全球LNG运输船大盘点(DOC 68页)
- 格式:doc
- 大小:995.50 KB
- 文档页数:69
1历时两年,投资超过2亿美元。
它也是世界上建造难度最大的民用船只,全球只有13家船厂允许建造。
它的海上航行,可以让所有船只退避三舍,它的使命只有一个运送一种古老的清洁能源,让现代城市正常运转,它让每个人的生活变得简单;但它的建造却是一段不平凡的故事;任何一个疏忽都将可能会酿成大祸,世界最先进的技术,庞大的造船厂和一批造船精英如视珍宝般地建造这艘巨轮,让这样的不平凡成为可能。
一艘神秘的巨型货轮,在四条拖船的牵引下驶入深水码头,除了拖船和巨轮周围没有任何其它船只,这艘巨大轮船的甲板上也看不到有任何货物,这是一艘液化天然气船,船身上醒目的3个大写字母LNG 它是世界上造价最为昂贵的货运轮船,它就是LNG ,它提醒着过往船只这艘货船运载的是极度危险的液化天然气,必须避让以免发生碰撞,在它的专属码头,LNG 船不停地通过特殊管道将液化天然气运往港口边的储气塔,它们将暂时存放在这里,另一端大型储气罐卡车已经等在这里,液化天然气将通过它们送往城市,生活的背后都离不开液化天然气给我们带来的便利,天然气的使用并不仅仅局限在家庭,我们所用的燃料提供城市运转的电力都正在大量使用天然气,在人类已开发利用的主要能源物质中天然气具有独特的优势,天然气是最清洁的能源,它在排放二氧化碳方面燃烧相同的热值的情况下,它比石油要少排放25%,比常用的煤要少排放40%,所以称为最清洁的能源;保护环境;温室气体的排放让地球环境面临严峻的挑战,天然气因为它清洁高效的特点而逐渐成为现代社会运转的基础能源。
上海,这座中国最大的城市正在经历着经济的高速发展,环境问题也越来越多地受到人们的关注,天然气能源自然成为这座城市发展的保障,到2012年,上海需要40亿立方米的天然气供应,但这里却没有天然气可以开采;天然气和石油、煤炭一样,是古代生物经过数百万年的复杂的地质变迁形成的一种自然资源,它在地球上虽然分布广泛,但并不均衡,目前发现的可大规模开采利用的天然气产区主要集中在:俄罗斯、中东、南太平洋等地区,从遥远的太平洋彼岸运送天然气,不是一件容易的事情,需要一项新的技术才能实现。
世界上最大的天然气运输船世界上最大的天然气运输船液化天然气,我们大家都不陌生,是大中城市的燃气主导气源,而船运是其主要的运输方式。
那么大家知道全球最大的液化天然气运输船是哪艘吗?下面就让店铺带你们了解全球最大的液化天然气运输船。
液化天然气运输船简称LNG船,主要运输液化天然气。
液化天然气的主要成分是甲烷,为便于运输,通常采用在常压下极低温(-165℃)冷冻的方法使其液化。
我国不仅是继韩、日等国后实现自主研发系列LNG船型的国家,而且我国设计船型在、节能、环保方面具有明显的后发优势。
LNG船是在 162摄氏度(-162)低温下运输液化气的`专用船舶,是一种"海上超级冷冻车",被喻为世界造船"皇冠上的明珠",目前掌握LNG运输船造船技术的国家不超过9个,只有13家船厂允许建造。
船体结构液舱要求有严格的隔热结构,要求能保证液舱恒定低温。
常见的液舱形状有球形和矩形两种,但也有少数船舶将液舱形状设计成菱柱形或圆筒形。
国产液化天然气船中国的建造的四艘LNG运输船是世界上唯一被允许使用的自身运输的货物——LNG驱动航行的LNG运输船,之前的LNG运输船只使用柴油作为燃料。
“大鹏昊”我国制造的第一艘液化天然气(LNG)船"大鹏昊",是世界上最大的薄膜型LNG船,船长292米、宽43.35米、型深26.25米,装载量为14.7万立方米,时速19.5节。
于2008年4月顺利交船,成为广东深圳大鹏湾秤头角的国内第一个进口LNG大型基地配套项目。
“大鹏月”我国制造的第二艘LNG船"大鹏月"是中船集团公司所属沪东中华造船(集团)有限公司,为广东大型LNG运输项目建造的第2艘LNG船。
该船同"大鹏昊"属同一级别,货舱类型为GTT NO.96E-2薄膜型,是当时世界上最大的薄膜型LNG船。
其船坞周期仅为160天,比首制船缩短近1个月,码头周期比首制船缩短66天,总建造周期比首制船缩短126天。
中国最大的船世界最大的船20XX年世界最大”;船世界最大LNG动力乙烯船“NavigatorAurora”号20XX年9月,由江南造船(位置评论新闻)集团为Navigator Gas公司建造的全球最大的乙烷/乙烯液化气运输船“Navigator Aurora”号交付。
该船货物运输能力达37000立方米,能容纳高达20000吨乙烷/乙烯,入级美国船级社(位置联系)。
“Navigator Aurora”号船上配备了双燃料发动机(产品库求购供应),可使用柴油燃料或LNG作为动力,能符合现在和未来最严格的污染排放要求。
主机(产品库求购供应)是市场上最具燃料高效的两冲程发动机,设计配有高压气体喷射系统。
这艘运输船已被租赁至欧洲Borealis化学品集团公司运营,已获得为期至少10年的租约,用于从美国东部沿海向欧洲运输乙烷。
全球最大双燃料汽车船“TBN AUTO ECO”号20XX年9月28日,南通中远川崎(位置评论新闻)建造的全球首艘LNG动力4000车汽车运输船(船型船厂买卖)(PCTC)“TBN AUTO ECO”号正式交付。
该船采用船用燃油和LNG双燃料主机推进系统(产品库求购供应),是目前世界上最大的双燃料推进系统汽车运输船,该船交付标志着LNG首次作为燃料用于汽车运输船。
20XX年3月由欧洲近海滚装运营商欧洲联合汽车运输船公司(UECC)在南通中远川崎订造2艘汽车运输船,该船是系列船中的首艘,入级英国劳氏船级社(位置联系)(LR)。
当前,随着全球各个航区对环保要求日益提高,以LNG作为船舶动力已是大势所趋。
作为全球最大的LNG双燃料冰区加强型汽车运输船,该船无疑是双燃料船中的“大块头”,无论是设计、建造难度,还是船舶性能、质量和智能化、大型化方面,均毫无疑问创造了造船业的新纪录。
世界最大邮轮“Harmony of the Seas”号20XX年5月12日,STX法国建造的全球最大的豪华游轮“Harmony of the Seas”号正式交付,总吨位达22700吨,长362米。
1 LNG船简介LNG运输船是指载运LNG(常压下沸点为-162.5℃)的专用船舶。
LNG(液化天然气)的主要成分是甲烷,还有一些乙烷、丙烷、少量的氮、二氧化碳、硫化氢等。
天然气常温常压下为气体,而同等质量的LNG体积只有天然气的1/600左右,所以,为了提高天然气的运输效率,通常都将天然气液化成LNG进行运输。
LNG船目前的标准载货量在12万~15万m3之间,一些先进国家已经能设计出16万m3、20万m3、甚至30万m3的LNG船,但是由于船只尺寸通常受到港口码头和接收站条件的限制,所以LNG船的舱容量可能会稳定在十几万立方米的水平上。
LNG船的储罐是独立于船体的特殊构造。
在该船的设计中,考虑的主要因素是能适应低温介质的材料,对易挥发、易燃物的处理。
LNG船的使用寿命一般为35~40年。
鉴于LNG特殊的理化性质,对LNG船的各方面性能要求极高。
所以,LNG船被称为是前所未有的高技术、高难度和高附加值的船舶。
2 LNG的危险性LNG由于是低温液体,所以LNG除了具有和原油相似的危险性外,还有着其特殊的低温危险性,具体表现在以下几个方面。
首先,LNG是-162.5℃的低温液化气体,当其与人体直接接触时,裸露在外的皮肤会被冻伤。
如果皮肤与LNG 接触时间过长,就会造成永久性的伤害。
严重时,可能会危及生命。
再者,工作人员进入舱内作业时,由于LNG 的蒸发,如果达到一定的浓度,会造成窒息甚至死亡。
其次,由于LNG在储存过程中出现的沸腾与翻滚现象,容易导致液货舱内的压力急剧升高,冲开安全阀,从而导致大量的天然气释放到空气中。
一方面是能源的浪费,一方面会造成天然气在空气中的浓度超过规定,而引起爆炸以及火灾,对于船体的本身及港口、设备的安全也造成极大的威胁。
3 LNG船修理的相关安全要求由于LNG具有其特殊的低温危险特征,所以,对LNG船安全性能的要求比油轮和其他一些化学品船高得多,具体要求如下。
(1)安全区。
2015年5月全球LNG运输船大盘点2015年06月03日 14:04全球建造LNG运输船最多的国家是国和日本,不是欧美国家。
中国算不上老几,但比美国强得多,中国悄悄地爬到世界第三。
2008年中国首次建造的LNG运输船LNG(液化天然气,Liquefied Natural Gas) 是在一定的温度和压力条件下被液化了的以甲烷为主的天然气。
它是储存与运输天然气的经济方式,适用于远距离海运。
LNG被鼓吹为新能源,那是忽悠人的。
LNG本质仍然是天然气,天然气是化石燃料的一种,不是清洁能源。
LNG只是天然气的一种输送形式,适合于开发如中东、东南亚等的“闲置天然气”,生产成LNG便于海洋航运到消费地区如东亚。
中国地处东亚,天然气资源相对贫乏,中国进口LNG比日本足足迟缓45年,但是中国LNG进口量上升很快。
美国页岩气开发获得成功,媒体大肆鼓吹美国LNG 大举出口,输往全球并与卡塔尔抢市场,当然制造LNG运输船首当其冲,给人造成错觉:美国是LNG运输船生产大国。
全球LNG运输船状况究竟如何?本文用2015年5月的最新数据回答这个问题:全球建造LNG运输船最多的国家是国和日本,不是欧美国家。
中国算不上老几,但比美国强得多,中国悄悄地爬到世界第三。
