复变函数积分的概念与性质
- 格式:ppt
- 大小:308.50 KB
- 文档页数:6
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
第二章 复变函数的积分在微积分学中,微分法、积分法是研究函数性质的重要方法。
在复变函数中,微分法、积分法是研究复变函数性质的重要方法和解决实际问题的有力工具。
§2.1 复变函数的积分—复平面上的线积分一、复变函数积分的定义例:计算2421iiz dz++∫1.沿抛物线2y x =2.沿连接点124i i ++到的直线段3.1224i i i +++沿到然后再到的折线 解:1.抛物线参数方程为22,()(12)x t y t d z d t it i t d t==≤≤=+=+2其中1t 2则z =x +i y =t +i t242222222443241111()(12)[()4][22()]iiz dz t it i t dt t t t dt i t t t t dt++=++=−−++−∫∫∫∫三、解析函数的定积分公式在单通区域内,解析函数的积分值只与端点有关而与路径无关,可定义一个以终点z 为自变量的单值函数:()()zz F z f d ξξ=∫定理:设f (z )是单通区域D 内的解析函数, 是D的内点,则 是D 内的解析函数,且 F’(z )=f (z )F (z )是f (z )的原函数:F’(z )=f (z )定理证明略。
0z ξξd f z F zz ∫=0)()(由于()F z 是()f z 的一个原函数,所以()F z C +构成原函数族,则有:()()zz f d F z C ξξ=+∫上式中令 ,则有 从而0()()()zz f d F z F z ξξ=−∫——形式上与牛顿——莱布尼兹公式相似0z z =0)(0=+c z F )(0z F c −=⇒。