32,C =π6,则b 的值为( )A .1B .32C .3或32 D .±17.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75°C .30°D .15°8.若G 是△ABC 的重心,a ,b ,c 分别是角A ,B ,C 的对边,且aGA →+bGB →+33cGC →=0,则角A =( )A .90°B .60°C .45°D .30°9.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC→,则AD 的长为( ) A .4(3-1) B .4(3+1) C .4(3-3)D .4(3+3)10.在△ABC 中,B A →·B C →=3,S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,则B 的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π4,π3 B .⎣⎢⎡⎦⎥⎤π6,π4 C .⎣⎢⎡⎦⎥⎤π6,π3 D .⎣⎢⎡⎦⎥⎤π3,π211.在△ABC 中,三内角A ,B ,C 所对边分别为a ,b ,c ,若(b -c )sin B =2c sin C 且a =10,cos A =58,则△ABC 面积等于( )A .392 B .39 C .313 D .312.锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A (a cos C +c cos A )=3b ,则cb 的取值范围是( )A .⎝ ⎛⎭⎪⎫12,2 B .⎝ ⎛⎭⎪⎫32,233 C .(1,2) D .⎝ ⎛⎭⎪⎫32,1二、填空题(本大题共4小题,每小题5分,共20分)13.已知在△ABC 中,a +b =3,A =π3,B =π4,则a 的值为________.14.在△ABC 中,AB =2,点D 在边BC 上,BD =2DC ,cos ∠DAC =31010,cos C =255,则AC +BC =________.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb ,则边c 的值为________.16.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且a ,b ,c 满足2b =a +c ,B =π4,则cos A -cos C =________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .18.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c .(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .19.(本小题满分12分)为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号.检查员抽查青岛市一考点,在考点正西约 3 km有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以12 km/h的速度沿公路行驶,最长需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?20.(本小题满分12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若λ=6,B=5π6,求sin A;(2)若λ=4,AB边上的高为3c6,求C.21.(本小题满分12分)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,且tan A=3cbc2+b2-a2.(1)求角A的大小;(2)当a=3时,求c2+b2的最大值,并判断此时△ABC的形状.22.(本小题满分12分)在海岸A处,发现北偏东45°方向,距A处(3-1) n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A处2 n mile的C处的缉私船奉命以10 3 n mile/h的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?一、选择题1. 答案 C解析 ∵k 1=-sin A a ,k 2=bsin B ,∴k 1k 2=-1,∴两直线垂直.故选C . 2. 答案 D解析 因为a -2b +c =0,3a +b -2c =0, 所以c =73a ,b =53a .a ∶b ∶c =3∶5∶7. 所以sin A ∶sin B ∶sin C =3∶5∶7.故选D . 3. 答案 C解析 ∵S △ABC =12ac sin B =2,∴c =42. 由余弦定理b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理2R =bsin B =52(R 为△ABC 外接圆的半径).故选C . 4. 答案 C解析 由题意知:cos A ·cos B =sin 2C2,∴cos A ·cos B =1-cos C 2=12-12cos [180°-(A +B )]=12+12cos(A +B ), ∴12(cos A ·cos B +sin A ·sin B )=12, ∴cos(A -B )=1.