相速度与群速度
- 格式:docx
- 大小:33.97 KB
- 文档页数:4
§6-4 光的相速度和群速度折射率是光在真空中和介质中传播速度的比值,即v c n /=,通常可以通过测定光线方向的改变并应用折射定律()21sin /sin i i n =来求它,但原则上也可分别实测c 和v 来求它们的比值,用近代实验室方法,不难以任何介质中的光速进行精确的测定,例如水的折射率为,用这两种方法测得的结果是符合的,但对二硫化碳,用光线方向的改变的折射法测得的折射率为,而1885年迈克耳孙用实测光速求得的比值则为,其间差别很大,这绝不是由实验误差所造成的,瑞利找到了这种差别的原因,他对光速概念的复杂性进行了说明,从而引出了相速度和群速度的概念。
按照波动理论,这种通常的光速测定法相当于测定由下列方程所决定的波速的数值: ⎪⎭⎫ ⎝⎛-=v r t A E ωcos 不难看出,这里v 所代表的是单色平面波的一定的位相向前移动的速度,因为位相不变的条件为 常量=-vr t 由此得到 01=-dr vdt 或 dt dr v = (6-1) 所以这个速度称为位相速度(简称相速),这速度的量值可用波长和频率来计算。
波的表达式部是t 和r 的函数,可以写成下列形式:()kr t A E -=ωcos式中v πω2= 和λπ/2=k 都是不随 t 和 r 而改变的量,故位相不变的条件为kr t -ω=常量0=-kdr dt ω由此得或 λωv kv dt dr === (6-2) (6-2)式表示的位相速度乃是严格的单色波地(ω有单一的确定值)所特有的一种速度,单色波以t 和r 的余弦函数表达,ω为常量,这种严格的单色波的空间延续和时间延续都是无穷无尽的余弦(或正弦)波,但是这种波仅是理想的极限情况,实际所到的永远是形式不同的脉动,这种脉动仅在空间某一有限范围内、在一定的时间间隔内发生,在时间和空间上都是有起点和终点的,任何形式的脉动都可看成是由无限多个不同频率、不同振幅的单色正弦波或余弦波叠加而成的,即可将任何脉动写成傅里叶级数或傅里叶积分的形式,在无色散介质中所有这些组成脉动的单色平面波都以同一相速度传播,那么该脉动在传播过程中将永远保持形状不变,整个脉动也永远以这一速度向前传播,但是除真空以外,任何介质通常都具有色散的特征,就是说,各个单色平面波各以不同的相速传播,其大小随频率而变,所以由它们叠加而成的脉动在传播过程中将不断改变其形状,在这种情况下,关于脉动的传播速度问题就变得比较复杂了,观察种脉动时,可以先认定它上面的某一特殊点,例如振幅最在大的一点,而把这一点在空间的传播速度看作是代表整个脉动的传播速度,但是由于脉动形状的改变,所选定的这一特殊点在脉动范围内也将不断改变其位置,因而该点的传播速度和任何一个作为组成部分的单针平面波的相速都将有所不同,按照瑞利的说法,这脉动称为波群,因而脉动的传播速度称为群速度,简称群速,现在仅就一个简化的例子来讨论两种速度的关系。
相速度和群速度
在现代物理学中,相速度和群速度是常见的概念。
它们都是由抽象概念所构建出来的,二者之间又存在着某种关联。
下面就来探讨一下相速度和群速度之间的关系。
首先,相速度是指一个特定物质(例如光或电磁波)在某一物理介质中传播时的速度。
这一速度完全取决于传播介质的特性,例如厚度、密度或熵等,在不同的介质中面对的相速度也不尽相同。
其次,群速度指的是一组基本粒子,比如电子或原子,在特定的物理环境中移动时的绝对速度。
由于基本粒子可以在不同的介质中传播,所以其群速度也会因介质而有所不同。
相速度和群速度之间的关系可以概括为:群速度受到相速度的约束,也就是说群速度不能超过相速度的最大速度限制。
这表明,群速度和相速度的最大值存在一定的关联,相速度越大,群速度就越大。
这是因为群速度是基于相速度的,并且会受到相速度的限制,而物理介质特性也会影响群速度的最大值以及物理介质中物体的移动方式。
由此可见,相速度和群速度之间有一定的联系,它们都成为现代物理学中不可分割的概念。
通过循环反馈机制,传播介质和物体的特性可以共同影响相速度与群速度的值,这也是它们的实际应用。
比如在电磁波传播中,物体的大小以及如何介入传输环境决定了相速度的取值;再比如激光传输,由于它具有极大的进度传播能力,有助于群速度取得更高的值。
同样,这些概念也可用来解释宇宙早期的物理现象,如宇宙加速扩展等。
从上面可以看出,相速度与群速度二者之间有着某种关联,不仅可以用来描述宇宙大爆炸中空间的变化,还能帮助我们理解一些比较复杂的物理现象。
因此,对这些概念的理解和研究对于物理学的发展具有重要的意义。
相速度和群速度:你真正了解它们吗?