LNG运输船舱容是怎么发展的?LNG船舱容是指运载的专用船舶LNG的载货体积。
形成工业规模的天然气液化和海运始于1964年。
当时处于试运阶段,舱容小,在1975年前,都小于100 000 m3,属于小型LNG运输船。
其后发展到100 000~200 000 m3,主要在126 000~133 000 m3之间,称为“标准型”,船龄为25~30年。
到20世纪70年代进入大规模发展阶段,各国建造的液化天然气运输船也越来越多。
时间推移到1971年,卡塔尔和伊朗发现了有世界上最大的气田—南帕尔斯/北部穹窿凝析气田(South Pars / North Dome Gas-Condensate field),可采储量高达36万亿立方米。
Copyright 2008, International Petroleum Technology ConferenceThis paper was prepared for presentation at the International Petroleum Technology Confe-rence held in Kuala Lumpur, Malaysia, 3–5 December 2008.This paper was selected for presentation by an IPTC Programme Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the International Petroleum Technology Conference and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the International Petroleum Technology Conference, its officers, or members. Papers presented at IPTC are subject to publication review by Sponsor Society Committees of IPTC. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of the International Petroleum Technology Conference is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of where and by whom the paper was presented. Write Librarian, IPTC, P.O. Box 833836, Richardson, TX 75083-3836, U.S.A., fax +1-972-952-9435.AbstractDescription.Korean shipbuilding is buzzing with talk around the large LNG (Liquefied Natural Gas) vessels being constructed there. The collaborative efforts of Qatargas 2 and ExxonMobil have achieved a breakthrough in the LNG shipping industry by developing, contracting and implementing a new generation of the largest, most efficient LNG ships.The first series, Q-Flex, has a capacity of 210,000 cbm, and the first of these vessels was delivered in September 2007. The next series, Q-Max, will be the world’s largest LNG ships with capacities up to 266,000 cbm. The Q-Max vessels have been ordered by Qatar Gas Transport Co Ltd (NAKILAT) for the fifth train of the Qatargas 2 project, and the first vessel is to be delivered at the time of writing in the Korean Samsung shipyard.Applications.This paper will discuss the challenges and opportunities of the biggest single directly connected LNG shipbuilding project in the world and how the project encouraged improvements in quality and productivity without compromising the safety as the highest priority.Results and Conclusions.The primary focus will be on speed, fuel consumption, maneuvering characteristics and global vibrations. Enhanced operational safety and sharing of lessons learned will also be reviewed for the LNG vessels’ future consideration. Finally, operational feedback from the trading Q-Flex vessels plus sea trial data for the Q-Max ships will be investigated and reported by comparing the results against the original design basis. Technical Contributions.With the application of several cutting edge technologies for LNG ships, along with the optimization of marine systems such as adapting the first prototype re-liquefaction plant, this new generation of ship represents a significant step change in reducing the cost for delivery of LNG to markets worldwide.IntroductionIt’s been almost five years since the concept of larger LNG vessels was initially mooted. Today the world has witnessed that the cargoes are being safely loaded and transported to discharge terminals obliging our customers in Japan, Korea, Spain and more planned exports worldwide. Our new vessels ventured with commissioning spot cargos for New Mexico, Sabine Pass (US) and were successfully delivered .This marks a significant milestone in a journey that one might argue has transformed LNG shipping and reset the redefined possibilities.The primary goal of the industry has always been to transport LNG safely in the pursuit of sustaining flawless performance. However, mitigating the environmental impact by reducing emissions along with safe, efficient, cost-effective transportation, it became apparent that those challenges would definitely require some radical rethinking.The design basis