苏锡常镇四市高三一模数学附加答卷2013年3月
- 格式:pdf
- 大小:130.11 KB
- 文档页数:2
江苏省苏锡常镇四市2013届高三教学情况调研(二)数学试题
一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.
1.(5分)(2013•镇江二模)已知i是虚数单位,复数对应的点在第四象限.解:∵
2.(5分)(2013•镇江二模)设全集U=R,集合A={x|﹣1≤x≤3},B={x|x>1},则A∩∁U B{x|﹣1≤x≤1}.
3.(5分)(2013•镇江二模)已知数列{a n}的通项公式为a n=2n﹣1,则数据a1,a2,a3,a4,a5的方差为8.
(
(
4.(5分)(2013•镇江二模)“x>3”是“x>5”的必要不充分条件(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个合适的填空).
5.(5分)(2013•镇江二模)若双曲线的一个焦点到一条渐近线的距离等于,则
此双曲线方程为.
=1(y=可求得
y=
x的距离为,
==
=1
6.(5分)(2013•镇江二模)根据如图所示的流程图,输出的结果T为.
值为:
故答案为:.
7.(5分)(2013•镇江二模)在1和9之间插入三个正数,使这五个数成等比数列,则插入的三个数的和
为.
,所以。
苏州市2013届高考数学模拟试卷一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上. 1.已知集合}5,3,1{=A ,集合},,2{b a B =,若{1,3}A B =I ,则b a +的值是 .2.若复数z 满足(12)2i z i +=+,则z 的虚部为 .3.右图是一个算法流程图.若输入5n =,则输出k 的值为 .4.设函数2()log 12f x x =-的单调减区间是 .5.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n 的值为 .6.在线段AB 上任取一点P ,以P 为顶点,B 为焦点作抛物线,则该抛物线的准线与线段AB 有交点的概率是 .7.已知函数1()()2ln ()f x a x x a x=--∈R ,若曲线()y f x =在点(1,0)处的切线方程是220x y --=,则a = .8.设数列}{n a (n ∈*N )是等差数列.若2a 和2012a 是方程03842=+-x x 的两根,则数列}{n a 的前2013项的和=2013S .元9.函数()sin()f x A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在一个周期内的部分图象如图所示, 则()12f π的值是 .10.三棱锥S ABC -中,E ,F ,G ,H 分别为SA ,AC ,BC ,SB 的中点,则截面EFGH 将 三棱锥S ABC -分成两部分BGH AFE V -与SEH CFG V -的体积之比为 .11.在Rt ABC ∆中,90C ︒∠=,4,2AC BC ==,D 是BC 的中点,E 是AB 的中点,若P 是ABC ∆(包括边界)内任一点.则AD EP ⋅uuu r uu r的取值范围是___________.12.已知实数,,x y z 满足2221x y z ++=,则xy yz +的最大值是 .13.设数列{}n a 的各项均为正数,前n 项和为n S ,对于任意的n N +∈,2,,n n n a S a 成等差数列,设数列{}n b 的前n 项和为n T ,且2(ln )nn n x b a =,若对任意的实数(]1,x e ∈(e 是自然对数的底)和任意正整数n ,总有n T r <()r N +∈.则r 的最小值为 .14.如图,双曲线22221x y a b-=(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值12S S = .(第10题图)SACEHGF(第9题图)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或者演算步骤. 15.(本小题满分14分)ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若2=a ,13-=b ,且b 是c 2与A cos 的等比中项.(1)求A ,B ,C ;(2)若函数()sin(2)f x x ϕ=+(4ϕπ<)满足2)2(c C f =,求函数)(x f 的解析式及单调递减区间.16.(本小题满分14分)在等腰梯形PDCB (见图1)中,//DC PB ,33PB DC ==,DA PB ⊥,垂足为A ,将PAD ∆沿AD 折起,使得PA AB ⊥,得到四棱锥P ABCD -(见图2).在图2中完成下面问题: (1)证明:平面PAD ⊥平面PCD ;(2)在线段PB 上是否存在一点M ,使//PD 平面AMC .若存在,请给出证明;若不存在,请说明理由.17.(本小题满分14分)如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD ,设2CD x =.(1)若用一种金属线条对梯形部件ABCD 镶边,求最少需要准备该金属线条多少米; (2)求梯形部件ABCD 面积的最大值.A B DP 图1ABDCPM图2B ACD O •18.(本小题满分16分)如图,已知椭圆22221(0)x y a b a b+=>>的左右焦点为1(1,0)F -,2(1,0)F ,P 为椭圆上的一点,Q 为上顶点,M 在1PF 上,12F M MP =,2PO F M ⊥.(1)求当离心率12e =时的椭圆方程; (2)求满足题设要求的椭圆离心率范围; (3)当椭圆离心率最小时,若过(0,的直线l 与椭圆交于,A B (异于Q ),试问:AQB ∠是否为定值并给出证明. 19.(本小题满分16分)若在数列{}n a 中,11a =,且对任意的*k ∈N ,21221,,k k k a a a -+成等比数列,其公比为k q . (1)若2k q =(*k ∈N ),求13521k a a a a -++++ .(2)若对任意的*k ∈N ,22122,,k k k a a a ++成等差数列,其公差为k d ,设11k k b q =-. ①求证:{}n b 成等差数列;②若12d =,试求数列{}k d 的前k 项和k D .20.(本小题满分16分)已知函数1()(2)(1)2ln ,().(,e xf x a x xg x xe a -=---=∈R 为自然对数的底数) (1)若函数1()(0,)2f x 在上无零点,求a 的最小值;(2)若对任意给定的(](]00,e ,0,e (1,2)i x x i ∈=在上总存在两个不同的,使得0()(),i f x g x a=成立求的取值范围.参考答案一、填空题1.42.35-3.34.1(,)2-∞5.1006.127.2 8.20139.10.1∶1 11.[9,9]-13.214.22二、解答题15.(1)根据题意得2222cos 22b c a b c A c bc+-=⋅=⋅,即2222b b c a =+-,解得c a =.∴cos B ==.∴6B π=,∴512A C π==. (2)∵()sin(2)f x x ϕ=+,2)2(c Cf =,512C π=,∴5sin()12ϕπ+=又∵4ϕπ<,∴5124ϕππ+=,6ϕπ=-,∴()sin(2)6f x x π=-.由222,262k x k k ππ3ππ+<-<π+∈Z ,可得单调递减区间为,,36k k k π5π⎛⎫π+π+∈ ⎪⎝⎭Z16.证明:(1)∵在图1的等腰梯形PDCB 中,PB DA ⊥,∴所以在四棱锥ABCD P -中,AB DA ⊥,又PA AB ⊥,且AB DC //,∴PA DC ⊥,DA DC ⊥, 而⊂DA 平面PAD ,⊂PA 平面PAD ,A DA PA = , ∴⊥DC 平面PAD .∵⊂DC 平面PCD , ∴平面⊥PAD 平面PCD .(2)当21=MB PM 时,有PD //平面AMC . 证明:在梯形ABCD 中,连结AC 、BD 交于点O ,连结OM .易知AOB ∆∽DOC ∆,所以21==AB DC OB DO . 又21=MB PM ,所以MB PM OB DO =,所以在平面PBD 中,有MO PD //. 又因为⊄PD 平面AMC ,⊂MO 平面AMC ,所以PD //平面AMC .17.如图所示,以直径AB 所在的直线为x 轴,线段AB 中垂线为y 轴,建立平面直角坐标系,设(,)C x y ,过点C 作AB CE ⊥于E ,则(01)OE x x =<<,∴1EB x =-(1)∵221x y +=,∴CB =设ABCD 的周长为l ,则221)l x x =++<<. 下面只需要求l 的最大值.令t ,则222(0x t t =-<,A BD OPMB A CDO•E∴2242(1)55l t t t =-+=--+≤,即当1t =时,l 有最大值5. (2)11()()(22)(1)22S x AB CD CE x y x x =+⋅=+=+<< (方法1)()S x ==,令43221t x x x =--++,则32322'4622(231)2(1)(21)t x x x x x x =--+=-+-=-+-,令'0t =,12x =,当102x <<时,'0t >,当112x <<时,'0t <,所以当12x =时,t 有最大值2716,)(x S(方法2)21'()(1)2S x x =++=,令'()0S x =,∴2210x x +-=,(21)(1)0x x -+=,12x =.且当102x <<时,0)(>'x S ,当112x <<时,0)(<'x S ,所以当12x =时,()S x. (方法3)设COE θ∠=(02θπ<<),过点C 作CE AB ⊥于E ,则cos ,sin OE CE θθ==,11()()(22cos )sin (1cos )sin 22S AB CD CE θθθθθ=+⋅=+=+(0)2θπ<<,'()[(sin sin cos )]'(sin )'(sin cos )'S θθθθθθθ=+=+⋅22cos cos sin θθθ=+-22cos cos 1θθ=+-, 令'()0S θ=,得1co s 2θ=,即3θπ=,cos 1θ=-(舍),且当03θπ<<时,'()0S θ>,当32θππ<<时,'()0S θ<,所以当3θπ=时,()S θ18.