我们都知道物体在空间中移动是有速度的,而我们可以将速
度分为许多种。
其中,最常见的包括如下三种:
1. 位移速度:物体在空间中移动的距离与时间的比值。
2. 平均速度:物体在一个时间段内移动的总距离与总时间的
比值。
3. 瞬时速度:物体某个时间点的移动速度。
其中,位移速度和平均速度都是我们平常接触比较多的速度。
但是,当涉及到波动传播时,我们就需要了解另外两种速度:相速度
和群速度。
相速度:
相速度是指相对参考点的波峰或者波谷的传播速度。
简单来说,就是波的“前沿”传播速度,它的大小只和波的频率和介质的性
质有关。
相速度通常又称作局部速度,因为它反映了波在局部的传播
特性。
群速度:
群速度是指相对参考点的波包的传播速度。
波包是由许多不
同频率的小波组成的,而群速度表示的是这些小波传播形成的波包的
移动速度。
换句话说,群速度是指波包整体传播的速度,它的大小和波包形状、波长、频率都有关系。
相速度和群速度有区别,也有联系。
相速度与频率和介质的性质有关,群速度与波包的构成和形状有关,但是在某些情况下,群速度和相速度是相等的。
当波包的形状对称、波长分布较为连续时,群速度与相速度就变得相等。
在实际应用中,我们需要根据具体的情况来选择使用相速度还是群速度。
在需要研究波的局部特性时,我们可以使用相速度;而当我们需要研究波包整体的移动时,我们需要使用群速度。
同时,群速度还有着广泛的应用,如电磁波通讯等。
相速度和群速度的关系公式
有关相速度和群速度之间的关系,科学家和物理学家对此讨论颇深,通过不断实验分析发现,它们之间有一定规律性可循。
科学家指出,相速度和群速度之间的关系可用下式表示:V=V1+V2+V3+…+Vn,其中V为群速度,V1~Vn为相速度。
即所谓的群速度就是由几个或几十个相速度构成,受到每个相速度的分量力的共同作用,形成的总体运动方向上的总速度。
因此,当每个相速度方向一致时,群速度相应提高;而各相速度方向相反时,群速度就会降低。
换句话说,相速度和群速度之间的关系就是算法型的,它们之间的关系由相互关联的定律来描述。
只有当知道每个相速度多少以及它们的方向,才能计算出群速度具体的数值。
并且,凡是处在同一个群体内的任何个体,其群体的群速度,都受到这些个体的总合影响而形成。
因此,我们可以得出结论,相速度和群速度之间的关系就是
V=V1+V2+V3+…+Vn,群速度受到个体相速度的共同影响而形成。
相速度与群速度
振动状态在空间的传播速度称为波速,又称相速度。
如沿x轴正方向传播的平面简谐波,其表达式为
式中(ωt-kx)称为波相,当(ωt-kx)一定时,则ξ值一定。
当t增大时,x必须增大,才能保持(ωt-kx)不变。
这意味着用(ωt-kx)描述的振动状态随着时间的推移向x的正方向传播。
相速度即波相传播的速度,等于x对t的变化率,令
ωt-kx=常量
将上式两边微分,经整理可得
(1)
u即所求相速度。
这里ω=2πv,,代入则得
此即大家熟悉的相速度的公式。
从根本上讲,相速度的大小取决于媒质的性质。
弹性波由弹性媒质的力学性质决定,电磁波由媒质的折射率决定。
实验和理论证明,相速度的大小还与波的频率有关。
光的色散现象就是波速与频率有关的明显例证。
通常把相速度与频率无关的媒质称为无色散媒质;把相速度随频率而变的媒质称为色散媒质。
在无色散媒质中,只要用相速度描述波的传播即可,但是在色散媒质中,要描述任意一种波(如图1所示的非简谐波)的传播只有相速度就不够了,需要引入群速度的概念。
p/dλ≠0,vg≠vp),并且在正常色散区域
(dvp/dλ>0,dn/d λ<0),群速度小于相速度(vg<vp);在反常色散区域(dvp/dλ<0,dn/d λ>0),群速度则大于相速度(vg>vp)。
只有在无色散介质或真空中(dvp/dλ=0,dn/d λ=0),群速度才等于相速度(vg=vp)。
根据付里叶分析,任何一个复杂的波,都可以分解成许多不同频率成分的简谐波的叠加。
在色散媒质中,不同频率的简谐波传播速度不同,那么这许多简谐波合成的波是以什么速度传播呢?