adopted at inception for the new large LNG carriers, both Q-Flex and Q-Max, was the delivery into service a series of vessels would be to meet or beat the ‘conventional’ LNG carriers in safety, reliability, efficiency, operability and maintainability.The significant technology innovations have allowed adoption of twin screw slow speed diesel engines in place of single screw steam turbines and reliquefaction for the handling of Boil-off Gas (BOG) instead of burning it for the propulsion system. These were the major highlights apart from the obvious size increase of these new Q-Flex and Q-Max vessels that has increased the capacity by approximately 50% and 80% respectively. It is these areas that have generated the most interest within the industry and are the focus of this paper.Speed.At writing, 16 Q-Flex vessels, consisting of three slightly different hull designs, have been delivered to trade and have impressively confirmed target performance. Both vessel designs were independently tested at the SSPA model basin in Malmo Sweden. The curves in Figure 1 show the speed/power relationship predicted by model tests for the two designs (dotted lines) and the average speeds at design draft (12 meters) derived from sea trial results.IPTC 12445An Insight into the World’s Largest LNG Ships Abdulla Khalid Al-Kubaisi, Qatargas Operating Company Limited2 IPTC 12445Model & Trial PerformanceDesign Draft - 12 Meters12131415161718192021222324Ship Speed KnotsS h a f t H o r s e p o w e rFigure 1The designs performed virtually identically in the model basin but slightly different on sea trials despite that the designs differ slightly in form at the bow and stern. But speed trial results at ballast draft gave slightly lower speed than model test prediction. After an extensive study, SSPA’s key finding was that the optimised bulbous bow that was not fully submerged at ballast draft, made it very difficult to accurately predict the ‘form factor’ which is used for scaling of the viscous resistance component using conventional Prohaska plot. A new modified method for prediction of the form factor was proposed by SSPA. The description of the new method is beyond the scope of this paper. In summary, • The new method is believed to give more objective and consistent estimates of the form factor. • In ballast the form factors will often be higher than what has previously been used. • Predictions using the new method are believed to correlate well with sea trials as shown in the next figure. • A correction of 1-2% is also proposed for design draft.Single screw operation with the idle shaft either locked or free wheeling has been considered through design by providing clutches to allow such option for the Large LNG (LLNG) ships with twin screw. Model tests predicted that the vessel would achieve up to 15 knots on trials in single screw mode with the idle propeller free wheeling and about 12 knots with the idle propeller locked. The vessels demonstrated about 13 knots with the idle propeller free wheeling and about 11 knots in locked configuration on trials, and in service. The difference is due to torque limitations of the main engine which could not be modeled in the test basin.The ballast trial results in twin screw mode show the propellers running with an operating margin of 5% over the trial speed range compared to a specification minimum of 3%. However, in single screw mode, maximum available power was limited due to torque-speed considerations to about 90% of NCR for the free wheeling mode and 80% for the locked mode. Figure 2 illustrates an engine RPM/Power layoutdiagram for one of the vessel designs with ballast trial results plotted on the diagram.Engine Layout MAN-B&W 6S70ME-C500070009000110001300015000170001900021000230002500027000Engine RPME n g i n e B H PFigure 2The provision of clutches in the shafting presented unforeseen problems with shaft alignment. The Renk clutches installed on these vessels are gear tooth type