1-2复变函数基本概念
- 格式:pdf
- 大小:219.28 KB
- 文档页数:3
复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
数学复变函数的基本概念一、引言数学复变函数是复数域上的函数,它在数学和物理等领域有着广泛的应用。
本文将介绍数学复变函数的基本概念、性质和应用。
二、复数与复平面复数是实数的扩充,可以写成形式为a+bi的形式,其中a和b为实数,i为虚数单位。
复平面是由实轴和虚轴组成的平面,通过将复数表示为复平面上的点,实现了运算与几何之间的联系。
三、复变函数的定义复变函数是指定义在复数域上的函数,形如f(z) = u(z) + iv(z),其中u(z)和v(z)均为实数函数。
复变函数既可以描述平面上的点,也可以描述平面上的区域。
四、复变函数的解析性复变函数的解析性是指函数在某个区域内可导,并且在该区域内的导数处处存在。
解析函数具有许多重要的性质,例如:解析函数的导数也是解析函数。
五、复变函数的调和性复平面上的实部与虚部分别满足拉普拉斯方程,即u_xx+u_yy=0和v_xx+v_yy=0,则复变函数为调和函数。
具有调和性的函数在物理学的电势和流体力学等领域有着广泛的应用。
六、复变函数的整函数如果一个函数在整个复平面上都解析,则该函数称为整函数。
整函数不仅在有限区域内解析,而且在无穷远点也解析。
七、复变函数的级数展开利用级数展开可以将复变函数展开为无穷项的和。
泰勒级数和洛朗级数是常用的级数展开形式,在分析和计算上有着重要的应用。
八、复变函数的留数定理复变函数的留数定理是计算复变函数的积分的重要工具。
根据留数定理,函数在有限奇点上的留数等于该函数在该奇点处的展开式中-1次幂的系数。
九、复变函数的应用复变函数在科学和工程问题中有着广泛的应用。
例如:在电工中可以利用复变函数来计算交流电路中的各种参数;在流体力学中可以利用复变函数描述流体的速度场等。
结论数学复变函数作为一门基础学科,在各个领域都有着重要的地位和应用价值。
通过对其基本概念、性质和应用的学习,可以更好地理解和应用复变函数。
定义邻域-定义1、1点的邻域指:聚点、内点、孤立点-定义1、2给定点集,及点。
称为的聚点或极限点指:的任一邻域内都有的无穷多个点。
若,但非的聚点,则称为的孤立点; 若,又非的聚点,则称为的外点。
若有一邻域全含于内,则称为的内点。
若的任一邻域内,同时有属于与不属于的点,则称为的边界点。
边界点的全体称为的边界。
记作。
开集、闭集-定义1、3若点集的每个聚点都属于,则称为闭集;若点集的点皆为内点,则称为开集。
有界性-定义1、4点集称为有界集,若使有。
区域-定义1、5非空开集称为区域,若就是连通的,即:中任意两点可用全在中的折线连接。
闭域-定义1、6区域加上它的边界称为闭域,记为:。
约当曲线-定义1、7设就是实变数的两个实函数,在闭区间上连续,则由方程所决定的点集,称为复平面上的一条连续曲线。
上式称为的参数方程分别称为的起点与终点。
单连通区域-定义1、8设为复平面上的区域,若在内无论怎样划简单闭曲线,其内部仍全含于,则称为单连通区域;非单连通区域称为多连通区域。
复变函数-定义1、9设为一复数集,若对内每一复数,有唯一确定的复数与之对应,则称在上确定了一个单值函数。
若对内每一复数,有几个或无穷多个与之对应,则称在上确定了一个多值函数。
复变函数的极限-定义1、10设,为的聚点。
若存在一复数,使,, 只要,就有则称沿于有极限,并记为。
连续函数-定义1、11设子点集上有定义,为的聚点,且。
若即对任给的,,只要,,就有则称沿于连续。
复球面复平面加上点后称为扩充复平面,与它对应的就就是整个球面,称为复球面。
无穷远点考虑平面上一个以原点为心的圆周,在球面上对应的也就是一个圆周。
当圆周的半径越大时,圆周就越趋北极。
北极可以瞧成就是与平面上的一个模为无穷大的假想点相对应,这个假想点称为无穷远点,并记为。
主要定理约当定理-定理1、1任一简单闭曲线将平面唯一地划分成三个点集且满足(1)彼此不交(2)就是一个有界区域(称为的内部)(3)就是一个无界区域(称为的外部)(4)若简单折线的两个端点分属,则必与有交点。
复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。
本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。
1. 复数与复变函数。
复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。
复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。
复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。
2. 复变函数的导数与解析函数。
与实变函数类似,复变函数也有导数的概念,称为复导数。
如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。
解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。
