无脊椎动物幼虫比较
- 格式:doc
- 大小:764.00 KB
- 文档页数:2
昆虫变态发育过程昆虫是一类具有较为特殊的发育方式的无脊椎动物,其发育过程被称为变态发育。
昆虫的变态发育包括卵、幼虫、蛹和成虫四个阶段,每个阶段都有其特定的形态和生理特征。
下面将详细介绍昆虫的变态发育过程。
首先是卵阶段。
昆虫通过产卵的方式将卵沉积在适合孵化的环境中。
卵通常具有外壳保护,并具有一定的形态特征,以适应孵化条件。
卵中储存了昆虫的营养物质和发育所需的基因信息,是昆虫生命周期的起点。
接下来是幼虫阶段。
幼虫是昆虫从卵孵化出来的第一个酝酿阶段,通常与成虫的形态差异很大。
幼虫拥有较大的头部、较小的身体和足的数量相对较多,身体外的背刺或毛刺也是其特征。
幼虫期是昆虫生命周期中的生长期,昆虫通过摄取食物和蜕皮来增长体重和体积。
幼虫期的时间长短与昆虫的种类有关,有的种类短至几天,有的种类长达数年。
然后是蛹阶段。
蛹是昆虫发育过程中的一个重要转变阶段。
昆虫在进入蛹阶段之前会停止取食,找到一个适合的环境来进行蜕皮。
蛹的外表相对固定,不再增长体积。
在蛹的内部,昆虫的身体重新组织,形态转变为成虫的形式,被称为蛹化。
蛹阶段的时间和蛹的种类有关,有的种类仅仅几天,有的种类长达数月。
最后是成虫阶段。
蛹化完成后,昆虫进入成虫阶段。
在此阶段,昆虫已经具备了成熟的生殖能力和外部特征。
成虫通常具有能够飞行的翅膀,并通过食物的摄取来满足自己的生存需要。
成虫阶段是昆虫生命周期中的繁殖期,成虫进行交配和产卵,为下一代的生命周期做准备。
成虫的寿命和种类有关,有的种类只能活几天,有的种类可以活数年。
总的来说,昆虫的变态发育过程从卵到成虫经历了幼虫和蛹两个非常特殊的阶段。
幼虫期是昆虫生长发育的重要阶段,蛹阶段是昆虫形态转变的重要阶段。
昆虫具有变态发育的特点,使得它们能够适应各种复杂的环境,并且能够通过繁殖来延续自己的种群。
对昆虫的变态发育过程的研究不仅能够帮助我们更好地理解昆虫的生物学特性,还能够为昆虫防控和昆虫的保护提供理论基础。
无脊椎动物的形态与分类浙江省绍兴县柯桥中学312030 叶建伟1.考纲考点解读1.1考纲介绍考纲主要包括:原生动物门(主要特征、代表动物、分类);多孔动物门(主要特征、代表动物);腔肠动物门(主要特征、代表动物、分类);扁形动物门(主要特征、代表动物、分类);原腔动物门(主要特征、代表动物、分类);环节动物门(主要特征、代表动物、分类);软体动物门(主要特征、代表动物、分类);节肢动物门(主要特征、分类);棘皮动物门(主要特征、代表动物、分类);半索动物的进化地位。
1.2难点释疑1.2.1几个重要的比较表几个注意点:○1刺细胞和刺丝泡:刺细胞是腔肠动物的一种防御性的细胞结构,而刺丝泡则为草履虫(一个细胞结构)的一部分。
○2各种吸虫的第一中间寄主:华枝睾吸虫—沼螺;肝片吸虫—椎实螺;姜片吸虫—扁卷螺;血吸虫—钉螺。
○3原肾管和后肾管都是起源于外胚层的。
○4储精囊、纳精囊、精巢囊:储精囊是储存自体的精子的结构;纳精囊:暂时储存异体的精子的结构,以供自体卵细胞成熟时受精之用;精巢囊:包围在精巢外的囊状结构。
○5消化道起源:无脊椎动物的消化道(从原腔动物开始)都可分为前肠、中肠、后肠三部分。