sliding clutches with internal sleeve bearings that allow the idle propeller to free wheel while maintaining alignment of the fore and aft shaft sections. On two early sea trials one of the clutches on each ship exhibited a sharp rise in temperature soon after starting of free wheeling tests. Later inspection showed the sleeve bearing to be heavily damaged. The damage was consistent with misalignment, although the vessel’s shafting had been carefully aligned in accordance with alignment calculations using traditional gap-and-sag and bearing weight methods.After reviewing the clutch manufacturer’s tolerances of allowable bending moment and shear across the clutch and the actual results achieved, it was determined that traditional ‘gap & sag’ alignment methods did not provide the accuracy necessary for clutch alignment. After switching to strain gauge alignment techniques there have been no further clutch incidents due to installation methodology. In addition the project has followed the maker’s operational recommendation to slowly raise the speed to the intended knots to gradually warm up the clutch components and avoid thermal spikes.Vibration and Noise.A joint research program by the shipyards, Class societies and independent analytical studies commissioned by the project was carried out with a single objective of minimising hull and engine induced vibrations in Q-Max and Q-Flex designs. The findings from the first principle approach using Computational Fluid Dynamics (CFD) analysis were looped back into the design process to find the optimum solution to the vibrations problem.One of the noteworthy examples was the identification of resonance in the pump tower of one design. After the combined review and analysis, it was agreed that a five bladed propeller would not only mitigated resonance issue but alsoIPTC 12445 3reduced pressure pulses from the propeller on the hull by some 30%.On another design, external electric vibration dampers were installed to mitigate known effects of six cylinder engine. Further, additional hydraulic side bracings were fitted to the engine tops and tuned on sea trials to minimize X-moment forces.On yet another design, optimally designed ‘SAVER’ fins were fitted (See Figures 3a & 3b). CFD analysis indicated that by directing the flow outside the propeller tips, excitation forces generated by the propellers would be reduced by as much as 30%, while increasing the powering performance by about 1%.Figure 3aFigure 3bAs a consequence, none of the vessels have barred speed ranges and have improved manoeuvring performance.Effectiveness of this approach during the design process has been confirmed by local and global vibration measurements. The results in Tables 1a and 1b below indicate not only specification limits were met, in some cases found to be considerably better:Noise VibrationLocation Spec Maximum Db(A) Trial Result Db(A) SpecMaximummm/sec 2 Trial Result mm/sec 2Bridge 65 55 107 38.5Bridge Wings 90 70 107 - Captain’s Day Room 55 49 107 46.0 Cargo Control Room 55 52 143 24.6 Crew’s Mess 55 53 107 38.1 Engine Control Room70 69 143 43.4 Steering Gear Room - 0.8mm/sTable 1aNoise VibrationLocation Spec Maxi-mum Db(A) Trial Result Db(A) SpecMaxi-mum mm/secTrialResultmm/se cBridge 65 59 3 0.8 Bridge Wings 70 69.2/71 - 3.4 Captain’s Day Room 55 47 3 2.9 Cargo Control Room 55 50 3 1.5 Crew’s Mess 55 56.8 3 2.3 Engine Control Room 70 69 3 1.2 Steering Gear Room - 6.9Table 1bManeouvering.The design of the Q-Flex and Q-Max LLNG Carriers of twin screw and twin rudders is demonstrating several advantages. In ship handling and maneuvering the advantages include: redundancy in propulsion and steering plus very good heading control and turning ability. The performance of these vessels, from a ship handling and maneuvering perspective, meet or exceed the project team’s expectations. Recent operational experiences at Suez Canal and Sabine (US) proved the vessels handled better than predicted