∴A -B =0,∴A =B ,∴△ABC 为等腰三角形.故选C . 5. 答案 A解析 ①c sin B <b <c ,故有两解; ②b sin A <a <b ,故有两解; ③b =c sin B ,有一解; ④c <b sin C ,无解.所以有两解的是①②.故选A . 6. 答案 C解析 在△ABC 中,sin B =32,0<B <π, ∴B =π3或2π3,当B =π3时,△ABC 为直角三角形, ∴b =a ·sin B =32; 当B =2π3时,A =C =π6,a =c =1.由余弦定理得b 2=a 2+c 2-2ac cos 2π3=3, ∴b =3.故选C . 7. 答案 A解析 由题意:sin B +cos B =62.两边平方得sin2B =12,设顶角为A ,则A =180°-2B .∴sin A =sin(180°-2B )=sin2B =12,∴A =30°或150°. 故选A . 8. 答案 D解析 由重心性质可知GA →+GB →+GC →=0,故GA →=-GB →-GC →,代入aGA →+bGB→+33cGC →=0中,即 (b -a )GB →+33c -aGC →=0,因为GB →,GC →不共线,则⎩⎨⎧b -a =0,33c -a =0,即⎩⎨⎧b =a ,c =3a ,故由余弦定理得cos A =b 2+c 2-a 22bc =32.因为0<A <180°,所以A =30°.故选D .9. 答案 C解析 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin45°sin75°=8(3-1), 因为BD →=3-12BC →,所以BD =3-12BC . 又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos60°=4(3-3).故选C . 10. 答案 C解析 由题意知ac ·cos B =3,所以ac =3cos B , S △ABC =12ac ·sin B =12×3cos B ×sin B =32tan B . 因为S △ABC ∈⎣⎢⎡⎦⎥⎤32,332,所以tan B ∈⎣⎢⎡⎦⎥⎤33,3, 所以B ∈⎣⎢⎡⎦⎥⎤π6,π3.故选C .11. 答案 A解析 由正弦定理,得(b -c )·b =2c 2,得b 2-bc -2c 2=0,得b =2c 或b =-c (舍).由a 2=b 2+c 2-2bc cos A ,得c =2,则b =4. 由cos A =58知,sin A =398.S △ABC =12bc sin A =12×4×2×398=392.故选A . 12. 答案 A解析 2sin A (a cos C +c cos A )=3b ⇔2sin A ·(sin A cos C +sin C cos A )=3sin B ⇔2sin A sin(A +C )=3sin B ⇔2sin A sin B =3sin B ⇔sin A =32, 因为△ABC 为锐角三角形, 所以A =π3,a 2=b 2+c 2-bc , ① a 2+c 2>b 2, ② a 2+b 2>c 2, ③由①②③可得2b 2>bc ,2c 2>bc ,所以12<cb <2.故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 33-32解析 由正弦定理,得b =a sin B sin A =63a .由a +b =a +63a =3,解得a =33-32.14. 答案 3+5解析 ∵cos ∠DAC =31010,cos C =255, ∴sin ∠DAC =1010,sin C =55, ∴sin ∠ADC =sin(∠DAC +∠C ) =1010×255+31010×55=22. 由正弦定理,得AC sin ∠ADC =DCsin ∠DAC,得AC =5DC .又∵BD =2DC ,∴BC =3DC . 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos C=5DC 2+9DC 2-25DC ·3DC ·255=2DC 2. 由AB =2,得DC =1,从而BC =3,AC =5.即AC +BC =3+5. 15. 答案 22解析 在△ABC 中,∵1+tan A tan B =1+sin A cos Bcos A sin B = cos A sin B +sin A cos B cos A sin B =sin (A +B )cos A sin B =sin C cos A sin B =2cb . 由正弦定理得c b cos A =2c b ,∴cos A =12,∴A =60°. 又∵a =23,C =45°.由a sin A =c sin C 得2332=c 22,∴c =22.16. 答案 ±42 解析 ∵2b =a +c ,由正弦定理得2sin B =sin A +sin C ,又∵B =π4,∴sin A +sin C =2,A +C =3π4. 设cos A -cos C =x ,可得(sin A +sin C )2+(cos A -cos C )2=2+x 2,即sin 2A +2sin A sin C +sin 2C +cos 2A -2cos A cos C +cos 2C =2-2cos(A +C )=2-2cos 3π4=2+x 2.