最新用层次分析法评选优秀学生进行数学建模
- 格式:doc
- 大小:542.50 KB
- 文档页数:7
挑选队员的策略模型摘要全国大学生建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,各大高校对这项比赛都很重视,那么如何挑选出优秀的队员和如何将队员进行合理的组队就至关重要了。
本文将提出的问题转化为数学的模型以及合理的假设分析给出了妥帖的解决方案。
1、对于问题一我们用多元统计分析中的层次分析法首先建立了模型1.1,给各项条件指标一个权重,来计算加权函数i i ij j i iii W P L W ∑=∑===7161,αα,再求每个队员的综合水平,用Excel 整理数据,最后淘汰8、9两名队员。
然后在模型1.1的基础上建立了模型 1.2,从理论上按照层次分析法的步骤算出权重,再按模型 1.1的加权函数计算每个队员的综合水平,得出的结果也是淘汰8、9两名队员,充分的验证了模型的合理性。
2、对于问题二我们用逐项选优法和均衡模型法,由于学校参赛的目的不同给出两种模型。
我们把这个问题转化成求竞赛水平函数i j ml k ji m l k jW a W af ∑==61,,,,),(,模型2.1目的是使学校尽可能拿更高的奖项,用逐项求优法挑选竞赛水平高的队伍,重复挑选选取最优。
模型2.2目的是使学校尽可能多的获奖,也就是期望六支队伍都获奖,用均衡模型法,先选出竞赛水平最高的一组保证能够获奖,将剩下的队员均衡分配,从而竞赛水平都达到某一高度,这样六支队伍都能获奖。
综合这两种模型我们在不同的情况下做了合理的分析,认为模型2.1优于模型2.2. 3、对于问题三我们用求价值函数和仿真的方法,模型3.1是使每个教练挑选的队员的价值函数i i k q p o i i kq p o i kW d W dg ∑==613),,(3),,(3),(达到最大,同时保证他们之间相差不大,这样才能使教练相对满意。
模型3.2是用仿真的方法,通过仿真模拟出能够满足各个教练所需求的“最优”,又能使得他们所得队员差距更小,以取得使教练都尽可能满意的结果。
数学建模队员的选拔摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。
但在对参赛队员进行选拔时,往往会遇到很多难题,以致有时并不能选出真正优秀的队员代表学校参加全国竞赛。
本文通过对学生自身具备的与数学建模有关的素质的考察,解决了选拔参赛队员及确定最佳组队的问题。
本文主要采用层次分析法,通过对建模队员的综合能力以及专项能力的考察,综合考虑个人的指标以及整队的技术水平,给出了选拔队员的模型,并最终从15名队员中选出9名优秀队员组成三队,建立了最佳的组队方案。
问题一,我们给出了选拔队员时应考察的情况,并针对数学建模应具备的关键素质,给出了相关素质的权重。
问题二,我们全面考察了15名队员的六项指标,并利用层次分析法及matlab 编程求出了各指标的权重,然后根据权重得到15名队员的的综合排名,最后剔除后六名,得到前九名队员,依次是:2S ,1S ,14S ,8S ,11S ,4S 10S ,6S ,13S 。
为了组成3个队,使得这3队的整体水平最高,我们建立了求每个队竞赛水平的模型,根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们在多种组合方式下经计算比较后得到最佳组合方案。
如下表:问题三,我们如果只考察计算机而不考察其它能力,选出最佳队员S11和S13,其成绩分别为第五和第九,并非特别拔尖。
而且通过对计算机编程能力在关键素质中所占的比例24.9%分析(1/4不到),这种直接录用的选拔方式,有可能影响队伍的总体水平,而且有失公平,所以不可取。
问题四,我们在前几问的基础上,综合数学建模的关键素质所占的权重分析,给出了对数学建模教练组在选拔队员时的建议。
关键词:最佳组队;层次分析法;matlab 编程,权重一、问题重述由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。
为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。
层次法数学建模论文层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
下文是店铺为大家整理的关于层次法数学建模论文的范文,欢迎大家阅读参考!层次法数学建模论文1层次分析法建模70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论。
吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:① 能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);② 工作收入较好(待遇好);③ 生活环境好(大城市、气候等工作条件等);④ 单位名声好(声誉-Reputation);⑤ 工作环境好(人际关系和谐等)⑥ 发展晋升(promote, promotion)机会多(如新单位或单位发展有后劲)等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?B.假期旅游地点选择暑假有3个旅游胜地可供选择。
例如:P1:苏州杭州,P2北戴河,P3桂林,到底到哪个地方去旅游最好?要作出决策和选择。
为此,要把三个旅游地的特点,例如:①景色;②费用;③居住;④环境;⑤旅途条件等作一些比较——建立一个决策的准则,最后综合评判确定出一个可选择的最优方案。
目标层准则层方案层C.资源开发的综合判断7种金属可供开发,开发后对国家贡献可以通过两两比较得到,决定对哪种资源先开发,效用最用。
对学生建模论文的综合评价分析摘要本文研究的是五篇建模论文的评价和比较问题。
首先,研读分析了五篇论文,并写出评语。
其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判.最后,依据所得权重大小对论文排序。
针对问题一,我们对论文进行了横向比较和纵向分析。
依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。
其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。
最后,结合横向比较和纵向分析对论文综合评价。
针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。
在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。
最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。