(1)由题意11,2c c e a ===,得2a =,2223b a c ∴=-=,∴椭圆方程为22143x y +=. (2)(方法1)设00(,),(,)M M P x y M x y ,12(1,0),(1,0)F F -1(1,)M M F M x y ∴=+ ,00(,)M M MP x x y y =--.010122,2,22,M M M M x x x F M MP y y y +=-⎧=∴⎨=-⎩ 0021,332,3M M x x y y ⎧=-⎪⎪∴⎨⎪=⎪⎩∴200242(,)333F M x y =- .20F M OP ⋅= ,2000242()0333x x y ∴-+=,2200020x x y ∴-+=2222200022(1)(1)(1)x x y b a a a=-=-- ,22001210x x a a ∴-+-=在(,]a a -上有解,22001210y x x a a =-+-= 对称轴是2x a =,2()0,()0,f a a a f a ->⎧>∴⎨≤⎩ ()0,()0,f a f a ->⎧∴⎨≤⎩02a ∴<≤112c e a a ∴==≥,01e << ,112e ∴≤<. (方法2)12221211(),23PO PF PF F M PM PF PF PF =+=-=-,由2PO F M ⊥得20PO F M ⋅=,121211()()023PF PF PF PF ∴+⋅-=,化简得:221122230PF PF PF PF -⋅-= , 22112122||2||||cos 3||0PF PF PF F PF PF ∴-∠-= ,①在12F PF ∆中,由余弦定理,有222121212||||2||||cos 4PF PF PF PF F PF c ∴+-∠= ,②②-①得:2224||4PF c = ,即2||PF c = ,2||a c PF a c -≤≤+,2a c ∴≤,即12c e a =≥, 又01e <<,1[,1)2e ∴∈.(3)AQB ∠恒为直角.事实上,当e 最小时,即12e =,由(1)知椭圆方程为22143x y +=, 依题意可设AB所在直线方程为y kx =,代入椭圆方程得22576(34)049k x +--=, 设1122(,),(,),A x y B x y则12122576,49(34)x x x x k ⎧+=⎪⎪⎨⎪=-⎪+⎩Q ,1122(,,QA QB x y x y ∴⋅==1122(,,x kx x kx -=2121212192()49x x k x x x x +++=21212192(1)()49k x x x x +++=22576192(1)49(34)49k k -+++=2222576576192576768049(34)k k k k ---++=+, AQB ∴∠恒为直角.19.(1)2k q = ,21214k k a a +-∴=,∴13521,,k a a a a - 是首项为1,公比为4的等比数列, ∴13521141(41)143k kk a a a a --++++==-- . (2)① 2,2122,k k k a a a ++成等差数列,212222k k k a a a ++∴=+,又21222211,k k k k k k a a a a q q ++++==⋅ ,112k k q q +∴+=,则1111k kq q +-=-,得1111111k k k k q q q q +==+---,111111k k q q +∴-=--,即11n n b b +-=, {}n b ∴是公差为1的等差数列.②1322,2d a a =∴=+ ,则由223212a a a =⨯=+,解得22a =或21a =-. (ⅰ)当22a =时,12q =,11b ∴=,则1(1)1k b k k =+-⨯=,即11k k q =-, 得1k k q k +=,所以221221(1)k k a k a k +-+=, 则2121321121231k k k k k a a a a a a a a +-+--=⋅⋅⋅⋅ 2222222(1)21(1)(1)1k k k k k +=⋅⋅⋅⋅=+- , ∴2212(1)(1)1k k k a k a k k k q k++===++,则212(3)1,;2k k k k k k d a a k D ++=-=+∴= (ⅱ)当21a =-时,11,q =-112b ∴=-,则13(1)122k b k k =-+-⨯=-,即1312k k q =--,得1232k k q k -=-, ∴2121321121231k k k k k a a a a a a a a +-+--=⋅⋅⋅⋅ 222222131()()()2221()()()222k k k k --=⋅⋅⋅⋅--- =214()2k -则212(21)(23)k k ka a k k q +==--,21242k k k d a a k +∴=-=-,从而22k D k =. 综上所述,(3)2k k k D +=或22k D k =. 20.(1)因为1()0(0,)2f x <在区间上恒成立不可能,故要使函数1()(0,)2f x 在上无零点,只要对任意的1(0,),()02x f x ∈>恒成立,即对12ln (0,),221xx a x ∈>--恒成立. 令2ln 1()2,(0,),12x l x x x =-∈-则2222(1)2ln 2ln 2()(1)(1)x x x x x l x x x --+-=-=--,再令 21()2ln 2,(0,)2m x x x x =+-∈,则22222(1)()0x m x x x x --'=-+=<,故()m x 在1(0,)2上为减函数,于是1()()22ln 202m x m >=->,从而()0l x >,于是()l x 在1(0,)2上为增函数,综上,若函数1()(0,)2f x 在上无零点,则a 的最小值为24ln 2-.(2)111()e e (1)e ,x x x g x x x ---'=-=-当(0,1)x ∈时,()0g x '>,函数()g x 单调递增;当(]1,e x ∈时,()0g x '<,函数()g x 单调递减,又因为1e (0)0,(1)1,(e)e e 0g g g -===⋅>,所以,函数(](]()0,e 0,1.g x 在上的值域为当2a =时,不合题意;当2a ≠时,2(2)()2(2)22()2a x a x a f x a x xx-----'=--==,(]0,x e ∈,令()0f x '=,得22x a =-,由题意得,()f x 在(]0,e 不单调,故220e,22ea a <<<--即①此时,当,(),()x f x f x '变化时的变化情况如下:又因为,当0x →时,()f x →+∞,()2ln 22f a a a=---, ()(2)(e 1)2f e a =---,所以,对任意给定的(]00,e x ∈,在(]0,e e 上总存在两个不同的(1,2)i x i =,使得0()()i f x g x =成立,当且仅当a 满足下列条件:23222ln 0,()0,22(2)(1)2 1.()1,a f a aa e f e ⎧⎧-≤≤⎪⎪--⎨⎨⎪⎪---≥≥⎩⎩即 令22()2ln,(,2)2eh a a a a =-∈-∞--,则 2()12[ln 2ln(2)]122ah a a a a ''=---=-=--,()0h a '=令得02a a ==或,故当(,0)a ∈-∞时,()0h a '>,函数()h a 单调递增;当2(0,2)ea ∈-时,()0h a '<,函数()h a 单调递减,所以对任意的2(,2)e a ∈-∞-有()(0)0h a h ≤=,即②对任意2(,2)ea ∈-∞-恒成立.由③式解得:32.e 1a ≤--④ 综合①④可知,当(]03,2,0,e ,e 1a x ⎛⎤∈-∞-∈ ⎥-⎝⎦时对任意给定的在(]0,e (1,2),i x i =上总存在两个不同的使0()()i f x g x =成立.。
盐城市、南京市届高三第一次模拟考试数学附加题参考答案 选修4——2矩阵与变换已知矩阵122M x ⎡⎤=⎢⎥⎣⎦的一个特征值为3,求M 的另一个特征值,及对应的特征向量 解:M 的特征多项式为()(1)()4f x λλλ=---,令()(1)()4f x λλλ=---,由题意, (3)(31)(3)40f x =---=,故1x =,所以()(1)(1)4f λλλ=---,再由()(1)(1)4f λλλ=---=0,得1,λ=-或3λ=,所以,M 的另一个特征值为1,λ=-当1,λ=-时,由(1)20220x y x y λ--=⎧⎨--=⎩得对应的特征向量为11α⎡⎤=⎢⎥-⎣⎦选修4-4参数方程极坐标在极坐标系中,A 为曲线22cos 3ρρθ=-上的懂点,B 为直线cos sin 70ρθρθ+-=上的动点,求AB 的最小值。
解:点A 在圆22(1)4x y ++=上,点B 在直线70x y +-=上,圆心(1,0)-到直线70x y +-=的距离为d ==AB 的最小值为2 选修4——5不等式选讲 设12,n a a a 都是正数,且121n a a a = ,求证:(12(1)(1)(1)2n n a a a +++≥证明:由12,n a a a 都是正数得11a +≥21a +≥ 1n a +≥将以上不等式相乘,由121n a a a = 即得所证。
23、已知()(2()n f x n N +=∈,(1)若展开式中含3x 的系数为14.求n 的值;(2)当3n =时,求证()f x s N +∈)的形式。
证明:(1)7n =(2)由二项式定理得1(222n o n n n n n n n C C C P Q -=++=+ ,其中P 为正整数,Q所以(2n P Q =-,两式相乘,得22[(2n P Q =-,即221P Q -=,记2,P S =则21Q S =-,所以(2n =。