其中中肠起源于内胚层,而前肠和后肠起源于外胚层。
若有蜕皮习性则前肠和后肠同外骨骼或角质膜一并蜕除。
1.2.2棘皮动物棘皮动物是无脊椎动物的后口动物。
与其它无脊椎动物相比具有很多特殊性。
○1棘皮动物的幼虫两侧对称,成体次生性辐射对称;○2棘皮动物具有由中胚层产生的内骨骼。
它的发生和脊椎动物的内骨骼相同;○3具真体腔发展起来的水管系统是棘皮动物的运动器官,也是呼吸器官。
2.典型例题精析【例1】下列有关扁形动物的有关叙述中正确的是()A.没有循环系统,身体细胞以扩散的形式得到营养和氧气B.有一开放式的循环系统C.有一闭管式的循环系统和一个心脏D.因为有器官,故不需要循环系统【分析】扁形动物中涡虫虽然有中胚层,但没有形成真体腔,所以没有循环系统。
一、体制和分节•1、体制 :躯体结构的大体形式、对称型表现动物的进化进程和对不同环境的适应性。
–无对称型:变形虫等,部份海绵动物;–辐射对称:海绵动物、腔肠动物;–两辐对称:海葵等;–双侧对称:扁形动物~节肢动物;–次生不对称:内脏团左右不对称,腹足纲。
–次生辐射对称:棘皮动物•2、躯体分节分节:躯体分节或分部是高等无脊椎动物的重要特点之一。
–不分节:多孔动物、腔肠动物等;–原始分节(假分节):涡虫等,内部结构几乎分节,外形没分节;绦虫纲显现–同律分节:环节动物典型;–异律分节:节肢动物(躯体分部)–软体动物胚期有个别种类明显分节(如单板类);二、体壁和骨骼•原生动物:细胞膜、石灰质外壳(有孔虫);•海绵动物:皮层、中胶层、胃层;•腔肠动物:内、外胚层和中胶层,有刺细胞;•扁形动物:皮肌囊,寄生类皮层为合胞体;•原体腔动物:皮肌囊;•环节动物:皮肌囊;•软体动物:贝壳、外衣膜;•节肢动物;基膜、上皮细胞层、几丁质外骨骼;•棘皮动物:表皮和真皮组成。
•无脊椎动物的骨骼一样由外胚层分化而成,故称外骨骼;•棘皮动物的骨骼是起源于中胚层;头足类的软骨也是起源于中胚层。
•三、体腔•腔肠动物消化循环腔;•扁形动物无体腔;•原腔动物:初生体腔(原体腔);•软体动物:次生体腔包括围心腔、生殖器、排泄器内腔。
原体腔:血窦(组织间隙);•环节动物:真体腔(次生体腔);•节肢动物:混和体腔(血腔);•棘皮动物:宽广次生体腔、围脏腔、中轴窦、围血系、水管系。
•四、营养和消化•原生动物,多孔动物:细胞内消化。
•腔肠动物:不完全消化道细胞内、细胞外消化。
•扁形动物:和腔肠动物大体相同,但寄生的种类消化管有退化乃至消失。
•原体腔动物:完全消化道,无明显分化,胞外消化。
•软体动物:完全消化道,消化道发达。
•环节动物:前、中、后肠分化,口腔、咽、食道、嗉囊、砂囊、后肠。
消化腺。
•节肢动物:完全消化道,消化道发达。
•棘皮动物:完全消化道。
第十四章无脊椎动物总结第一节无脊椎动物的比较形态和比较解剖一、体制所谓体制就是身体的对称形式1、无对称:大多原生动物、腔肠动物的珊瑚虫纲、苔藓动物2、球形辐射对称身体呈圆球形,通过中心轴可分为无限或有限个相同的两半,此对称形式适应于在水中生活,上下、左右环境都一样。
如放射虫、太阳虫。
3、辐射对称通过身体和固定的轴可分为若干对称面,也适应于水中漂浮和固定生活,能分为上、下端,身体的其余部分相似。