并在模型结束时付上了对五篇论文的评语。
关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价一、问题重述数学建模是利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见下图。
摘要对学生学习情况分析的目的是激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步。
然而,现行的评价方式单纯的根据“绝对分数”评价学生的学习状况,忽略了基础条件的差异;只对基础条件较好的学生起到促进作用,对基础条件相对薄弱的学生很难起到鼓励作用。
所以,一种能够全面、客观、公正的新型综合评价模式急需建立与应用。
来改变传统的评价方式以更好地促进全体同学学习的进步与发展。
本文通过对附件所给的数据进行全面的整合与分析,考虑各种可能因素对学习成绩的影响,并在此基础上建立了对学生学习状况的综合评价模型。
从解决以下几个问题来为学校提供更好的评价模型:1.针对问题一:对612名学生四个学期的综合成绩进行整体分析,经过对数据的初步处理和计算,绘制表格做出扇形图,更加直观的对计算结果(平均分、及格率、良好率、优秀率、极差等)的解析客观整体的评价学生学习的状况。
运用matlab对其进行直方图的统计以及正态曲线的拟合,通过结果客观去全面公正的对整体学生的学习情况做出评价。
2.针对问题二:对具体到个人的学习状况的分析和评价以及模型的建立。
m.考虑到每位同学的其实分数的差异即基础不同的同学学习成绩进步空间的难易是有差别的。
每位同学在不同难度的试卷测试中的发挥是不一样的,我们在建立模型的过程中引进了奖罚因子(a)并用多种微分方差和指数方程来转换测验成绩,使较低水平学生大幅增长的成绩与较高水平的选手小幅增长的成绩可以进行比较。
n.其次考虑到原始分一般不能直接反映出考生间差异状况,不能刻划出考生相互比较后所处的地位,也不能说明考生在其他等值测试上应获得什么样的分值。
我们采用了标准分计算法——将原始分数与平均分数之差除以标准差所得的商数,来评定对象之间的差异,它是以标准差为单位度量原始分数离开平均数的度量,标准分是一个抽象值,不受原始单位的影响,并且接受代数方法的处理。
综合上述因素,我们建立了标准分与进步度结合的综合评价数学模型。
学生数学建模能力评比方案一、引言在当今社会,数学建模能力被认为是学生必备的核心素养之一。
数学建模不仅能培养学生的逻辑思维和问题解决能力,还能加深对数学知识的理解和应用。
为了评估学生的数学建模能力,我们制定了以下方案。
二、评比对象本次数学建模能力评比方案的对象为中学高年级学生,包括初中三年级和高中各个年级的学生。
三、评比内容1. 数学建模能力的测评- 面向初中学生的题目设计- 面向高中学生的题目设计2. 表现形式和要求- 作答形式:书面回答- 数学建模报告的格式、结构和要求3. 评分标准- 数学建模能力的核心素养和表现- 创新思维和解决问题的方法- 结果的准确性和合理性- 报告的完整性和清晰度四、评比流程1. 题目设计与发布- 由专业数学建模教师组成的评估团队进行题目设计- 题目按照不同年级和难度分类2. 学生作答与提交- 学生根据规定时间和要求回答题目,并书面提交答案和报告3. 评分与排名- 评委组成专业评估小组,对学生的答案和报告进行评分- 按照评分结果排出学生的综合得分和相应排名4. 大赛总结与奖项颁发- 综合评估结果,对优秀学生进行奖项的评选和颁发五、评估结果的应用1. 学术研究和教育改革- 分析评估结果,了解学生数学建模能力发展的整体趋势和问题- 通过评估结果指导数学建模课程的开设和教学改革2. 学生个性化发展和选材指导- 借助评估结果,帮助学生了解自己的数学建模能力水平- 根据评估结果,为学生提供个性化的学习和选材指导六、结语通过本次学生数学建模能力评比方案,我们旨在促进学生数学建模能力的提高和发展。
评比方案的实施将为学生提供发现问题、解决问题的机会,培养创新意识和实践能力,进一步推动学生数学建模教育的发展。
以上便是我们制定的学生数学建模能力评比方案,希望通过此方案能够全面评估学生的数学建模能力,进而推动他们的学习和发展。
我们相信,通过这样的评比活动,学生们的数学建模能力将得到有效提升,为未来的学习和职业发展打下坚实的基础。
数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。
本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。
层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。
例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。
2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。
3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。
4.个人素质:如责任感、进取心、合作精神、团队协作精神等。
层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。
接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。
比较矩阵是层次分析法中的核心概念。
比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。
比较矩阵的各行数值之和为1。
以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。
| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。
用层次分析法评选优秀学生
一.实验目的
运用层次分析法,建立指标评价体系,得到学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。
二.实验内容
4.用层次分析法解决一两个实际问题;
(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。
可分为相对评价和绝对评价两种情况讨论。
解:层次分析发法基本步骤:建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。
在此我们运用层次分析法(AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。
大学生各项素质的指标体系。
如下表所示:
符号说明
设评价指标共有n 个,为1x ,2x ..... n
x 。
它们对最高层的权系数分别为1w ,2w , ...