(第9题)(第5题)江苏省南通市2013届高三第三次调研测试数学参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合(]2 1A =-,,[)1 2B =-,,则A B =U ▲ . 【答案】(2 2)-,2. 设复数z 满足(34i)50z ++=(i 是虚数单位),则复数z 的模为 ▲ . 【答案】13. 右图是一个算法流程图,则输出的S 的值是 ▲ . 【答案】24004. “M N >”是“22log log M N >”成立的 ▲ 条件. (从“充要”,“充分不必要”,“必要不充分”中选择一个正确的填写) 【答案】必要不充分5. 根据某固定测速点测得的某时段内过往的100辆 机动车的行驶速度(单位:km/h)绘制的频率分布 直方图如右图所示.该路段限速标志牌提示机动 车辆正常行驶速度为60 km/h~120 km/h ,则该时 段内非正常行驶的机动车辆数为 ▲ . 【答案】156. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为3,则焦 点到准线的距离为 ▲ . 【答案】47. 从集合{}1 2 3 4 5 6 7 8 9,,,,,,,,中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为 ▲ . 【答案】1128. 在平面直角坐标系xOy 中,设点P 为圆C :22(1)4x y -+=上的任意一点,点Q (2a ,3a -)(a ∈R ),则线段PQ 长度的最小值为 ▲ . 【答案】29. 函数()sin()f x A x ωϕ=+(0A >,0ω>,02)ϕ<π≤在R 上 的部分图象如图所示,则(2013)f 的值为 ▲ . 【答案】10.各项均为正数的等比数列{}n a 中,211a a -=.当3a 取最小值时,数列{}n a 的通项公式an= ▲ . 【答案】12n -11.已知函数2221 0 () 0ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交 于四个不同点A ,B ,C ,D .若A B B C =,则实数t 的值为 ▲ . 【答案】74-12.过点(1 0)P -,作曲线C :e x y =的切线,切点为1T ,设1T 在x 轴上的投影是点1H ,过点1H 再作 曲线C 的切线,切点为2T ,设2T 在x 轴上的投影是点2H ,…,依次下去,得到第1n +()n ∈N 个 切点1n T +.则点1n T +的坐标为 ▲ .【答案】() e nn ,13.在平面四边形ABCD 中,点E ,F 分别是边AD ,BC 的中点,且AB 1=,EF =,CD =. 若15AD BC ⋅=uuu r uuu r,则AC BD ⋅uuu r uuu r的值为 ▲ . 【答案】本题没答案14.已知实数a1,a2,a3,a4满足a1+a2+a30=,a1a42+a2a4-a20=,且a1>a2>a3,则a4的取值 范围是 ▲ .【答案】二、解答题15.如图,在四棱锥P ABC D -中,底面ABC D 是矩形,四条侧棱长均相等. (1)求证:AB //平面PC D ;(2)求证:平面PAC ⊥平面ABC D . 证明:(1)在矩形ABC D 中,//A B C D , 又AB ⊄平面PC D , C D ⊂平面PC D ,所以AB //平面PC D . ………6分 (2)如图,连结BD ,交A C 于点O ,连结PO ,在矩形ABC D 中,点O 为 A C B D ,的中点, 又PA PB PC PD ===, 故PO AC⊥,PO BD⊥, ………9分又AC BD O =I ,A CB D ,⊂平面ABC D , 所以PO ⊥平面ABC D , ………12分 又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC D . ………14分16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b,c .已知222222sin 2sin sin C b a cA C c a b--=---. ABC(第15题)PDO(1)求角B 的大小;(2)设222sin sin sin T A B C =++,求T 的取值范围. 解:(1)在△ABC 中,222222s i n 2c o s c o s Bs i n c o s2s i n s i n 2c o s c o ss i n c o sC b a c a c B c C B A C a b C b C B C c a b ---====----, ………3分 因为sin 0C ≠,所以sin cos 2sin cos sin cos B C A B C B =-,所以2sin cos sin cos sin cos sin()sin A B B C C B B C A =+=+=, ………5分 因为sin 0A ≠,所以1cos 2B =,因为0πB <<,所以π3B =. ………7分(2)222131sin sin sin (1cos 2)(1cos 2)242T A B C A C =++=-++-()71714π(c o s 2c o s 2)c o s 2c o s 242423A C A A -⎡⎤=⎢⎥⎣+=--⎦+()()71171πc o s 2s i n 2c o s 2422423A A A =-=-+ ………11分因为2π03A <<,所以4π023A <<,故ππ5π2333A <+<,因此()π11cos 232A -+<≤,所以3924T <≤. ………14分17.某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm ;图2是双层中空玻璃, 厚度均为4 mm ,中间留有厚度为x 的空气隔层.根据热传导知识,对于厚度为d 的均匀介质,两侧的温度差为T ∆,单位时间内,在单位面积上通过的热量TQ k d ∆=⋅,其中k 为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系 数为3410 J mm/C -⨯⋅ ,空气的热传导系数为42.510 J mm/C -⨯⋅ .) (1)设室内,室外温度均分别为1T ,2T ,内层玻璃外侧温度为1T ',外层玻璃内侧温度为2T ', 且1122T T T T ''>>>.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过 的热量(结果用1T ,2T 及x 表示);(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计 x的大小?(第18解:(1)设单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量分别为1Q ,2Q , 则31212141082 000T T T T Q ---=⨯⋅=, ………2分34311122224102.51041044T T T T T T Q x---''''---=⨯⋅=⨯⋅=⨯⋅ ………6分111222343444102.510410T T T T T T x---''''---===⨯⨯⨯11122234344410 2.510410T T T T T T x ---''''-+-+-=++⨯⨯⨯ 124 000 2 000T T x -=+. ………9分(2)由(1)知21121Q Q x =+, 当121x =+4%时,解得12x =(mm ).答:当12x =mm 时,双层中空玻璃通过的热量只有单层玻璃的4%. ………14分18.如图,在平面直角坐标系xOy 中,椭圆22221(0)yx a b a b +=>>的右焦点为(1 0)F ,. 分别过O ,F 的两条弦AB ,C D 相交于点E (异于A ,C 两点),且O E E F =.(1)求椭圆的方程;(2)求证:直线A C ,BD的斜率之和为定值.(1)解:由题意,得1c =,c e a ==,故a =从而2221b a c =-=,所以椭圆的方程为2212x y +=.①………5分(2)证明:设直线AB 的方程为y kx =,②直线C D 的方程为(1)y k x =--, ③ ………7分由①②得,点A ,B 的横坐标为由①③得,点C ,D 21k +, ………9分记11( )A x kx ,,22( )B x kx ,,33( (1))C x k x -,,44( (1))D x k x -,, 则直线A C ,BD 的斜率之和为13241324(1)(1)kx k x kx k x x x x x ----+--132413241324(1)()()(1)()()x x x x x x x x k x x x x +--+-+-=⋅--1234123413242()()()()()x x x x x x x x k x x x x --+++=⋅--………13分2222213242(1)2420212121()()k k k k k k x x x x -⎛⎫---+ ⎪+++⎝⎭=⋅-- 0=. ………16分19.已知数列{}n a 是首项为1,公差为d 的等差数列,数列{}n b 是首项为1,公比为(1)q q >的等比 数列.(1)若55a b =,3q =,求数列{}n n a b ⋅的前n 项和;(2)若存在正整数(2)k k ≥,使得k k a b =.试比较n a 与n b 的大小,并说明理由.解:(1)依题意,5145511381a b b q -===⨯=,故5181120514a a d --===-, 所以120(1)2019n a n n =+-=-, ………3分令2111213413(2019)3n n S n -=⨯+⨯+⨯+⋅⋅⋅+-⋅, ①则213 13213(2039)3(2019)3n nn S n n -=⨯+⨯+⋅⋅⋅+-⋅+-⋅, ②①-②得,()2121+20333(2019)3n nn S n --=⨯++⋅⋅⋅+--⋅,13(13)1+20(2019)313n nn --=⨯--⋅- (2920)32nn =-⋅-,所以(2029)3292nn n S -⋅+=. ………7分(2)因为k k a b =, 所以11(1)k k d q -+-=,即111k qd k --=-,故111(1)1k n qa n k --=+--,又1n n b q -=, ………9分所以1111(1)1k n n n q b a qn k --⎡⎤--=-+-⎢⎥-⎣⎦()()111(1)1(1)11n k k q n q k --⎡⎤=-----⎣⎦- ()()23231(1)1(1)11n n k k q k q q qnq q q k -----⎡⎤=-++⋅⋅⋅++--++⋅⋅⋅++⎣⎦- ………11分(ⅰ)当1n k <<时,由1q >知 ()()232311()1(1)1n n k k n n n q b a k n q q q n q qqk ------⎡⎤-=-++⋅⋅⋅++--++⋅⋅⋅+⎣⎦- 211()(1)(1)()1n n q k n n q n k n q k ---⎡⎤<-----⎣⎦- 22(1)()(1)1n q qk n n k ----=--0<, ………13分 (ⅱ)当n k >时,由1q >知 ()()231231(1)()11n n k k k n n q b a k q q qn kqqq k ------⎡⎤-=-++⋅⋅⋅+--++⋅⋅⋅++⎣⎦- 121(1)()()(1)1k k q k n k q n k k q k ---⎡⎤>-----⎣⎦- 22(1)()k q q n k -=--0>,综上所述,当1n k <<时,n n a b >;当n k >时,n n a b <;当1 n k =,时,n n a b =. ………16分 (注:仅给出“1n k <<时,n n a b >;n k >时,n n a b <”得2分.)20.