through the virtual reality simulations carried out in labs. Table 2 below shows the results obtained vs. IMO / Project standard.Table 24 IPTC12445Concept and Development.The concept and development of larger LNG Carriers, to maximize cargo carrying capacity to customers, necessarily took into consideration the physical limitations of the export and import terminals of their intended trade. This resulted in the vessel classification design called Q-Max. The Q-Flex concept design, as is implied in its name, provides an increased flexibility in delivery points. Once the principle dimensions and concept design of the Q-Flex and Q-Max class of ships were identified, ship handling studies were conducted to verify that these ship sizes could safely enter, maneuver, berth and depart the targeted ports.A wide range of propulsion system options, with different rudder and propeller configurations were carefully studied before the final project selection of the use of twin screw and twin rudders. This was considered to be the more challenging propulsion system of those under review by the project team. However, studies confirmed that the propulsive efficiency of the twin screw ship is higher than the single screw design due to wake flow characteristics of the relatively wide but shallow draft ships. The improved efficiency and reduced fuel consumptions compensated for the extra capital cost of a twin screw ship.Additionally, from a ship handling and control point of view, the twin rudder and twin propeller design also provides advantages over a single propeller vessel for the size.Preliminary ship handling studies were carried out for several concept designs of the Q-Flex and Q-Max ships for maneuver in Ras Laffan Harbour and the port of Milford Haven in Wales, UK. These studies verified the feasibility of being able to safely maneuver the large LNG Carriers into and out of these ports with both twin and single screw configurations. They also gave the project team confidence in the design concept and handling ability of these ships with their length over all, beam, draught, and wind sail area.Throughout the project there were numerous studies involving ship handling looking at various aspects of berth locations, configuration, and layout. The ship models used always performed well and resulted in no changes in the berth designs being required due to ship handling characteristics. Trials and Service.The first fleet of eight Q-Flex vessels have been delivered and are in service. Their outstanding ship handling and manoeuvring performance has been proven while delivering cargoes to LNG Receiving Terminals around the world including in: Japan; Korea; the United States; Mexico and Spain, as well as during transits of the Suez Canal. Feedback from pilots and the ships’ captains, on the handling properties of these ships have been very positive and reinforce the findings during the concept design maneuvering studies and in sea trails.The first Sea Trials of the Q-Max design ships have recently been completed. These have demonstrated the effectiveness of the twin rudders and screws on this class of ship with results similar to the Q-Flex ships performance and within the design specifications. The Full Speed Turning Circle Tests for the Q-Max resulted in starboard turning Advance and Tactical diameter of up to 3.15 ship lengths and a Transfer of 1.13 lengths and port turning slightly lower. The full turns were completed in less than thirteen minutes. (See Figure 4 and Table 3 below)Figure 4Table 3Split Engine Turn.It’s been proven from sea trials that these large LNG vessels can easily turn within their own length splittingIPTC 12445 5 engines due to twin-screw capabilities during harbourmanoeuvring. (See Figure 5 and Table 4 below).Table 4Crash Stop Tests.Full ahead to full astern at sea speed on two engines, theresults showed that the twin screw Q-Flex ships stop within anadvance of about 12 Lbp or less with a travel distance of lessthan 15 Lbp.