则(cos A -cos C )2=x 2=-2cos 3π4=2, ∴cos A -cos C =±42. 三、解答题 17.解 (1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴cos ∠CBE =cos15°=cos(45°-30°)=6+24. (2)在△ABE 中,AB =2, 由正弦定理,得AE sin (45°-15°)=2sin (90°+15°),故AE =2sin30°sin75°=2×126+24=6-2.18.解 (1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化为cos A sin A +cos Bsin B =sin Csin C =1,因为A 和B 为三角形内角,所以sin A sin B ≠0,则两边同时乘以sin A sin B ,可得sin B cos A +sin A cos B =sin A sin B ,由和角公式可知,sin B cos A +sin A cos B =sin(A +B )=sin(π-C )=sin C ,原式得证.(2)因为b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A =b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A =1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =14,所以tan B =4.19.解 如右图所示,考点为A ,检查开始处为B ,设公路上C ,D 两点到考点的距离为1 km .在△ABC 中,AB =3≈1.732,AC =1,∠ABC =30°, 由正弦定理,得sin ∠ACB =AB sin30°AC =32,∴∠ACB =120°(∠ACB =60°不符合题意), ∴∠BAC =30°,∴BC =AC =1. 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1.∵BC 12×60=5,∴在BC 上需要5 min ,CD 上需要5 min .∴最长需要5 min 检查员开始收不到信号,并至少持续5 min 该考点才算合格.20.解 (1)由已知B =5π6,a 2+b 2=6ab ,综合正弦定理得4sin 2A -26sin A +1=0.于是sin A =6±24,∵0<A <π6,∴sin A <12,∴sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ),从而有3sin C +cos C =2即sin ⎝ ⎛⎭⎪⎫C +π6=1. 又π6<C +π6<7π6,∴C =π3.21.解 (1)由已知及余弦定理,得sin A cos A =3cb 2cb cos A ,sin A =32,因为A 为锐角,所以A =60°. (2)解法一:由正弦定理,得a sin A =b sin B =c sin C =332=2, 所以b =2sin B ,c =2sin C =2sin(120°-B ).c 2+b 2=4[sin 2B +sin 2(120°-B )] =41-cos2B 2+1-cos (240°-2B )2=4-cos2B +3sin2B=4+2sin(2B -30°).由⎩⎨⎧0°<B <90°,0°<120°-B <90°,得30°<B <90°,所以30°<2B -30°<150°. 当sin(2B -30°)=1,即B =60°时,(c 2+b 2)max =6,此时C =60°,△ABC 为等边三角形.解法二:由余弦定理得(3)2=b 2+c 2-2bc cos60°=b 2+c 2-bc =3.∵bc ≤b 2+c 22(当且仅当b =c 时取等号),∴b 2+c 2-b 2+c 22≤3,即b 2+c 2≤6(当且仅当b =c 时等号). 故c 2+b 2的最大值为6,此时△ABC 为等边三角形.22.解 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC =6.在△BCD 中,由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直.∴∠CBD =120°.在△BCD 中,由正弦定理,得CD sin ∠CBD =BD sin ∠BCD, ∴103t sin120°=10t sin ∠BCD , ∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.。
同步分层能力测试题(一)A 组一.填空题(本大题共8小题,每小题5分,共40分)1.在△ABC 中, 若,则边c= 。
1.2或。
【解析】由余弦定理,得a 2=c 2+b 2-2cb ·cosA,代入整理得c 2∴2. 在△ABC 中,已知A=450,B=600,c =1,则a= .2.213-。
【解析】由A+B+C=180,得C=1800-450-600=750。
由正弦定理,得045sin a =75sin 1, ∴a=213-。
3. 在△ABC 中, 已知a=5,b=12,c=13.最大内角为 度。