设()f x 是定义在(0 )+∞,的可导函数,且不恒为0,记()()()n nf xg x n x=∈*N .若对定义域内的每一个x ,总有()0n g x <,则称()f x 为“n 阶负函数”;若对定义域内的每一个x ,总有[]()0n g x '≥, 则称()f x 为“n 阶不减函数”([]()n g x '为函数()n g x 的导函数).(1)若31()(0)a f x x x x x=-->既是“1阶负函数”,又是“1阶不减函数”,求实数a 的取值范围;(2)对任给的“2阶不减函数”()f x ,如果存在常数c ,使得()f x c <恒成立,试判断()f x 是 否为“2阶负函数”?并说明理由. 解:(1)依题意,142()1()1f x a g x x x x==--在(0 )+∞,上单调递增,故15342[()]0a g x xx'=-+≥ 恒成立,得212a x≤, ………2分因为0x >,所以0a ≤. ………4分而当0a ≤时,1421()10a g x x x=--<显然在(0 )+∞,恒成立, 所以0a ≤. ………6分 (2)①先证()0f x ≤:若不存在正实数0x ,使得20()0g x >,则2()0g x ≤恒成立. ………8分 假设存在正实数0x ,使得20()0g x >,则有0()0f x >,由题意,当0x >时,2()0g x '≥,可得2()g x 在(0 )+∞,上单调递增, 当0x x >时,022()()f x f x xx >恒成立,即202()()f x f x xx >⋅恒成立,故必存在10x x >,使得20112()()f x f x x m x >⋅>(其中m 为任意常数),这与()f x c <恒成立(即()f x 有上界)矛盾,故假设不成立,所以当0x >时,2()0g x ≤,即()0f x ≤; ………13分 ②再证()0f x =无解:假设存在正实数2x ,使得2()0f x =,则对于任意320x x >>,有322232()()0f x f x x x >=,即有3()0f x >,这与①矛盾,故假设不成立, 所以()0f x =无解,综上得()0f x <,即2()0g x <,故所有满足题设的()f x 都是“2阶负函数”. ………16分。
南京市、盐城市2013 届高三第三次模拟考试数学参考答案及评分标准2013.05说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数. 一、填空题:本大题共14 小题,每小题 5 分,共 70 分.1221. (1, 3]2. 53. 84. 75. 375 66. 107. 28.①④9. 210. 23 311. 212. 2x +y - 2= 0 13. (12, 17) 14. 2二、解答题:本大题共 6 小题,共 90 分.解答时应写出文字说明、证明过程或演算步骤.15. 解( 1)方法一:因为 tan α= 2,所以sin α⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分= 2,即 sin α= 2cos α.cos α又 sin 2α+ cos 2α=1,解得 sin 2α=4,cos 2α=1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分55所以 cos2α= cos 2 2α=- 3. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分α- sin 5方法二:22α⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分因为 cos2α= cos α- sincos 2α-sin 2 α 1-tan 2α4 分= sin 2α+cos 2 α=tan 2α+1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 又 tan α=2,所以 cos2α= 12-22=- 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分2 +15( 2)方法一:因为 α∈ (0, π),且 tan α=2,所以 α∈π(0, ).2又 cos2α=- 3<0,故 2α∈(π⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分,π) ,sin2α= 4.5257 22π由 cos β=-10 , β∈ (0, π),得 sin β= 10 ,β∈ (2, π).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分4 7 2 3 2 2. ⋯⋯⋯⋯ 12 分所以 sin(2α-β)=sin2αcos β-cos2αsin β=×(-10)-(- ) × =- 255 10又 2α- β∈π π π⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分(- , ),所以 2α- β=- .224方法二:因为 α∈ (0, π),且 tan α=2,所以 α∈π2tan α4 .(0, ),tan2α=2 =-321- tan απ从而 2α∈(2, π).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分由 cos β=- 7 2 , π),得 sin β= 2 π, β∈ (0 10 ,β∈ (2 , π),10因此 tan β=- 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分7-4+1所以 tan(2α-β)=tan2α-tan β=37=- 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分1+tan2αtan β411+(- 3)× (- 7)π ππ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分又 2α- β∈ (- , ),所以 2α- β=-.2 2 416. 证明 ( 1)如图,取 BC 的中点 G ,连结 AG , FG .C 1A 1因为 F 为 C 1B 的中点,所以 FG∥ 1C 1C .B 1= 2在三棱柱 ABC - A 1B 1C 1 中, A 1A ∥= C 1C ,且 E 为 A 1A 的中点,EF所以 FG =∥EA .所以四边形 AEFG 是平行四边形.所以 EF ∥ AG . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分DCAGB(第 16 题)因为 EF 平面 ABC , AG 平面 ABC ,所以 EF ∥平面 ABC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分 ( 2)因为在正三棱柱 ABC -A 1B 1C 1 中, A 1A ⊥平面 ABC , BD平面 ABC ,所以 A 1A ⊥ BD .因为 D 为 AC 的中点, BA = BC ,所以 BD ⊥ AC .因为 A 1A ∩AC =A , A 1 A 平面 A 1ACC 1 ,AC 平面 A 1ACC 1,所以 BD ⊥平面 A 1ACC 1.因为 C 1E 平面 A 1ACC 1,所以 BD ⊥C 1E .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分根据题意,可得 EB =C 1E = 62 AB , C 1B = 3AB ,所以 EB 2+C 1E 2 =C 1B 2.从而∠ C 1EB = 90°,即 C 1E ⊥ EB .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分因为 BD ∩EB = B ,BD 平面 BDE , EB 平面 BDE ,所以 C 1E ⊥平面 BDE .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分17. 解( 1)由题意知, f(x)=- 2x + 3+ lnx ,- 2x + 1 (x > 0).2 分所以 f ′(x)=- 2+ 1=x ⋯⋯⋯⋯⋯⋯⋯⋯⋯x由 f ′(x)> 0 得 x ∈ (0,1) .2所以函数 f( x)的单调增区间为1⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(0, ).2( 2)由 f ′(x)= mx - m - 2+ 1,得 f ′(1)=- 1,x所以曲线 y = f(x)在点 P(1, 1)处的切线 l 的方程为 y =- x + 2.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分由题意得,关于 x 的方程 f(x)=- x + 2 有且只有一个解, 即关于 x 的方程1 2- x + 1+ln x =0 有且只有一个解.m(x - 1)2令 g(x)=12m(x - 1)2-x + 1+ lnx(x > 0).2 -(m + 1)x + 1(x > 0). ⋯⋯⋯⋯⋯8 分则 g ′(x) =m(x - 1)- 1+ 1= mx= (x - 1)(mx - 1)xxx①当 0< m <1 时,由 g ′(x)> 0 得 0< x < 1 或 x >1,由 g ′(x)< 0 得 1< x < 1,mm所以函数 g(x)在 (0, 1)为增函数,在 (1, 1)上为减函数,在 ( 1,+∞ )上为增函数.mm又 g(1)= 0,且当 x →∞时, g(x)→∞,此时曲线 y = g(x)与 x 轴有两个交点.故 0<m < 1 不合题意.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分②当 m = 1 时, g ′(x)≥ 0, g(x)在 (0,+∞ )上为增函数,且 g(1) = 0,故 m = 1 符合题意.