(See Figure 6 below).Figure 6Manoeuvring Stability.The responsiveness and manoeuvring stability of the vesselis captured by the ‘zigzag’ test and the plots in the Figures No.7 & 8 below attest to measured outcome significantly betterthan IMO resolution requirements.Figure 7Figure 8Even at low speeds the ships have proven to be verysensitive to the twin rudders and screws at speeds down toabout three knots and have maintained steerage withoutengines down to about four knots. Ship heading has beenmaintained while on Auto Pilot at speeds as low as four knots.In at least one instance a pilot maintained vessel positionand heading outside the breakwater for an extended period oftime by operating engines and rudders independently. Theseships can easily be turned, with engine and tug assist, in abouttheir own length.In summary, the handling characteristics and ability tomaintain heading of these twin screw and twin rudder vesselsis already proving to be outstanding.Reliquefaction Plant.Unlike all other cargo ships, LNG carriers have continuedto use steam turbine propulsion plant despite more efficientdiesel engines being available. This is because the gas thatnaturally evaporates from the cargo BOG is used as fuel forthe steam turbines, and until recently there was no alternative.The ability to re-liquefy the BOG now makes it possible toincrease the amount of LNG delivered to the discharge port, Initial speed 0.0ktsTravel Distance 211.5mAhead Reach 193.8mSide Reach 19.8mRpm 26Rudder angle 35°6 IPTC 12445which is more of interest for the LNG buyers globally.Reliquefaction paves the way for the installation of more efficient propulsion systems on LNG carriers. The efficiency of diesel engines is up to 50 per cent, compared with approximately 30 per cent for a steam turbine plant. The economic advantage of diesel engine propulsion translates to minimum savings of 2 to 5 million USD per year for a LNG carrier depending on size of vessel and LNG price.This all leads to higher efficiency and economy which enhances profitability significantly. However, it’s also considered as one of the most difficult challenges for such new technology to be adopted; since its use in a marine environment to date has been very limited.This paper addresses the two designs that have been adopted by the project as the main reliquefaction plants from “Hamworthy” and “Cryostar”, installed onboard the Q-Flex and the Q-Max vessels respectively. Both the concept and the actual performance as witnessed on the maiden voyage is also discussed.Main Plant Concept.The LNG is kept in a liquid state at -163°C in the tanks. Due to heat leak during transportation, gas naturally evaporates from the cargo raising tank pressure, in order to control this pressure the boil-off gas produced can be utilized within in a boiler for production of steam required for a steam-turbine propulsion plant. Or alternatively it can be used in a gas turbine or dual-fuel diesel engine to provide electric power for the propulsion of the vessel, a further option is to reliquefy the BOG and return to the cargo tanks, resulting in increased cargo quantity delivered .The reliquefaction plant process is based on the simple Brayton cycle, selected for its simplicity over a mixed refrigerant type, it uses a single closed refrigeration cycle extracting heat from the BOG through a series of heat exchangers, the preferred choice for refrigerant medium is nitrogen, due to its bulk production capability onboard standard LNG vessels it is also suitable for the reliquefaction of LNG, and as non-toxic/flammable properties.The basic plant concept (Hamworthy Mark I design) consists of cryogenic compressors, Compander and heat exchangers, whose duty is to re-liquefy BOG and control tank pressure onboard the LNG vessel. (See Figure 9)The green loop in the Figure 9 above shows the integrally-geared compressor-expander (Compander) which provides three stages of