3.90.【解析】cosC=bca cb 2222-+=222512132512+-⨯⨯=0,C=900.4. 在△ABC 中,已知b=4,c=8,B=300.则a= 。
4. 23。
【解析】(1)由正弦定理,得sinC=bB c sin =430sin 80=1。
所以 C=900,A=180-90-30=600。
又由正弦定理,得a=B A b sin sin =030sin 60sin 4=23。
5. a,b,c 是△ABC 的三边,且B=1200,则a 2+ac+c 2-b 2的值为 .5.0.【解析】由余弦定理,得b 2=a 2+c 2-2ac ·cosB= a 2+ac+c 2.6.在△ABC 中,若a=50,b=25 6 , A=45°则B= .6. 60°或120°。
【解析】由正弦定理得050s i n 45=,sinB=,故B=60°或120°。
7.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA;③acosB=bcosA;④sin sin sin a b cA B C+=+. 其中恒成立的等式序号为_______________.7.②④。
【解析】①不符合正弦定理;②两边同除以sinAsinB 即为正弦定理;③取A=900,便知等式不成立;④正弦定理结合等比定理可得。
高中数学必修5课后习题答案(共10篇)高中数学必修5课后习题答案(一): 人教版高一数学必修5课后习题答案课本必修5,P91练习2,P93习题A组3和B组3,全部都是线性规划问题, 生产甲乙两种适销产品,每件销售收入分别为3000元,2023元。
甲乙产品都需要A、B两种设备上加工,每台A、B设备上加工1件甲设备工时分别为1h,2h,加工乙设备工时2h,1h,A、B两种设备每月有效使用台时数分别为400h和500h,如何安排生产可使收入最大?2.电视台应某企业之约播放两套电视剧,其中,连续剧甲每次播放时间为80分钟,其中广告时间为1分钟,收视观众为60万;连续剧乙每次播放时间为40分钟,广告时间1分钟,收视观众20万。
已知和电视台协议,要求电视台每周至少播放6分钟广告,二电视台每周只能为该企业提供不多于320分钟的节目时间。
如果你是电视台制片人,电视台每周应播映两套连续剧各多少次,才能获得更高的收视率?P91练习 2 答案:解设每月生产甲商品x件,生产乙商品y件,每月收入z元,目标函数z=3X+2y,需要满足的条件是:x+2y≤400 2X+y≤500 x≥0 y≥0作图略作直线z=3x+2y,当直线经过A点时,z 取最大值解方程组{x+2y=400 2x+y=500 可取点A 《200,100》所以z的最大值为800高中数学必修5课后习题答案(二): 高一人教版数学必修5课后习题答案知道下列各项·写出同项公式1,√2/2,1/2,√2/4 1/4关于数列问题1,√2/2=1*√2/2,1/2=1*(√2/2)^2,√2/4=1*(√2/2)^31/4=1*(√2/2)^4……所以是以首项为1,公比为√2/2的等比数列An=(√2/2)^(n-1)高中数学必修5课后习题答案(三): 高中数学必修5课后习题1.1A组第一第二题答案要有步骤解三角形A=70° B=30° c=20cm b=26cm c=15cm C=23° a=15cm,b=10cm,A=60° b=40cm,c=20cm,C=25°1.180°--70° --30° =80°所以角C=80°然后用正弦定理2.还是正弦定理3.还是正弦定理4.还是正弦定理很简单的正弦定理a比上sinA=b比上sinB=c比上sinCa是边长,A是角高中数学必修5课后习题答案(四): 数学必修五课后习题答案数学必修五第五页(也可能是第四页)课后习题答案,要有解题过程,大神们呐,帮帮我吧参考书里没有解题过程!2在三角形ABC中,已知下列条件,解三角形(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°画图题2个题做法基本一样比如第1小题,先根据已知角度画出已知角B,然后以角点B为圆心,以20为半径画圆弧,和B的某一线相交一点C,再以该点为圆心,以11cm为半径画圆弧,和B角的另一角边相交,这样得到A点,到此,三角形就画好了.高中数学必修5课后习题答案(五): 数学必修5练习x^2-(2m+1)x+m^2+m分析x -(2m+1)x+m +m高中数学必修5课后习题答案(六): 高一数学必修5解三角形正弦定理课后练习B组第一题(1) a=2RsinA,b=2RsinB,c=2RsinC; (2) sinA :sinB :sinC = a :b :c;高中数学必修5课后习题答案(七): 高二数学必修5答案,人民教育出版社的,习题2—3A的练习题,P51页,急用,我的同学瞧不起我,我非要做个全对不可,可我数学一点都不好,我不想就这样被同学踩在脚底下,希望谁有答案,帮忙写一下,拜托了,我先拿30分,不够的话,再说.看看这个,参考参考.高中数学必修5课后习题答案(八): 高中数学必修5第三章不等式复习参考题答案【高中数学必修5课后习题答案】有本书叫《中学教材全解》,是陕西出版社的金星教育那上面有详细的解答准确度很高同时发几个网址,看有没有你需要的高中数学必修5复习题及答案(A组)人教版高中数学必修模块(1-5)全部精品课件集高中数学必修5课后习题答案(九): 高一数学作业本必修5的题目..11.(1)已知x>0,y>0.且(1/x)+(9/y)=1.求x+y的最大值.(2)已知x【高中数学必修5课后习题答案】11.(1) (1/x+1/y)*(x+y)=1+9+9x/y+y/x=10+9x/y+y/x9x/y+y/x>=2√9x/y*y/x1/x+9/y>=16(2)y=4x-5+1/(4x-5)+3>=2√(4x-5)*1/(4x-5)+3>=5(3)跟第一题是一样的,就是除以xy,答案是18高中数学必修5课后习题答案(十): 人教版数学必修5习题2.2B组1答案求高中数学必修5的40页B组第一题的答案.(1)从表看出,基本是一个等差数列,d=2023,a2023=a2023+8d=0.26x10^5,在加上原有的9x10^5,答案为:9.26x10^5.(2)2023年底,小于8x10^5hm略。