eg:腔肠动物、原生动物中的表壳虫、钟虫、许多海绵动物。
4、两侧对称是扁形动物及以后的动物所具有,是适应于水底爬行生活的结果,由于两侧对称的出现,使动物的生理机能有所加强。
5、两辐对称界于辐射对称和两侧对称之间,也可算辐射对称,是栉水母动物门所具有的。
另外:棘皮动物为五辐对称腹足类为不对称,但它的头部和足是左右对称的,它身体的一部分器官,系统退化掉。
二、胚层1、无胚层:多孔动物无胚层。
原生动物无所谓胚层的构造。
2、两胚层:腔肠动物,在形态和机能上有分化和分工。
3、三胚层:从扁形动物开始都具三胚层。
中胚层的产生在动物进化上有重要意义,也是动物由水→陆的一个重要基础。
它有端cell法——原口动物和体腔囊法——后口动物。
三、体节1. 无体节:线形动物以前的各类动物。
扁形动物的绦虫类是假分节现象,具有真体腔的动物才有分节现象,但软体动物无分节,而棘皮动物的幼体具有分节现象,它具有三个体腔囊。
所以可能是由3体节的祖先进化而来。
2、同律分节:环节动物同律分节是指组成躯体的体节在形态和机能上大致相同,且内部器官按体节排列,同律分节较原始,但它起源于中胚层,它为高级的发展奠定了基础,在动物进化上具有重要意义。
3、异律分节:环节动物的一部分及节肢动物所具有是指组成躯体的各体节在形态和机能上均有不同,在分节中的体节出现愈合现象,在愈合中出现了体节群现象,异律分节对身体的进一步发展具有重要意义,不同的体节群具有不同的功能。
象节肢动物不仅身体分节,而且附肢也出现分节现象,且附肢与身体之间通过关节相连结。
线虫的生活史与繁殖线虫(Nematode)是一类简单而广泛分布的无脊椎动物,其生活史与繁殖方式引人关注。
本文将探讨线虫的生命周期和繁殖过程,以期对这一类生物有深入的了解。
一、线虫的生命周期线虫的生命周期可划分为四个主要阶段:卵阶段、幼虫阶段、成虫阶段和老虫阶段。
每个阶段都有其独特的特征和功能。
1. 卵阶段线虫的生命起始于卵阶段。
成虫会产下卵,这些卵在适宜的环境条件下发育。
卵通常具有保护性的外壳,能够在恶劣环境下存活一段时间。
卵直径一般在50至100微米之间,取决于线虫的种类。
2. 幼虫阶段一旦卵孵化,幼虫便会出现。
幼虫是线虫生命周期中最活跃的阶段。
它们较小,在显微镜下可以看到。
幼虫会通过蜕皮来增长体型。
线虫通常经历四到五次蜕皮,使其逐渐成长为成虫。
3. 成虫阶段当幼虫第四次或第五次蜕皮后,它们最终会发育成为成虫。
成虫的体型比幼虫更加庞大,通常有数毫米长。
它们具备性别特征,并可以进行繁殖。
成虫会寻找配偶进行交配,以产生后代。
4. 老虫阶段在达到一定寿命后,成虫会进入老化阶段,这被称为老虫阶段。
老虫会逐渐失去活力并死亡,结束线虫的生命周期。
二、线虫的繁殖方式线虫的繁殖方式主要有两种:有性繁殖和无性繁殖。
各种线虫可以采用其中一种或两种方式进行繁殖。
1. 有性繁殖有性繁殖是指两个不同性别的成虫之间进行交配,通过交换精子来产生后代。
交配可以在土壤中或其他适宜的环境中发生。
交配后,雄虫的精子会被雌虫吸收,然后受精卵发育成新的卵。
这种繁殖方式有助于基因的交流和遗传多样性。
2. 无性繁殖无性繁殖是指单个成虫通过自我复制或产卵而生成后代。