为了方便,以两个频率相近的等振幅简谐波的合成波的传播为例说明群速度
的概念。
设
合成波为
(2)式(2)中或,或k2,所以
变化缓慢,如图中虚线所示的包络线;而表示图中一个个小的波形。
令,,,,则式(2)可改写为
在波传播过程中,一个个小的波形在向前传播的同时,整个波形即包络也在向前移动,二者移动速度可如下求得:
令=常量
等式两边微分,可求得小波形移动的速度为
(3)
同样可求得包络移动的速度或称波群移动的速度为
一般表示为:
(4)
U g即群速度。
在无色散媒质中,相速度与频率无关,由 uk可求得
=u
在这种情况下,不同频率的简谐波以相同的波速传播,整个波群也以相同的速度传播,并保持波形不变。
在色散媒质中,相速度与频率有关。
在ω=uk中u是频率的函数,这样
又,所以,代入上式则有
当已知u与λ的关系时,即可求得U g。
微观粒子也具有波动性,德布罗意把微观粒子的波粒二象性统一表示在由他提出的德布罗意公式中微观粒子也具有波动性,德布罗意把微观粒子的波粒二象性统一表示在由他提出的德布罗意公式中
式中p为粒子动量,h为普朗克常数,λ为表示粒子波动性的波长,υ 是粒子运动速度。
粒子具有能量,是能量的携带者,所以粒子运动速度υ 是德布罗意波的
群速度,而德布罗意波的相速度为
与υ 不同。
将德布罗意波长λ代入相速度公式,则
不难证明,u
相
又粒子能量,代入上式则有
式中c为真空中光速。
光速是一切物质运动速度的极限,所以υ<c,因而有u
>c,
相
即相速度大于光速。
然而这与相对论并不矛盾。
相对论是指物质运动速度或信号传播速度不能大于光速;而相速度既不表征信号速度,也不表征能量传播速度,而是如前所述的相位的传播速度。
群速度与相速度:
由波动方程所确定的光波速度v=v/n,反映了光波波面相位的传播速度。
由于色散的存在,在同一介质中传播的不同频率的光波具有不同的相速度,也就是说,同一光信号所包含的不同光谱成分在色散介质中不能同步传播。
这样就出现一个问题,当我们在距离光源较远的空间某点观察来自该点发出的光信号时,在同一时刻接收到的不同频率的光信号实际是光源在不同时刻发出的。
现假设某个沿z
轴方向传播的光信号由两种频率成分的单色平面波组成,两光波的振幅和振动方向相同,其在空间某点(t时刻)的光振动可分别振动为:
若取△ω=(ω2-ω1)/2,△k=(k2-k1)/2,
ω0=(ω2+ω1)/2,k0=(k2+k1)/2,分别表示两单色光波的圆频率、波数差、平均圆频率和平均波数,.
可见合振动是一个受△ω低频调制且平均频率为ω0的复色平面波。
随着该平面波以相速度ω0/ k0向前传播,调制波也以△ω/△k的速度向前优越传播。
该速度反映了光波能量度的传播速度,故称之为光波在色散介质中的群速度。
并表示为vg。
为示区别,常常又将相速度用vP表示。
显然,当频差△ω很小时,群速度实际上就是时间圆频率对空间圆频率(波数)的导数.
由(1)式与(2)式可以看出:在色散介质中,群速度不等于相速度(dv。