必修5不等式易错题及错解分析一、选择题:1.设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。
3.不等式(0x -≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。
正确答案为D 。
4.某工厂第一年的产量为A ,第二年的增长率为a,第三年的增长率为b ,这两年的平均增长率为x,则A 2a b x +=B 2a b x +≤C 2a b x +>D 2a bx +≥ 错解:对概念理解不清,不能灵活运用平均数的关系。
正确答案为B 。
5.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b的范围,扩大了范围。
正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。
6.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21B a <21C -21≤a ≤21D a ≥ 21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。
新课标人教版必修5高中数学 综合检测试卷1.如果33log log 4m n +=,那么n m +的最小值是( ) A .4B .34C .9D .182、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )A .7B .8C .9D .103、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( )A .a =﹣8 b =﹣10B .a =﹣4 b =﹣9C .a =﹣1 b =9D .a =﹣1b =24、△ABC 中,若2cos c a B =,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .锐角三角形5、在首项为21,公比为12的等比数列中,最接近1的项是( ) A .第三项 B .第四项 C .第五项 D .第六项 6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于( )A .32B .23C .23或32D .﹣32或﹣237、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120 B .60 C .150 D .308、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是( ) A .2221a aB .2322a aC .2423a aD .2524a a9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )A .41.1B .51.1 C .610(1.11)⨯- D . 511(1.11)⨯-10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于( )A .2B .2-πC .4D .24-π 11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2lg(12)y x x =+-的定义域是13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15、《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。
书中有一道这样的题目:把100个面包分给五人,使每人成等差数列,且使最大的三份之和的13是较小的两份之和,则最小1份的大小是 16、已知数列{}n a 、{}n b 都是等差数列,1a =1-,41-=b ,用k S 、'k S 分别表示数列{}n a 、{}n b 的前k 项和(k 是正整数),若k S +'k S =0,则k k b a +的值为17、△ABC 中,c b a ,,是A ,B ,C 所对的边,S 是该三角形的面积,且cos cos 2B bC a c=-+ (1)求∠B 的大小;(2)若a =4,35=S ,求b 的值。
18、已知等差数列{}n a 的前四项和为10,且237,,a a a 成等比数列(1)求通项公式n a(2)设2n an b =,求数列n b 的前n 项和n s19、已知:ab a x b ax x f ---+=)8()(2,当)2,3(-∈x 时,0)(>x f ;),2()3,(+∞--∞∈ x 时,0)(<x f(1)求)(x f y =的解析式(2)c 为何值时,02≤++c bx ax 的解集为R.20、某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形的休闲区A 1B 1C 1D 1(阴影部分)和环公园人行道组成。