这种方式不需要两个不同性别的成虫参与。
通过无性繁殖,线虫能够快速增加数量并适应环境变化。
无性繁殖通常发生在恶劣条件下,例如资源有限或外界环境不稳定。
总结:线虫的生活史与繁殖方式是其生物学特点的重要组成部分。
通过了解线虫的生命周期和两种不同的繁殖方式,我们可以更好地理解它们如何适应各种环境,并为进一步研究和探索线虫在生态系统中的作用提供基础。
无脊椎动物总结I、原生动物门一、名词解释:·无脊椎动物:体内无脊椎,除脑外,中枢神经系统均位于消化管腹侧的一类低等动物。
·类器官:原生动物的细胞是一个能营独立生活的有机体,除了一般细胞的基本结构以外,还由细胞分化成了一些相当于高等动物体内器官的结构,以此完成各种生活机能。
这些结构称做细胞器,又称做类器官。
·包囊:是原生动物不摄取营养的阶段,周围有囊壁包围,富有抵抗不良环境的能力,是原虫的感染阶段。
·滋养体:是原生动物摄取营养的阶段,能够活动、摄取营养、生长繁殖,是寄生原虫的寄生阶段。
·植物性营养:有些生物体内具有色素体能进行光合作用制造食物,这种营养方式称为光合营养(植物性营养),也称自养。
动物性营养:有些生物靠吞食固体的食物颗粒或微小生物来补充自身的有机质,称为吞噬营养(动物性营养)。
腐生性营养:有些生物通过体表渗透吸收周围呈溶解状态的有机物,以此补充自身有机质,称为渗透营养(腐生性营养)。
·伪足:在变形虫体表任何部位形成的临时性的细胞质突起,是变形虫的运动器官,还具有摄食功能。
·变形运动:细胞中溶胶质和凝胶质的转换和流动造成了原生动物(常为肉足纲动物)的变形运动。
(由于肌动蛋白在肌球蛋白上的滑动造成)二、简述题:1、间日疟原虫的生活史:在人体内:红血细胞前期:疟原虫的子孢子随雌按蚊的唾液进入人体内,侵入肝细胞,以胞口摄取肝细胞质为营养(这时称为滋养体),成熟后通过复分裂进行裂体生殖。
即核先分裂成很多个,称为裂殖体。
裂殖体分裂形成很多裂殖子或潜隐体。
疟原虫侵入红血细胞以前,在肝细胞里发育的时期称为红血细胞前期。
裂殖子成熟后,涨破肝细胞,散发在体液和血液中,一部分裂殖子被吞噬,另一部分侵入红血细胞,开始红血细胞内期的发育。
还有一部分又侵入其他肝细胞,进入红血细胞外期。
红血细胞内期:裂殖子侵入红细胞中,逐渐长大,成为环状体。
几小时内环状体增大,变成大滋养体,由此再一步发育成裂殖体。
无脊椎动物的比较解剖一、体制体制:指动物躯体结构的基本排列形式和规律原生动物体制:不对称(尾草履虫、变形虫)、球辐对称(太阳虫、团藻虫)、辐射对称(钟虫)多孔动物体制不对称或辐射对称。
腔肠动物(及侧生、中生)基本上为辐射对称:通过身体中央轴有许多切面可以把身体分成相等的部分;海葵的身体已由辐射对称过渡到两辐对称:海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面,称为两辐对称。
从扁形动物开始,生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称。
仅有两个特例:软体腹足纲动物由于胚胎发育发生了扭转,因此成体不对称。
棘皮动物由早期发育的羽腕幼虫及短腕幼虫(两侧对称),适应不太运动的生活方式产生了次生性的辐射对称的成体。