3. 共轭与调和函数。
对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。
对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。
4. 柯西-黎曼方程与全纯函数。
柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。
柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。
满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。
5. 柯西积分定理与留数定理。
柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。
留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。
6. 应用领域。
复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。
复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。
它在物理、工程、经济等领域具有广泛的应用。
复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。
在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。
一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。
复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。
复数的加法、减法、乘法和除法规则与实数的运算规则相似。
二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。
复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。
复函数在复平面上的图像通常是曲线、点或者区域。
三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。
2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。
3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。
4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。
5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。
四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。
2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。
3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。
4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。
5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。
复变函数与积分变换知识点一、复变函数的基本概念与性质:1. 复数及复平面:复数是由实数部分和虚数部分组成的数,通常表示为a+bi,其中i为虚数单位。
复平面是将复数与二维平面上的点一一对应的方法表示复数。
2. 复变函数的定义:复变函数是将复数域上的数映射到复数域上的函数。
通常表示为f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)分别为实部函数和虚部函数。
3. 复变函数的导数与解析函数:对于复变函数f(z)=u(x,y)+iv(x,y),若存在导数f'(z),则称f(z)在z处可导。
若f'(z)在复平面上处处可导,则称f(z)为解析函数。
4.柯西-黎曼方程:柯西-黎曼方程是解析函数的充分必要条件,即u(x,y)和v(x,y)满足柯西-黎曼方程的偏微分方程组。
5.全纯函数与亚纯函数:全纯函数是指在区域上处处可导的函数,亚纯函数是指在其定义域上除有限个孤立点外处处为全纯函数。
二、积分变换的基本概念与性质:1.积分变换的定义:积分变换是将函数f(t)变换为函数F(s)的方法,表示为F(s)=L[f(t)],其中L为积分变换算符。
常见的积分变换有拉普拉斯变换和傅里叶变换等。
2. 拉普拉斯变换:拉普拉斯变换是将函数f(t)变换为复变函数F(s)的变换方法,定义为F(s)=∫[0,∞)e^(-st)f(t)dt。
拉普拉斯变换有一系列性质,如线性性、平移性、尺度变换等。