③当 m > 1 时,由 g ′(x)> 0 得 0<x < 1 或 x > 1,由 g ′(x)< 0 得 1<x < 1,mm所以函数 g(x)在 (0, 1) 为增函数,在 ( 1,1) 上为减函数,在 (1,+∞ )上为增函数.m m又 g(1)= 0,且当 x → 0 时, g(x)→-∞,此时曲线 y = g(x)与 x 轴有两个交点.故 m > 1 不合题意.综上,实数 m 的值为 m =1.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14 分18.解如图所示,不妨设纸片为长方形ABCD , AB= 8cm, AD = 6cm,其中点A在面积为S1的部分内.折痕有下列三种情形:①折痕的端点M,N 分别在边AB, AD 上;②折痕的端点M,N 分别在边AB, CD 上;③折痕的端点M,N 分别在边AD , BC 上.D C D N C D CN MNA MB A M B A B(情形①)(情形②)(情形③)( 1)在情形②、③中MN ≥6,故当 l= 4 时,折痕必定是情形①.设 AM= xcm, AN= ycm,则 x2+ y2= 16.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分因为 x2+ y2≥ 2xy,当且仅当x= y 时取等号,1所以 S1=2xy≤ 4,当且仅当x=y= 22时取等号.即 S1的最大值为4.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分( 2)由题意知,长方形的面积为S=6× 8= 48.因为 S1∶S2=1∶ 2, S1≤S2,所以 S1= 16, S2= 32.当折痕是情形①时,设AM= xcm, AN= ycm,则132.xy=16,即 y=x20≤x≤ 8,16由0≤32x≤6,得3≤x≤8.所以 l=22232216⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分x+ y =x+ 2 ,≤x≤ 8.x3322222)(x- 4 2) 22× 322(x + 32)(x+ 4设 f(x)=x+x2 ,x>0,则f′(x)=2x-x3=x3,x>0.故x16162)4 2( 4 2, 8)83(3,4f ′(x)-0+f(x)4↘64↗80 649所以 f(x)的取值范围为 [64, 80],从而 l 的范围是 [8 ,45];⋯⋯⋯⋯⋯⋯ 11 分当折痕是情形②时,设AM= xcm, DN= ycm,则1(x+y)× 6= 16,即 y=16- x.230≤x≤ 8,得 0≤x≤16.由16所以 l =2228 2 16 6 + (x - y)= 6 + 4(x - ) , 0≤x ≤.33所以 l 的范围为 [6,2145 ]; ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 13 分31当折痕是情形③时,设BN =xcm ,AM = ycm ,则 2(x + y)× 8=16,即 y = 4- x .由 0≤ x ≤ 6,得 0≤ x ≤4.0≤4- x ≤ 6,所以 l = 82+ (x - y)2= 82+ 4(x -2) 2, 0≤ x ≤4. 所以 l 的取值范围为 [8, 4 5].综上, l 的取值范围为 [6, 4 5].⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16 分19. 解( 1)由题意得, m > 8- m > 0,解得 4< m < 8.即实数 m 的取值范围是 (4, 8).⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分22( 2)因为 m = 6,所以椭圆 C 的方程为 x +y= 1.6 2x 2 y 2①设点 P 坐标为( x , y ),则 6+2 = 1.因为点 M 的坐标为( 1, 0),所以PM 2=( x -1)2 + y 2=x 2- 2x + 1+ 2-x 2=2x 2-2x + 33323 2 3 , x ∈ [-6, 6].⋯⋯⋯⋯⋯⋯⋯⋯⋯=(x - ) +3 2 2363 5所以当 x = 2时, PM 的最小值为2 ,此时对应的点 P 坐标为( 2,±2 ).⋯⋯⋯⋯⋯⋯⋯⋯⋯②由 a 2= 6,b 2= 2,得 c 2= 4,即 c = 2,从而椭圆 C 的右焦点 F 的坐标为 (2, 0),右准线方程为x = 3,离心率 e = 6.3设 A ( x 1, y 1), B (x 2 ,y 2 ), AB 的中点 H ( x 0, y 0),则22 22x 1 + y 1 =1, x 2 + y 2 =1,62622222所以 x 1 - x 2 + y 1-y2= 0,即 k AB =y 1-y2=- x 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯62x 1- x 2 3y 0令 k = k AB ,则线段 AB 的垂直平分线 l 的方程为 y - y 0=- 1k (x - x 0).4 分6 分9 分令 y =0,则 x N = ky 0+ x 0=2x 0.322 6因为 AB = AF + BF = e(3-x 1)+ e(3- x 2)= 3 | x 0- 3| .故 AB = 2 6× 3= 6.FN 32即 AB 为定值6.⋯⋯⋯⋯⋯⋯⋯⋯⋯16 分FN20. 解( 1)设等差数列 { a n } 的公差为 d ,则 S n = na 1+n(n - 1)nn - 1 d .2d ,从而 S= a 1+2n≥n S n -1n - 1n -2dS -= (a ++n 2 2 d)=n - 11d)- (a 12即数列 {S n⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分n } 是等差数列.( 2)因为对任意正整数n ,k(n >k),都有 S n + k + S n - k = 2 S n 成立,所以 S n + 1+ S n - 1= 2 S n ,即数列 { S n } 是等差数列.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分设数列 { S n } 的公差为 d 1,则 S n = S 1+ (n - 1)d 1= 1+ (n -1)d 1,所以 S n =[1 +(n - 1)d 1] 2,所以当 n ≥2 时,a n = S n - S n - 1= [1 +( n - 1)d 1] 2- [1+ (n -2)d 1] 2= 2d 21n - 3d 21+ 2d 1,因为 { a n } 是等差数列,所以 a 2- a 1= a 3-a 2,即(4d 21- 3d 21+ 2d 1)- 1= (6d 21- 3d 21+ 2d 1)-(4d 21- 3d 21+ 2d 1),所以 d 1=1,即 a n = 2n - 1.又当 a n =2n - 1 时, S n = n 2, S n + k + S n - k = 2 S n 对任意正整数 n , k(n > k)都成立, 因此 a n =2n - 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分( 3)设等差数列 { a n } 的公差为 d ,则 a n = a 1+ (n - 1)d , b n = a an ,所以b na n -a n - 1db n-1 = a= a ,即数列 { b n } 是公比大于 0,首项大于 0 的等比数列. ⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分记公比为 q(q > 0).以下证明: b 1+ b n ≥b p + b k ,其中 p , k 为正整数,且 p + k = 1+ n .因为 (b 1+ b n )- (b p + b k )= b 1+b 1q n - 1- b 1q p - 1-b 1q k - 1=b 1( q p -1- 1)( q k -1- 1).当 q >1 时,因为 y = q x 为增函数, p -1≥ 0,k - 1≥ 0,所以 q p -1- 1≥0, q k -1- 1≥ 0,所以 b 1+ b n ≥ b p + b k .当 q =1 时, b 1+ b n = b p + b k .当 0<q < 1 时,因为 y = q x 为减函数, p - 1≥0, k - 1≥0,p 1k 1综上, b 1+ b n ≥ b p + b k ,其中 p , k 为正整数,且 p + k = 1+ n .⋯⋯⋯⋯⋯⋯⋯14 分所以 n(b 1+ b n )= (b 1+ b n )+ (b 1+ b n )+⋯+ (b 1+ b n )≥(b 1+ b n )+ (b 2+ b n- 1)+ (b 3+ b n - 2)+⋯+ (b n + b 1)= ( b 1 + b 2 +⋯+ b n )+ (b n + b n - 1+⋯+ b 1),b 1+ b 2+⋯+ b nb 1+ b n⋯⋯⋯⋯⋯⋯⋯⋯ 16 分即≤.n2南京市、盐城市2013 届高三第三次模拟考试数学附加题参考答案及评分标准2013.0521.【选做题】在 A 、 B 、 C 、 D 四小题中只能选做 2 题,每小题 10 分,共 20 分.A .选修 4— 1:几何证明选讲证明 如图,延长 PO 交⊙ O 于 D ,连结 AO , BO . AB 交 OP 于点 E .A因为 PA 与⊙ O 相切, DOE C P 所以 PA 2= PC · PD .B设⊙ O 的半径为 R ,因为 PA = 12, PC = 6,(第 21 题 A )所以 122=6(2R + 6),解得 R =9. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分因为 PA ,PB 与⊙ O 均相切,所以PA = PB .又 OA = OB ,所以 OP 是线段 AB 的垂直平分线. ⋯⋯⋯⋯⋯⋯⋯⋯7 分即 AB ⊥ OP ,且 AB = 2AE .在 Rt △ OAP 中, AE =OA · PA = 36.OP 5所以 AB =72.⋯⋯⋯⋯⋯⋯⋯⋯10 分5B .选修 4— 2:矩阵与变换1 a 1 0,即 1+ a =0,解 ( 1)由题知,11=b 2b + 1=2,解得 a =- 1,⋯⋯⋯⋯⋯⋯⋯⋯4 分b = 1.