复变函数积分的概念 (2)
- 格式:ppt
- 大小:3.06 MB
- 文档页数:75
复变函数与积分变换知识点复变函数是数学中极具特色和深刻内涵的一个分支,其理论和应用不仅涉及到数学领域,也伸展至物理、工程、计算机等多个领域。
而积分变换则是复变函数中的一项重要技术,可应用于信号处理、控制系统等领域。
本文将介绍关于复变函数和积分变换的知识点。
1. 复数及其运算复数是一种拓展了实数的数学概念,其具有实部和虚部,记作z = x + yi(其中 x 和 y 均为实数,i 为虚数单位,满足 i² = -1)。
复数的加、减、乘法等运算法则与实数有所区别,例如:(1)加法:若 z = x + yi,w = u + vi,则 z + w = (x + u) + (y + v)i。
(2)减法:若 z = x + yi,w = u + vi,则 z - w = (x - u) + (y - v)i。
(3)乘法:若 z = x + yi,w = u + vi,则 z × w = (xu - yv) + (y u + x v)i。
(4)除法:若 z = x + yi,w = u + vi,则 z ÷ w = (xu + yv)/(u²+ v²) + (y u - x v)/(u² + v²)i。
2. 复变函数的概念复变函数是自变量为复数、因变量为复数的函数。
设 z = x + yi,w = u + vi,则复变函数 f(z) 的定义为: f(z) = u(x,y) + v(x,y)i (其中,u(x,y) 和 v(x,y) 均为实函数)。
复变函数的导数、积分、解析函数等概念与实函数也有所不同,例如:(1)导数:复变函数 f(z) 在点 z0 的导数定义为:f'(z0) = lim (f(z) - f(z0))/(z - z0) (其中,极限是沿着复平面中有向直线逼近 z0 时的极限)(2)积分:复变函数沿着简单曲线γ 的积分(记作∮γ f(z) dz)定义为:∮γ f(z) dz = ∫ab f(γ(t))γ'(t) dt (其中,γ(t) 为参数方程,γ'(t) 为γ(t) 的导数)(3)解析函数:对于复平面上的一个区域 D,若在 D 内的每一点都有导数,则称 f(z) 在 D 内为解析函数。
第二章 复变函数的积分在微积分学中,微分法与积分法是研究函数性质的重要方法。
同样,在复变函数中,积分法也跟微分法一样是研究复变函数性质十分重要的方法和解决实际问题的有力工具。
§2.1 复变函数积分的概念一、复变函数的积分设C 为平面上给定的一条光滑(或按段光滑)曲线。
若选定C 的两个可能方向中的一个作为正方向,那么就把C 理解为带有方向的曲线,称为有向曲线。
设曲线C 的两个端点为A 与B ,如果从A 到B 的方向作为C 的正方向,那么从B 到A 的方向就是C 的负方向,并把它记作-C 。
在今后的讨论中,常把两个端点中的一个作为起点,另一个作为终点。
除特殊声明外,正方向总是指从起点到终点的方向。
关于简单闭曲线的正方向是指当曲线上的点P 顺此方向沿该曲线前进时,临近P 点的曲线内部始终位于P 点的左方。
与之相反的方向就是曲线的负方向。
若光滑或逐段光滑的曲线C 的参数方程为)()()(t iy t x t z z +==,)(βα≤≤t (2.1) t 为实参数,则规定t 增加的方向为正方向,即由)(αz a =到)(βz b =的方向为正方向。
定义2.1 设函数)(z f w =定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑有向曲线,把曲线C 任意分成n 个弧段,设分点为:B z z z z z A n n ==-,...,,,1210 在每个小弧段上任取一点k ζ(图3.1),作和∑=∆=nk k k n z f S 1)(ζ其中1--=∆k k k z z z ,记=∆k s 的长度,}Δ{max 1k nk s δ≤≤=。
当n 无限增加,且δ趋于零时,如果不论对C 的分法及k ζ的取法如何,当n S 有唯一极限,那么称这个极限值为函数)(z f 沿曲线C 的积分,记作∑⎰=→=nk k kδCz ζf dz z f 1Δ)(lim )( (2.2)图2.1C 称为积分路径,⎰Cdz z f )(表示沿C 的正方向的积分,⎰-C dz z f )(表示沿C的负方向的积分。
复变函数与积分变换知识点一、复变函数的基本概念与性质:1. 复数及复平面:复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中i为虚数单位。
复平面是将复数与二维平面上的点一一对应的方法表示复数。
2. 复变函数的定义:复变函数是将复数域上的数映射到复数域上的函数。
通常表示为f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)分别为实部函数和虚部函数。
3. 复变函数的导数与解析函数:对于复变函数f(z)=u(x,y)+iv(x,y),若存在导数f'(z),则称f(z)在z处可导。
若f'(z)在复平面上处处可导,则称f(z)为解析函数。
4.柯西-黎曼方程:柯西-黎曼方程是解析函数的充分必要条件,即u(x,y)和v(x,y)满足柯西-黎曼方程的偏微分方程组。
5.全纯函数与亚纯函数:全纯函数是指在区域上处处可导的函数,亚纯函数是指在其定义域上除有限个孤立点外处处为全纯函数。
二、积分变换的基本概念与性质:1.积分变换的定义:积分变换是将函数f(t)变换为函数F(s)的方法,表示为F(s)=L[f(t)],其中L为积分变换算符。
常见的积分变换有拉普拉斯变换和傅里叶变换等。
2. 拉普拉斯变换:拉普拉斯变换是将函数f(t)变换为复变函数F(s)的变换方法,定义为F(s)=∫[0,∞)e^(-st)f(t)dt。
拉普拉斯变换有一系列性质,如线性性、平移性、尺度变换等。
3. 傅里叶变换:傅里叶变换是将函数f(t)变换为复变函数F(ω)的变换方法,定义为F(ω)=∫(-∞,+∞)e^(-iωt)f(t)dt。
傅里叶变换也具有一系列性质,如线性性、平移性、尺度变换等。
4. 反变换:反变换是将复变函数F(s)逆变换为函数f(t)的方法。
对于拉普拉斯变换,反变换为f(t)=1/2πi∫(σ-i∞,σ+i∞)F(s)e^(st)ds;对于傅里叶变换,反变换为f(t)=1/2π∫(-∞,+∞)F(ω)e^(iωt)dω。