3. 傅里叶变换:傅里叶变换是将函数f(t)变换为复变函数F(ω)的变换方法,定义为F(ω)=∫(-∞,+∞)e^(-iωt)f(t)dt。
傅里叶变换也具有一系列性质,如线性性、平移性、尺度变换等。
4. 反变换:反变换是将复变函数F(s)逆变换为函数f(t)的方法。
对于拉普拉斯变换,反变换为f(t)=1/2πi∫(σ-i∞,σ+i∞)F(s)e^(st)ds;对于傅里叶变换,反变换为f(t)=1/2π∫(-∞,+∞)F(ω)e^(iωt)dω。
复变函数的基本概念和性质复变函数是数学中一个极其重要的分支,它涵盖了复平面上的函数及其性质,是许多数学分支的基础,也是物理、工程、经济学等领域中许多问题的核心。
那么什么是复变函数呢?本文将从基本概念、阐述复变函数的性质、复变函数的应用等方面进行分析,为读者揭示复变函数的奥秘。
一、基本概念1. 复数复数是由实数和虚数构成的,形如a+bi(其中a和b都是实数,i是虚数单位,有i²=-1)。
在复平面上,复数a+bi对应于平面上的点(x,y),其中x=a,y=b。
实部a对应于x轴上的一个数,虚部b对应于y轴上的一个数,点(x,y)则对应于区域R²上的一个点。
2. 复变函数复变函数是定义在复数域上的函数。
它的自变量可以为复数,也可以为实数,但它的取值必须是复数。
从定义和性质上看,复变函数和实变函数有很大的区别,前者更具有复杂性和丰富性。
3. 解析函数解析函数是指在某个区域T内,函数f(z)对于其内部的所有复数点z都是可导的函数。
当f(z)在T内处处可导时,称f(z)是T内的解析函数,也称为全纯函数。
如果f(z)在实轴上处处满足某些条件,并在实轴的两侧有相同的极限,那么f(x)在实轴上的延拓可称为f(z)的柯西主值,这种函数称为正则函数。
二、性质1. 洛朗级数洛朗级数是复变函数研究中一个重要的概念。
它可以将一个复变函数在一个圆环区域内展开成一系列级数求和的形式,这个级数是由函数在那个区域内的任意一点展开所得。
洛朗级数包含有证明复变函数在那个区域内无极点、无本性奇点、无孤立奇点的必要条件等信息。
2. 留数定理留数定理也是复变函数研究中一个重要的定理。
留数是一个数学概念,它对于复变函数在某些奇点的积分有着重要的作用。
留数定理是用来计算一个复变函数在一个区域内沿着一个封闭曲线的积分,当函数在曲线上有奇点的时候,可以利用留数定理来计算出积分的值,进而得到很多省时省力又具有重要意义的结论。
3. 最大模定理最大模定理是指在一个区域内解析函数的模(或幅值)必须在边缘处取到最大值或最小值。
复变函数的基本概念与性质复变函数是数学中一个重要的分支,它涉及复数域上的函数理论和分析。
本文将介绍复变函数的基本概念和性质,包括复数、复变函数的定义和解析性、调和函数、全纯函数等。
一、复数的基本概念复数是由实数和虚数构成的数,一般形式为z=a+bi,其中a和b分别为实数部分和虚数部分,i是虚数单位,满足i²=-1。
复数除了具有实数的加法和乘法运算,还有复数的共轭运算、模运算和幅角运算等。
二、复变函数的定义和解析性复变函数从复数域到复数域的映射,可以表示为f(z)=u(x,y)+iv(x,y),其中z=x+iy。
其中,u(x,y)和v(x,y)分别为实部和虚部函数。
复变函数的解析性是指函数在其定义域内可导,用柯西-黎曼条件表述,即函数的实部和虚部满足柯西-黎曼方程。
三、调和函数调和函数是一种特殊的复变函数,其实部和虚部函数均具有拉普拉斯方程,即Δu=0和Δv=0。
调和函数在物理学和工程学领域有广泛的应用,如电势问题、热传导问题等。
四、全纯函数全纯函数是复变函数中的重要概念,也称为解析函数。
全纯函数在其定义域内可导,并且导数也是全纯函数。
全纯函数具有很多良好的性质,如可分部积、洛朗级数展开、辐角原理等。
五、复变函数的性质1. 极限性质:复变函数的极限与实变函数类似,但多了收缩定理和全纯函数的唯一性。
2. 连续性质:全纯函数在其定义域内连续。
3. 导数性质:全纯函数的导数也是全纯函数,并且满足导数的性质。
4. 积分性质:沿简单闭曲线的积分与函数在该曲线内的积分无关,这是复变函数中的柯西积分定理。
综上所述,复变函数是由复数域到复数域的映射,具有许多独特的性质。
它为解决物理学、工程学等领域的问题提供了重要的数学工具。
希望本文可以帮助读者理解复变函数的基本概念和性质,并进一步探索其中的数学奥秘。
§1.2 复数函数
授课要点:区域的概念,闭区域,复变函数的极限,连续的概念。
难点:极限概念及其与实变函数中相关概念的区别
1、 邻域:以0z 为圆心,以任意小ε半径作圆,则圆内所有点的集合称为0z 的邻域。
注意,这里说的是“圆内”,“圆边”上的不算。
内点、外点和边界点:
设有一个点集E ,若0z 及其领域均属于点集E ,则称0z 为E 的“内”
,若0z 及其邻域均不属于E ,则0z 为外点,若0z 的每个领域内,既有属于E 的点,也有不属于E 的点,则称0z 为E 的边界点,边界点的全体称为E 的边界线。
区域:(1)全由内点组成 (2)具有连通性,即点集中任意两点都可以用一条折线连起来,且折线上的点全都
属于该点集。
闭区域:区域B 及其边界线所组成的点集称为闭区域,用B 表示。
练习: 下面几个图所示的,哪个是区域?