( 2)设 P' (x , y)是曲线 C'上任意一点, P' 由曲线 C 上的点 P (x 0 , y 0) 经矩阵 M 所表示的变换得到,1 - 1x 0 x x 0- y 0=x ,x 0= y + x,解得2所以y 0=,即 x 0+ y 0=y ,y - x ⋯⋯⋯⋯⋯⋯⋯⋯ 7 分11yy 0=.2因为 x0y0= 1,所以y+x·y-x= 1,即y2- x2= 1.2244即曲线 C' 的方程为y2- x2= 1.⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44C.选修 4— 4:坐标系与参数方程解以极点为原点,极轴为 x 轴正半轴建立平面直角坐标系,则圆 C 的直角坐标方程为 (x- 3)2+ ( y-1) 2= 4,点 M 的直角坐标为 (3 3,3).⋯⋯⋯⋯⋯⋯⋯⋯ 3 分当直线 l 的斜率不存在时,不合题意.设直线 l 的方程为 y-3= k(x- 3 3),由圆心 C( 3, 1)到直线 l 的距离等于半径2.故 |2 3k- 2|=2.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分k2+1解得 k= 0 或 k= 3.所以所求的直线 l 的直角坐标方程为y=3或3x- y- 6=0.⋯⋯⋯⋯⋯⋯⋯8 分π所以所求直线l 的极坐标方程为ρsinθ=3或ρsin(-θ)=3.⋯⋯⋯⋯⋯⋯⋯⋯10 分3D.选修 4— 5:不等式选讲x≥ 4,x< 4,解原不等式等价于x 2- 4x- 3<0,或- x2+ 4x- 3< 0.x≥ 4,或 x< 4,解得2- 7< x< 2+ 7,x< 1或x> 3.即4≤x< 2+ 7或 3< x< 4 或 x<1.综上,原不等式的解集为 { x| x< 1 或 3< x< 2+ 7} .【必做题】第22 题、第 23 题,每题10 分,共 20 分.⋯⋯⋯⋯⋯⋯⋯⋯ 5 分⋯⋯⋯⋯⋯⋯⋯⋯10 分22.解( 1)如图,取AC 的中点 F ,连接 BF ,则 BF ⊥ AC.以 A 为坐标原点,过 A 且与 FB 平行的直线为x 轴, AC 为 y 轴, AP 为 z 轴,建立空间直角坐标系.则A(0,0, 0), B( 3, 1,0),z PC(0, 2, 0), P(0, 0, 2), E(0, 1, 1),ED →→从而 PB = (3, 1,- 2), AE= (0, 1, 1).设直线 AE 与 PB 所成角为θ,A FC y→ →1x B则 cosθ=|PB· AE→ →|=.4(第 22 题)|PB|× |AE|即直线 AE 与 PB 所成角的余弦值为1⋯⋯⋯⋯⋯⋯⋯⋯ 4 分4.→→ ( 2)设 PA 的长为 a ,则 P(0, 0, a),从而 PB = ( 3, 1,- a),PC =(0 ,2,- a).→→设平面 PBC 的法向量为 n =( x , y , z) ,则 n ·1·11 PB = 0, n PC = 0,所以 3x + y -az = 0, 2y -az = 0.令 z = 2,则 y = a , x =33 a .3所以 n 1=( 3 a ,a , 2)是平面 PBC 的一个法向量.因为 D , E 分别为 PB ,PC 中点,所以 3 1 a aD( , 2, ),E(0, 1, ) ,2 2 2 →3 1 a → a ).则 AD = ( 2 , , ), AE = (0,1, 22 2 设平面 ADE 的法向量为 n =( x ,y , z),则 n→→··22 AD =0, n 2 AE = 0.所以31aa2 x + 2y + 2z = 0, y + 2z =0.3令 z = 2,则 y =- a , x =- 3 a .所以 n 2=(-3 a ,- a , 2)是平面 ADE 的一个法向量. ⋯⋯⋯⋯⋯⋯⋯⋯8 分3因为面 ADE ⊥面 PBC ,所以 n ⊥n ,即 n ·= (32) ·31 2- a 2+ 4= 0,121 n 23 a , a ,(- 3 a ,- a , 2)=- 3a解得 a = 3,即 PA 的长为 3.⋯⋯⋯⋯⋯⋯⋯⋯ 10 分223. 解( 1)p 1= ,p 2= 2× 2+ 1× ( 1-2 ) =5.33 3 3 9( 2)因为移了 n 次后棋子落在上底面顶点的概率为于是移了 n + 1 次后棋子落在上底面顶点的概率为从而 p n+1-1= 1 (p n -1).2 3 2⋯⋯⋯⋯⋯⋯⋯⋯2 分p n ,故落在下底面顶点的概率为1- p n .pn+12 1 11.= p n + (1-p n )= p n +333 3⋯⋯⋯⋯⋯⋯⋯⋯4 分所以数列 { p n -1} 是等比数列,其首项为1,公比为 1.26 311 ×( 1 ) n -1 1 11⋯⋯⋯⋯⋯⋯⋯⋯ 6 分所以 p n - =3.即 p n =+ ×n .262 23用数学归纳法证明:①当 n = 1 时,左式=1=3,右式= 1,因为3>1,所以不等式成立.4× 2- 1 525 23当 n =2 时,左式=1+ 1=78,右式= 4,因为 78> 4,所以不等式成立.4× 2- 1 4× 5- 155355 339②假设 n = k(k ≥ 2)时,不等式成立,即k1 >k2∑.i =14P i - 1 k + 1k112123 k+1则 n =k + 1 时,左式= ∑+>k+= k+.i - k+1 - 11 11k+1 i =114Pk + 1k + 13 + 24P+ × k+1)- 14( 22 3要证 k23k+12+ ≥ (k + 1) ,k +13 k +1+ 2k + 2k+122只要证3≥(k +1) - k.3k+1+2k + 2 k + 13k+1k 2 +3k + 1只要证 3k+1+2≥ k 2+ 3k + 2.2 1 只要证3k+1≤k 2+ 3k +1.只要证 3k+1≥ 2k 2+ 6k +2.因为 k ≥2,所以 3k+1= 3(1+ 2)k ≥ 3(1+ 2k + 4C 2k )= 6k 2+ 3= 2k 2 +6k + 2+ 2k(2k -3)+ 1> 2k 2+ 6k + 2,k 23k+1(k + 1)2所以 k +1 + 3k+1+ 2≥ k + 2 .即 n =k + 1 时,不等式也成立.n1 > n2由①②可知,不等式 ∑对任意的 n ∈ N * 都成立. ⋯⋯⋯⋯⋯⋯⋯⋯ 10 分i =14P i -1 n + 1。
江苏省各地市2013年高考数学 最新联考试题分类汇编(3) 函数与导数一、填空题:11.(江苏省苏锡常镇四市2013年3月高三教学情况调研—)在平面直角坐标系xOy 中,(1,0)A ,函数x y e =的图像与y 轴的交点为B ,P 为函数x y e =图像上的任意一点,则OP AB 的最小值 ▲ .【答案】1 13.(江苏省苏锡常镇四市2013年3月高三教学情况调研—)已知函数123()1234x x x x f x x x x x +++=+++++++,则55(2)(2)22f f -++--= ▲ . 【答案】84. (江苏省南通市2013届高三第二次调研)设f (x )是定义在R 上的奇函数,当x < 0时,f (x )=x + e x (e 为自然对数的底数),则()ln6f 的值为 ▲ .【答案】1ln 66-10. (江苏省南通市2013届高三第二次调研)函数()(1)sin π1(13)f x x x x =---<<的所有零点之和为 ▲ . 【答案】 413. (江苏省南通市2013届高三第二次调研)设实数x 1,x 2,x 3,x 4,x 5均不小于1,且x 1·x 2·x 3·x 4·x 5=729,则max{x 1x 2,x 2x 3,x 3x 4,x 4x 5}的最小值是▲ . 【答案】912. (江苏省无锡市2013年2月高三质量检测)当0< x ≤31时,不等式8x<log a x 恒成立,则实数a 的取值范围是 ▲ . 【答案】(33,1) 13. (江苏省无锡市2013年2月高三质量检测)已知函数f (x )=x 2+ax,若x < 0时恒有f (x )≥3,则实数a 的取值范围是 ▲ . 【答案】(-∞,-2]1、(南通市2013届高三期末)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 2、(苏州市2013届高三期末)过坐标原点作函数ln y x =图像的切线,则切线斜率为 . 答案:1e3、(泰州市2013届高三期末)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为 (0,0)5、(徐州、淮安、宿迁市2013届高三期末)已知函数⎪⎩⎪⎨⎧∈-∈=]3,1(,2329]1,0[,3)(x x x x f x ,当]1,0[∈t 时,]1,0[))((∈t f f ,则实数t 的取值范围是 ▲ .37[log ,1]36、(苏州市2013届高三期末)某厂去年的产值为1,若计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年这五年内,这个厂的总产值约为 .(保留一位小数,取51.1 1.6≈)6.6 7、(泰州市2013届高三期末)设函数f(x)是定义在R 上的奇函数,且f(a)>f(b), 则f(-a) f(-b)(填“>”或:“<”) <8、(无锡市2013届高三期末)13.定义一个对应法则f :P (rn ,n )→p '(m ,2|n|).现有直角坐标平面内的点A (-2,6)与点B (6,-2),点M 是线段AB 上的动点,按定义的对应法则f :M →M'.当点M 在线段AB 上从点A 开始运动到点B 时,点M 的对应点M'经过的路线的长度为 。