已知休闲区A 1B 1C 1D 1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长11A B x =米,求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;(2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?21、设不等式组⎪⎩⎪⎨⎧+-≤>>n nx y y x 300所表示的平面区域为n D ,记n D 内的格点(格点即横坐标和纵坐标均为整数的点)个数为))((*N n n f ∈(1)求)2(),1(f f 的值及)(n f 的表达式;(2)记()(1)2n nf n f n T ⋅+=,试比较1n n T T +与的大小;若对于一切的正整数n ,总有m T n ≤成立,求实数m 的取值范围;(3)设n S 为数列{}n b 的前n 项的和,其中)(2n f n b =,问是否存在正整数t n ,,使16111<-+++n n n n tb S tb S 成立?若存在,求出正整数t n ,;若不存在,说明理由必修5综合测试1.D;2.B;3.B;4.B;5.C;6.C;7.A;8.C;9.D;10.B;11. ; 12.{}34x x -<<; 13. 48 ; 14.18; 15.10; 16.5; 17、⑴由cos cos sin cos 2cos 2sin sin B b B BC a c C A C =-⇒=-++ 2sin cos cos sin sin cos A B B C B C ⇒+=- 2sin cos sin cos cos sin A B B C B C ⇒=--2sin cos sin()2sin cos sin A B B C A B A ∴=-+⇒=-12cos ,0,23B B B ππ⇒=-<<∴=又⑵114,sin 5222a S S ac B c c ====⨯⨯⇒=由22222cos 1625245b a c ac B b b =+-⇒=+-⨯⨯⇒=18、⑴由题意知121114610(2)()(6)a d a d a d a d +=⎧⎨+=++⎩1152230a a d d ⎧=-=⎧⎪⇒⎨⎨=⎩⎪=⎩或 所以5352n n a n a =-=或 ⑵当35n a n =-时,数列{}n b 是首项为14、公比为8的等比数列 所以1(18)8141828n n n S --==- 当52n a =时,522n b =所以522n S n =综上,所以8128n n S -=或522n S n =19、⑴由)2,3(-∈x 时,0)(>x f ;),2()3,(+∞--∞∈ x 时,0)(<x f知:3,2-是是方程2(8)0ax b x a ab +---=的两根83232b aa ab a -⎧-+=-⎪⎪⎨--⎪-⨯=⎪⎩35a b =-⎧⇒⎨=⎩ 2()3318f x x x ∴=--+⑵由0a <,知二次函数2y ax bx c =++的图象开口向下 要使2350x x c --+≤的解集为R ,只需0∆≤ 即252512012c c -≤⇒≥ ∴当2512c ≥时02≤++c bx ax 的解集为R. 20、⑴由11A B x =,知114000B C x=4000(20)(8)S x x =++8000041608(0)x x x=++>⑵80000800004160841605760S x x x x=++≥+=当且仅当800008100x x x==即时取等号 ∴要使公园所占面积最小,休闲区A 1B 1C 1D 1的长为100米、宽为40米. 21、⑴(1)3,(2)6f f ==当1x =时,y 取值为1,2,3,…,2n 共有2n 个格点 当2x =时,y 取值为1,2,3,…,n 共有n 个格点 ∴()23f n n n n =+=⑵()(1)9(1)22n n n f n f n n n T ++== 119(1)(2)229(1)22n n n nn n T n n n T n +++++⇒==+ 当1,2n =时,1n n T T +≥当3n ≥时,122n n n n T T ++<⇒< ∴1n =时,19T =2,3n =时,23272T T ==4n ≥时,3n T T <∴{}n T 中的最大值为23272T T ==要使m T n ≤对于一切的正整数n 恒成立,只需272m ≤∴272m ≥⑶()38(18)8228(81)187n f n nnnn n b S -===⇒==--将n S 代入16111<-+++n n nn tb S tb S ,化简得,888177812877n n t t ⎛⎫-- ⎪⎝⎭<⎛⎫--⎪⎝⎭(﹡) 若1t =时88181577,8127777n n n-<<-即,显然1n = 若1t >时818077n t ⎛⎫--<⎪⎝⎭(﹡)式化简为815877n t ⎛⎫-> ⎪⎝⎭不可能成立综上,存在正整数1,1n t ==使16111<-+++n n n n tb S tb S 成立.。