答:(a),(b)皆为区域,(a)为单通区域,(b)为复连通区域,(c)不是区域.
例子: ||z r <代表一个圆内区域
||z r <代表一个圆外区域
12||r z r <<代表一个圆环区域
将上面三个式中的 < 换成 ≤, > 换成 ≥,则变成闭区域。
注意:区域的边界并不属于区域,闭区域和区域是两个概念
2、复变函数
定义:形式和实变函数一样,()w f z =
复变函数的定义域不再限于实轴上某个区间,而是复平面上的某个区域. 函数的值域也可以对应复平面上的某个区域(也可能不是):
变量:z x iy =+
函数:()(,)(,,)w f z u x y iv x y ==+
复变函数的实部和虚部都是一个二元函数(实函数),关于二元实变函数的很多理论都可用于复变函数中(形式可能有所变化)
极限:
设函数f (z )在0z 点的领域内有定义,如果存在复数A ,对于任意的0ε>,总能找到一个()0δε>,使得:当0||z z δ-<时,恒有|()|f z A ε-<,则称0z z →时f (z )的极限为A ,即
0lim ()z z f z A →=
对于非数学专业的学生而言,这段话略显晦涩,一个不太严格但直观的表述是:
当z 以任意方式逼近0z ,()f z 都逼近A
不会因为z 逼近方式之不同,而导致()f z 逼近不同的值,或者发散
举例:(1)222()()xy f z i x y x y
=+++ 222(,)xy u x y x y =+ 2222
lim 22(,)010
kx k u x y x x ky k y ==→++→ 结果将因k 之不同而不同,故极限不存在.
(2)实变函数例子1()f x x
= 0lim ()x f x +→=+∞, lim ()x x
f x -→=-∞ 连续:0
0lim ()()z z f z A f z →== 因为()(,)(,)f z u x y iv x y =+,所以,复变函数的连续问题,可以归结为两个二元实变函数的连续问题。
几个简单的复变函数
(1) 多项式:2012n
n a a z a z a z +++ (其中n 为整数) (2) 有理分式:20122012n
n n n a a z a z a z b b z b z b z
++++++
(3) 根式 (4) 指数函数 (cos sin )z x iy x e e e y i y +==+
三角函数:sin 2iz iz e e z i --=,cos 2
iz iz
e e z -+= 双曲函数:2z z e e shz -+=(双曲正弦),2
z z
e e chz -+=(双曲余弦) 对数函数:ln ln ln iArgZ z z e z iArgz ==+
幂函数:ln s s z z e =(s 可以为复数)
复变函数一些与实变函数不一样的地方:
(1) 实变函数sin 1x ≤,cos 1x ≤,但复变函数sin z 和cos z 可以大于1。
(2) x e 是一个单调增长的函数,z e 却是一个周期函数,周期为2i π,shz 、chz 也是周
期为2i π的函数
(3) -1的对数有意义
2ln(1)ln (21)i n i e i n πππ+-==+
附:高数复习:连续的概念
连续的概念:按定义是0
00()lim ()x x f x f x →=,但这样的理解太过机械,但若将连续理解为()f x 在0x 领域的值为00()()()f x f x εδε+=+,其中()δε在0ε→时,()0δε→,
即()f x 在0x 附近的值不能跃变,象阶跃函数1,0()0,0x x x >⎧Θ=⎨<⎩
,在0x =就是不连续的,再如1()f x x
=在0x =附近也不连续。
第0类间断点(可去间断点):()()()f x f x f x +-=≠
第1类间断点:()()f x f x +-≠
第2类间断点:(),()f x f x +-中之一或全部不存在。