南京市、盐城市 2013 届高三第三次模拟考试数学附加题注意事项:1.附加题供选考物理的考生使用.2.本试卷共40 分,考试时间30 分钟.3.答题前,考生务必将自己的学校、姓名、考试号写在答题卡...上.考试结束后,交回答题卡.21.【选做题】在 A、 B、 C 、 D 四小题中只能选做2 题,每小题题卡指定10 分,共 20 分.请在答.....区域内作答.解答应写出文字说明、证明过程或演算步骤....A.选修 4— 1:几何证明选讲如图, PA,PB 是⊙ O 的切线,切点分别为A,B,线段 OP 交⊙ O 于点C.若 PA= 12, PC= 6,求 AB 的长.APO CB(第 21 题 A )B.选修 4— 2:矩阵与变换1 a已知矩阵M =对应的变换将点A(1,1)变为A' (0,2),将曲线C:xy= 1 变为曲线C'.b 1(1)求实数 a, b 的值;(2)求曲线 C' 的方程.C.选修 4— 4:坐标系与参数方程已知圆 C 的极坐标方程为ππρ= 4cos(θ-),点 M 的极坐标为(6,),直线 l 过点 M,且与圆 C 相66切,求 l 的极坐标方程.D.选修 4— 5:不等式选讲解不等式x|x- 4|- 3< 0.第 1 页共 2 页【必做题】第 22 题、第 23 题,每题 10 分,共 20 分.请在答 题卡指定区域内作答.解答应写出文........字说明、证明过程或演算步骤.22. (本小题满分 10 分 )如图,三棱锥 P - ABC 中,已知 PA ⊥平面 ABC , △ABC 是边长为2 的正三角形, D ,E 分别为 PB , PC 中点.P ( 1)若 PA = 2,求直线 AE 与 PB 所成角的余弦值;( 2)若平面 ADE ⊥平面 PBC ,求 PA 的长.E DACB(第 22 题)23. (本小题满分 10 分 )如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为 13,刚开始时,棋子 在上底面点 A 处,若移了 n 次后,棋子落在上底面顶点的概率记为p n .( 1)求 p 1,p 2 的值;ABC n 2( 2)求证: ∑ 1 >n .i=14Pi - 1 n + 1D EF(第 23 题)第 2 页共 2 页。
2013年江苏省高考数学模拟试卷(三)一、填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={−1, 1, 2, 4},B ={−1, 0, 2},则A ∪B =________.2. 若复数z 满足z =i(2−z)(i 是虚数单位),则z =________.3. 在圆x 2+y 2=4所围成的区域内随机取一个点P(x, y),则|x|+|y|≤2的概率为________.4. 已知sin(α+π3)+sinα=−4√35,−π2<α<0,则cosα=________.5. 已知直线y =a 与函数f(x)=2x 及函数g(x)=3⋅2x 的图象分别相交于A ,B 两点,则A ,B 两点之间的距离为________.6. 已知B 为双曲线x 2a 2−y 2b 2=1(a >0, b >0)的左准线与x 轴的交点,点A(0, b),若满足AP →=2AB →的点P 在双曲线上,则该双曲线的离心率为________. 7. 如图是一个算法流程图,则输出的S 的值是________.8. 已知函数f(x)=x 2+ax +1,若∃θ∈(π4,π2),f(sinθ)=f(cosθ),则实数a 的取值范围为________.9. 在四边形ABCD 中,AB →=DC →=(3, 4),1|BA →|BA →+1|BC →|BC →=√2|BD →|BD →,则四边形ABCD 的面积是________.10. 在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为________.11. 已知变量a ,θ∈R ,则(a −2cosθ)2+(a −5√2−2sinθ)2的最小值为________.12. 已知f(x)=mx(x −2m)(x +m +3),g(x)=2x −2,若∀x ∈R ,f(x)<0或g(x)<0,则m 的取值范围是________.13. 设定义在R 上的函数f(x)是最小正周期为2π的偶函数,f′(x)是f(x)的导函数,当x ∈[0, π]时,0<f(x)<1;当x ∈(0, π) 且x ≠π2时,(x −π2)f′(x)>0,则函数y =f(x)−sinx在[−2π, 2π]上的零点个数为________.14. 在平面直角坐标系xOy中,抛物线y2=2x的焦点为F.设M是抛物线上的动点,则MOMF 的最大值为________.二、解答题:(本大题共6小题,共90分)15. 已知△ABC的三内角A、B、C的对边分别是a,b,c,面积为S△ABC,且m→=(b2+c2−a2,−2),n→=(sinA,S△ABC),m→⊥n→.(1)求函数f(x)=4cosxsin(x−A2)在区间[0, π2]上的值域;(2)若a=3,且sin(B+π3)=√33,求b.16. 在直三棱柱ABC−A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60∘,E、F分别是A1C1,BC的中点.(1)证明:平面AEB⊥平面BB1C1C;(2)证明:C1F // 平面ABE;(3)设P是BE的中点,求三棱锥P−B1C1F的体积.17. 已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,一条准线l:x=2.(1)求椭圆C的方程;(2)设O为坐标原点,M是l上的点,F为椭圆C的右焦点,过点F作OM的垂线与以OM为直径的圆D交于P,Q两点.①若PQ=√6,求圆D的方程;②若M是l上的动点,求证:点P在定圆上,并求该定圆的方程.18. 如图,某兴趣小组测得菱形养殖区ABCD的固定投食点A到两条平行河岸线l1、l2的距离分别为4m、8m,河岸线l1与该养殖区的最近点D的距离为1m,l2与该养殖区的最近点B的距离为2m.(1)如图甲,养殖区在投食点A的右侧,若该小组测得∠BAD=60∘,请据此算出养殖区的面积;(2)如图乙,养殖区在投食点A的两侧,试在该小组未测得∠BAD的大小的情况下,估算出养殖区的最小面积.19. 已知数列{a n}是各项均不为0的等差数列,公差为d,S n为其前n项和,且满足a n2=S2n−1,n∈N∗.数列{b n}满足b n=1a n⋅a n+1,T n为数列{b n}的前n项和.(1)求数列{a n}的通项公式a n和数列{b n}的前n项和T n;(2)若对任意的n∈N∗,不等式λT n<n+8⋅(−1)n恒成立,求实数λ的取值范围;(3)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.20. 已知函数f(x)=a3x3−12(a+1)x2+x−13(a∈R).(1)函数f(x)的图象在点(−1, f(−1))处的切线方程为12x−y+b=0(b∈R),求a与b的值;(2)若a<0,求函数f(x)的极值;(3)是否存在实数a使得函数f(x)在区间[0, 2]上有两个零点?若存在,求出a的取值范围;若不存在,说明理由.三、[选做题]本题包括A、B、C、D四小题,每小题10分;请选定其中两题,并在相应的答题区域内作答.21. 如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.22. (选修4−2:矩阵与变换)设T是矩阵[acb0]所对应的变换,已知A(1, 0)且T(A)=P(1)设b>0,当△POA的面积为√3,∠POA=π3,求a,b的值;(2)对于(1)中的a,b值,再设T把直线4x+y=0变换成√3x−y=0,求c的值.23. 在直角坐标系xOy中,直线l的参数方程为{x=12ty=√22+√32t(t为参数),若以直角坐标系xOy的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ−π4).(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于A ,B 两点,求AB .24. (选修4−5:不等式选讲)设f(x)=x 2−x +l ,实数a 满足|x −a|<l ,求证:|f(x)−f(a)|<2(|a|+1. 四、【必做题】第22题、第23题,每题10分,共计20分.25. 在平面直角坐标系xOy 中,已知点A(−1, 1),P 是动点,且三角形POA 的三边所在直线的斜率满足k OP +k OA =k PA . (1)求点P 的轨迹C 的方程;(2)若Q 是轨迹C 上异于点P 的一个点,且PQ →=λOA →,直线OP 与QA 交于点M ,问:是否存在点P 使得△PQA 和△PAM 的面积满足S △PQA =2S △PAM ?若存在,求出点P 的坐标;若不存在,说明理由.26. (1)求证:n ∈N ∗时,(√5+2)2n+1−(√5−2)2n+1为正整数;(2)设(√5+2)2n+1=m +α(m,n ∈N ∗,0<α<1),求证:α(m +α)=1.2013年江苏省高考数学模拟试卷(三)答案1. {−1, 0, 1, 2, 4}2. 1+i3. 2π4.3√3−4105. log 236. √27. −9 8. (1, √2) 9. 25 10. 36 11. 912. (−4, 0) 13. 4 14.2√3315. 解:(1)∵ m→=(b2+c2−a2,−2),n→=(sinA,S△ABC),m→⊥n→,∴ m→⋅n→=(b2+c2−a2)sinA−2S△ABC=0,又a2=b2+c2−2bccosA,即b2+c2−a2=2bccosA,且S△ABC=12bcsinA,∴ 2bccosAsinA−2×12bcsinA=0,即2bccosAsinA−bcsinA=0,∴ cosA=12,又A为三角形的内角,∴ A=π3,函数f(x)=4cosxsin(x−A2)=4cosxsin(x−π6)4cosx(√32sinx−12cosx)=2√3sinxcosx−2cos2x=√3sin2x−cos2x−1=2sin(2x−π6)−1,∵ x∈[0, π2],∴ 2x−π6∈[−π6, 5π6],∴ −12≤sin(2x−π6)≤1,∴ −2≤f(x)≤1,则f(x)的值域为[−2, 1];(2)由sin(B+π3)=√33,得到3π4<B+π3<π,∴ cos(B+π3)=−√1−sin2(B+π3)=−√63,∴ sinB=[(B+π3)−π3]=sin(B+π3)cosπ3−cos(B+π3)sinπ3=√33×12+√63×√32=√3+2√26,又a=3,sinA=√32,∴ 由正弦定理asinA =bsinB得:b=asinBsinA=1+√6.16. 解:(1)证明:在△ABC中,∵ AC=2BC=4,∠ACB=60∘,∴ AB=2√3,∴ AB2+BC2=AC2,∴ AB⊥BC.由已知AB⊥BB1,∴ AB⊥面BB1C1C,又∵ AB⊂面ABE,故ABE⊥面BB1C1C.(2)证明:取AC的中点M,连接C1M,FM,在△ABC中,FM // AB,∴ 直线FM // 面ABE.在矩形ACC 1A 1中,E 、M 都是中点,∴ C 1M // AE ,∴ 直线C 1M // 面ABE , 又∵ C 1M ∩FM =M ,∴ 面ABE // 面FMC 1,故C 1F // 面AEB . (3)在棱AC 上取中点G ,连接EG 、BG ,在BG 上取中点O ,连接PO ,则PO // BB 1,∴ 点P 到面BB 1C 1C 的距离等于点O 到平面BB 1C 1C 的距离. 