n
w ,
于是建立综合评价模型为:
=
y ∑=n
i i
i x w 1
解决此类问题关键就是确定权系数,层次分析法给出了确定它们的量化过程,其步骤具体如下:
确定评价指标集
P=(1P
,2P ,3
P )
1P =(11P ,12P ) 2P =(21P ,22P ) 2P
=(31P ,32P )
11P =(1x ,2x ) 12P =(3x ,4x ) 21P =(5x ,6x ,7x )
22P =(8x ,9x ,10x ) 31P =(11x ,12x ) 31P =(13x ,14x )
建立两两比较的逆对称判断矩阵 从1x ,2x .....n x 中任取i
x 与
j
x ,令
=ij a i x /j
x ,比较它们对上一层某个因素的重要性时。
若=ij a 1,认为
i
x 与
j
x 对上一层因素的重要性相同; 若=ij a =3,认为i
x 比
j
x 对上一层因素的重要性略大;
若=ij a 5,认为i x 比j x 对上一层因素的重要性大; 若=ij a 7,认为i x 比
j
x 对上一层因素的重要性大很多;
若=ij a 9,认为
i
x 对上一层因素的重要性远远大于
j
x ;
若
=
ij a 2n ,n=1,2,3,4,元素
i
x 与
j
x 的重要性介于
=
ij a 2n − 1与
=
ij a 2n + 1之间;
用已知所有的
i x /j
x ,i ,j =1,2 ... n ,建立n 阶方阵P=n m j i x x ⨯)
/(,矩阵P 的第i 行与
第j 列元素为i x /j x
,而矩阵P 的第j 行与第i 列元素为j x /i x ,它们是互为倒数的,而对
角线元素是1。
判断矩阵
⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡
=11/51/4P 51341/31P P P 321
321P P P
0858.3max =λ 0740.0CI = 0359.6max =λ 0758.0=CI
max λ=6.2255 CI =0.0364 max λ=6.0359 CI =0.0758
max λ=15.1382 CI =0.0558 max λ=14.2080 CI =0.0102 max λ=14.3564 CI =0.0175 max λ=15.1972 CI =0.0758
max λ=14.1043 CI =0.0051 max λ=14.2017 CI =0.0099
利用加法迭代计算权重
即取判断矩阵ne 个列向量的归一化的算术平均值近似作为权重向量
具体为求向量迭代序列:
10/1...../1/1⨯⎥
⎥
⎥
⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n n e
1-'k k Pe e =
'
k
e 为
1-P k e 分量之和 k
e =
'k
e
/'k e k=1、2、.....
可以证明,迭代的n 维列向量序列{ k e
}收效,记其极限为e,且
1
21.....a ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n a a e 则权系数可取:
i i
a w =,i=1,2,...n
计算时,当 k e =1-k e ,就取
k e e =
针对本问题中爱国守法, 集体观念等各项指标对学生评价的影响大小, 我们得出一个14 x14 的成对比较矩阵, 最终求得权系数分别为:
各评价指标对学生的影响程度公式为:
=
y ∑=n
i i
i x w 1
方案层中班主任考评, 学生自评, 班级考评对各评价指标的决策权重比例如下:
则方案层中各方案对学生评价的决策权为:
=j y ∑=n
i j
j w x 1i =1,2,....,14 j =1,2,3 1y =0.3064 2y =0.3532 3y =0.2864
所以学生评价的公式为:
=
z ∑=n
j j
j y
c 1
j =1,2,3,
其中,
j
c 为方案层中班主任考评, 班级考评,学生自评对学生的打分情况, 例如对某学
生的评价中班主任考评为8 0 , 班级考评为90 , 学生自评为80 , 则该学生的综合得分为: 80⨯0.3064+90⨯0.3532+80⨯0.2864=79.212 对此模型进行一致性检验计算一致性指标CI :
CI =(n -max
λ)/(1-n )
利用Matlab 求解得到成对比较矩阵P 的最大特征值max λ=14.0037 ,CI =0.00285.
查找相应的平均随机一致性指标RI : 计算一致性比例CR :
CR = CI /RI
由此公式计算出CR =1.8129-310⨯<0.1
当CR <0.10时,认为判断矩阵的一致性是可以接受的。