由上可知,体制是从无对称-球形对称-两辐对称-两侧对称的发展路线。
无脊椎动物的体制分为:球形辐射对称,辐射对称,两侧对称。
这些多样化的形状表示出动物的进化过程和多不同环境的适应性。
球形辐射对称适应于悬浮在水中;辐射对称适应于固着在水中;两侧对称使动物身体明显地分为前后、背腹和左右,由不定向运动变为定向运动,是动物从水中到陆生的重要条件之一,两侧对称适应于爬行生活。
二、胚层与体腔1.胚层指多细胞动物胚胎发育时期由于细胞分化而形成的特殊区域。
多细胞动物早期的胚胎发育:受精→卵裂→囊胚→原肠胚→中胚层和体腔的形成→胚层分化•海绵动物没有明确的胚层分化,体壁由两层细胞构成。
由于胚胎发育的“逆转现象”,故不能称其为外胚层和内胚层(只称皮层和胃层)。
•腔肠动物两个胚层(外胚层、内胚层)中胶层不是细胞结构。
•扁形动物以后各类群由于出现了中胚层,故都称为三胚层动物。
2. 体腔指动物体消化道与体壁之间的腔隙。
•扁形动物及以前各类群没有体腔•原体腔(线形动物)动物出现原体腔原体腔指胚胎发育的囊胚腔演化形成的体壁与脏壁之间的腔隙。
原体腔(假体腔、初生体腔)特点:(1)只有体壁中胚层,没有肠壁中胚层和体腔膜。
无脊椎动物的形态结构与生理一、体制指动物躯体结构的排列形式和规律。
一般分为有规律可寻(对称)无规律可寻(不对称)•原生动物不对称(尾草履虫、变形虫)球辅对称(太阳虫、团藻虫)辐射对称(钟虫)球辐对称:通过身体中心点可分成许多相同的两半。
•海绵动物不对称或辐射对称•腔肠动物辐射对称或两辐对称辐射对称:指通过身体的中央轴有许多个切面可以将身体分为左右相等的两部分(对称面)。
主要适应附着、漂浮、及不太运动的生活方式。
两辐对称;通过动物体轴仅可分成两个对称面。
(如海葵)•扁形动物两侧对称;通过体轴只有一个对称面。
两侧对称的重要意义;(1)使动物身体明显地分为前后、背腹和左右,由不定向运动变为定向运动。
(2)使动物由水中固着或漂浮生活向水底爬行生活及陆地爬行奠定了基础。
•扁形动物以后的各类群全部是两侧对称。
仅有两个特例;1. 软体动物腹足纲;由于胚胎发育发生了扭转,因此成体不对称。
2. 棘皮动物早期发育的羽腕幼虫及短腕幼虫(两侧对称),成体由于适应不太运动的生活方式产生了次生性的辐射对称。
二、胚层与体腔1.胚层指多细胞动物胚胎发育时期由于细胞分化而形成的特殊区域。
多细胞动物早期的胚胎发育;受精→卵裂→囊胚→原肠胚→中胚层和体腔的形成→胚层分化•海绵动物没有明确的胚层分化,体壁由两层细胞构成。
由于胚胎发育的“逆转现象”,故不能称其为外胚层和内胚层(只称皮层和胃层)。
•腔肠动物两个胚层(外胚层、内胚层)中胶层不是细胞结构。
•扁形动物以后各类群由于出现了中胚层,故都称为三胚层动物。
2. 体腔指动物体消化道与体壁之间的腔隙。
•扁形动物及以前各类群没有体腔•原体腔(线形动物)动物出现原体腔原体腔指胚胎发育的囊胚腔演化形成的体壁与脏壁之间的腔隙。
原体腔(假体腔、初生体腔)特点:(1)只有体壁中胚层,没有肠壁中胚层和体腔膜。
(2)腔内充满体腔液。
(3)体腔对外没有孔道。
•环节动物具有真体腔(次生体腔)蛭类除外。
真体腔指中胚层的脏壁与体壁分离后,形成的动物内脏和体壁之间的腔隙。