过O 作OH // AB 交BC 与H ,则OH ⊥平面BB 1C 1C ,在等边△BCG 中,可知CO ⊥BG , ∴ BO =1,在Rt △BOC 中,可得OH =√32,∴ V P−B 1C 1F =√33. 17. 解:(1)由题意可知:{ca=√22a 2c=2, ∴ a =√2,c =1,b 2=a 2−c 2=1, ∴ 椭圆C 的方程为:12x 2+y 2=1(2)①由(1)知:F(1, 0),设M(2, t), 则圆D 的方程:(x −1)2+(y −12t)2=1+t 24,直线PQ 的方程:2x +ty −2=0, ∴ |PQ|=√6,∴ 2√(1+t24)−(|2+12t 2−2√4+t 2)2=√6∴ t 2=4,t =±2∴ 圆D 的方程:(x −1)2+(y −1)2=2或(x −1)2+(y +1)2=2 ②证明:设P(x 1, y 1),由①知:{(x 1−1)2+(y 1−12t)2=1+t 242x 1+ty 1−2=0, 即:{x 12+y 12−2x 1−ty 1=02x 1+ty 1−2=0消去t 得:x 12+y 12=2∴ 点P 在定圆x 2+y 2=2上.18. (1)养殖区的面积为42√3m 2; (2)养殖区的最小面积为27m 2.19. 解:(1)在a n 2=S 2n−1中,令n =1,n =2,得{a 12=S 1a 22=S 3,即{a 12=a 1(a 1+d)2=3a 1+3d …解得a 1=1,d =2,∴ a n =2n −1又∵ a n =2n −1时,S n =n 2满足a n 2=S 2n−1,∴ a n =2n −1… ∵ b n =1an ⋅a n+1=12(12n−1−12n+1),∴ T n =12(1−13+13−15+...+12n−1−12n+1)=n2n+1. …(2)①当n 为偶数时,要使不等式λT n <n +8⋅(−1)n 恒成立,即需不等式λ<(n+8)(2n+1)n=2n +8n +17恒成立. …∵ 2n +8n≥8,等号在n =2时取得.∴ 此时λ 需满足λ<25. …②当n 为奇数时,要使不等式λT n <n +8⋅(−1)n 恒成立,即需不等式λ<(n−8)(2n+1)n=2n −8n −15恒成立. …∵ 2n −8n 是随n 的增大而增大,∴ n =1时,2n −8n 取得最小值−6. ∴ 此时λ 需满足λ<−21. …综合①、②可得λ的取值范围是λ<−21. … (3)T 1=13,T m =m 2m+1,T n =n2n+1, 若T 1,T m ,T n 成等比数列,则(m2m+1)2=13(n2n+1), 即m 24m 2+4m+1=n6n+3. … 由m 24m 2+4m+1=n6n+3,可得3n=−2m 2+4m+1m 2>0,即−2m 2+4m +1>0,∴ 1−√62<m <1+√62. … 又m ∈N ,且m >1,所以m =2,此时n =12…因此,当且仅当m =2,n =12时,数列T 1,T m ,T n 中的T 1,T m ,T n 成等比数列.… 20. 解:(I)已知函数f(x)=a3x 3−12(a +1)x 2+x −13(a ∈R). 则导数f′(x)=ax 2−(a +1)x +1,函数f(x)的图象在x =−1处的切线方程为12x −y +b =0可知:f′(−1)=a +(a +1)+1=12,f(−1)=−a3−12(a +1)−1−13=−12+b ,解得a =5,b =6;(2)f′(x)=ax 2−(a +1)x +1=a(x −1)(x −1a )∵ a <0,∴ 1a <1,∴ f(x)极小值=f(1a )=−2a 2+3a−16a 2,f(x)极大值=f(1)=−16(a −1) (3)f(1a )=−2a 2+3a−16a 2=−(a−1)(2a−1)6a 2,f(1)=−16(a −1)f(2)=13(2a −1),f(0)=−13<0,①当a ≤12时f(x)在[0, 1]上为增函数,在[1, 2]上为减函数,f(0)=−13<0,f(1)=−16(a −1)>0,f(2)=13(2a −1)≤0,所以f(x)在区间[0, 1],(1, 2]上各有一个零点,即在[0, 2]上有两个零点;②当12<a ≤1时,f(x)在[0, 1]上为增函数,在(1, 1a )上为减函数,(1a , 2)上为增函数,f(0)=−13<0,f(1)=−16(a −1)>0,f(1a )=−(a−1)(2a−1)6a 2>0,f(2)=13(2a −1)>0,所以f(x)只在区间[0, 1]上有一个零点,故在[0, 2]上只有一个零点;③当a >1时,f(x)在[0, 1a]上为增函数,在(1a , 1)上为减函数,(1, 2)上为增函数,f(0)=−13<0,f(1a )=−(a−1)(2a−1)6a 2<0,f(1)=−16(a −1)<0,f(2)=13(2a −1)>0,,所以f(x)只在区间(1, 2)上有一个零点,故在[0, 2]上只有一个零点; 故存在实数a ,当a ≤12时,函数f(x)在区间[0, 2]上有两个零点.21. 解:连接OD ,则OD ⊥DC 在Rt △OED 中,∵ E 是OB 的中点, ∴ OE =12OB =12OD所以∠ODE =30∘…在Rt △ODC 中,∠DCO =30∘… ∵ DC =2,∴ OD =DCtan300=23√3,∴ OC =√22+(23√3)2=4√33所以BC =OC −OB =OC −OD =4√33−2√33=2√33.… 22. 解:(1)∵ [a cb 0][10]=[a b], ∴ P(a, b). …∵ b >0,S △POA =√3,∠POA =π3, P(a, b),A(1, 0),∴ a =2,b =2√3.…(II)由(I)得,矩阵[ac b0]=[2c2√30].设矩阵将点(x, y)变换成点(m, n),则有{2x +cy =m 2√3x =n ,又{4x +y =0√3m −n =0,解得c =0.23. 设直线l 的倾斜角为α,根据直线参数方程的意义,得 {cosα=12sinα=√32且α∈[0, π),可得α=π3, ∴ 即直线l 的倾斜角为π3⋯由(1)得直线l 是经过点(0, √22),且倾斜角为π3的直线,斜率k =tan π3=√3∴ 直线l 的直角坐标方程为y =√3x +√22, 而曲线C:ρ=2cos(θ−π4),即ρ2=√2ρcosθ+√2ρsinθ, ∵ ρcosθ=x ,ρsinθ=y ,∴ 曲线C 的直角坐标方程为x 2+y 2=√2x +√2y ,整理得(x −√22)2+(y −√22)2=1 可得曲线C 是以(√22, √22)为圆心,半径为1的圆 ∵ C 到直线l 的距离d =|√62|√3+1=√64, ∴ 线段AB 的长为2(√64)=√10224. 证明:∵ f(x)=x 2−x +1,|x −a|<l ,∴ |f(x)−f(a)|=|x 2−x −a 2+a|=|x −a|⋅|x +a −1|<|x +a −1|,又|x +a −1|=|(x −a)+2a −1|≤|x −a|+|2a −1|<1+|2a|+1=2(|a|+1), ∴ :|f (x)−f (a)|<2(|a|+1)成立.25.解:(1)设点P(x, y)为所求轨迹上的任意一点,则由k OP +k OA =k PA得,yx +1−1=y−1x+1,整理得轨迹C 的方程为y =x 2(x ≠0且x ≠−1).(2)方法一、设P(x 1,x 12),Q(x 2,x 22),M(x 0,y 0),由PQ →=λOA →可知直线PQ // OA ,则k PQ =k OA , 故x 22−x 12x 2−x 1=1−0−1−0,即x 2+x 1=−1,由O 、M 、P 三点共线可知,OM →=(x 0,y 0)与OP →=(x 1,x 12)共线, ∴ x 0x 12−x 1y 0=0,由(1)知x 1≠0,故y 0=x 0x 1,同理,由AM →=(x 0+1,y 0−1)与AQ →=(x 2+1,x 22−1)共线,∴ (x 0+1)(x 22−1)−(x 2+1)(y 0−1)=0, 即(x 2+1)[(x 0+1)(x 2−1)−(y 0−1)]=0,由(1)知x 1≠−1,故(x 0+1)(x 2−1)−(y 0−1)=0,将y 0=x 0x 1,x 2=−1−x 1代入上式得(x 0+1)(−2−x 1)−(x 0x 1−1)=0, 整理得−2x 0(x 1+1)=x 1+1,由x ≠−1得x 0=−12,由S △PQA =2S △PAM ,得到QA =2AM ,因为PQ // OA ,所以OP =2OM , 由PO →=2OM →,得x 1=1,∴ P 的坐标为(1, 1).方法二、设P(x 1,x 12),Q(x 2,x 22), 由PQ →=λOA →可知直线PQ // OA ,则k PQ =k OA , 故x 22−x 12x 2−x 1=1−0−1−0,即x 2=−x 1−1,∴ 直线OP 方程为:y =x 1x①; 直线QA 的斜率为:(−x 1−1)2−1−x 1−1+1=−x 1−2,∴ 直线QA 方程为:y −1=(−x 1−2)(x +1),即y =−(x 1+2)x −x 1−1②; 联立①②,得x =−12,∴ 点M 的横坐标为定值−12.由S △PQA =2S △PAM ,得到QA =2AM ,因为PQ // OA ,所以OP =2OM , 由PO →=2OM →,得x 1=1,∴ P 的坐标为(1, 1).26. 证明:(1)当n ∈N ∗时,(√5+2)2n+1−(√5−2)2n+1=[(√5)2n+1+C 2n+11(√5)2n ×2+C 2n+12(√5)2n−1×22+...+C 2n+12n √5×22n +22n+1]−[(√5)2n+1−C 2n+11(√5)2n ×2+C 2n+12(√5)2n−1×2+...+C 2n+12n √5×22n −22n+1] =2C 2n+11(√5)2n ×2+2C 2n+13(√5)2n−2×23+...+2×22n+1,凡是含有√5时,其指数为偶数,因此上式为正整数,故结论成立.(2)由(1)可知:当n ∈N ∗时,(√5+2)2n+1−(√5−2)2n+1为正整数, 而0<√5−2<1,∴ 0<(√5−2)2n+1<1;再由(√5+2)2n+1=m +α(m,n ∈N ∗,0<α<1),可得α=(√5−2)2n+1,∴ α(m +α)=(√5−2)2n+1(√5+2)2n+1=[(√5−2)(√5+2)]2n+1=12n+1=1. ∴ α(m +α)=1.。