compression and one stage of expansion. Thehigh-pressure nitrogen stream is pre-cooled in a counter-current heat exchanger against the cryogenic nitrogen stream that is generated by the expansion of the pre-cooled stream. The cryogenic nitrogen refrigerant also serves to liquefy the boil-off gas, which is compressed by a two-stage integrally geared compressor (BOG Compressor) -in the red loop above- to increase its boiling point. After the boil-off gas is reliquefied within the separator, it is returned to the LNG tanks using the pressure generated by the compressor. The return pump is also provided as an alternative means to push the condensate back to the tanks if the pressure induced by the BOG compressor is not sufficient.The project opted for full redundancy of all rotating elements consistent with the base design philosophy (see Figure 10 for typical layout) in a configuration that meets full IGC requirements for back-up. Additionally a Gas Combustion unit (GCU) back up system to the reliquefaction plant is provided.Figure 10Step out in Technology.Over forty years have passed since the construction of the first LNG carrier. Of the more than 150 LNG carriers currently in service, nearly every one has been equipped with a steam turbine propulsion system. This propulsion arrangement offers notable advantages for this application. The LNG cargo continuously boils and if left unchecked would lead to unacceptable rises in tank pressure. Combustion of the boil off gas in the main boiler to produce steam provides a safe, convenient and reliable means for disposal of this gas to control tank pressure.The economic disadvantages of this propulsion system are, however, significant. Steam turbine propulsion systems are thermodynamically inefficient, converting only about 30% of the fuel's energy into useable power. Considering alternative propulsion systems can offer thermodynamic efficiencies of 40% to 50%, fuel savings provided by their introduction can be significant. In an effort to capture these savings, the QGII Development project undertook a thorough study of alternative propulsion systems for LNG carriers.IPTC 12445 7 Some of these propulsion options, such as slow-speeddiesel, were not at the time compatible with the use of thisboil-off gas as a fuel and therefore required an alternative tankpressure control system. Reliquefaction of the LNG boil-offprovides one such means. Economics may also suggest thatreliquefaction systems be installed even on LNG carriers withpropulsion systems that allow the consumption of boil-off gasas a fuel. This would provide the flexibility to select thepropulsion system's primary fuel depending on the relativeprices of the fuel options at a given time.Experience with LNG reliquefaction is, however, verylimited. Only one LNG carrier, the LNG Jamal, has ever beenbuilt with a reliquefaction system. The plant on the LNGJamal was installed as a test bed for future system development. This is evidenced by the fact that the plant was installed in association with a steam turbine propulsion system, which limits the criticality of the operation of the reliquefaction plant.The QGII Shipping Team decided that the ExxonMobil Technology Qualification Management System (TQMS) should be applied for this qualification effort. TQMS provides a method to evaluate the introduction and adequacy of new technologies. For this process, the TQMS procedure seeks consensus from ExxonMobil's and Qatar Petroleum's technical and operating organizations that this new technology, which offers significant potential but whose performance is not established and outside existing applied norms, is qualified for such marine application.Reliquefaction capacity.The initial plant design capacity was set to equal the guaranteed boil off rate of the specified vessel with the process concept for the partial reliquefaction of the QG2 cargo composition, any waste gas generated (nitrogen rich) is disposed of within the gas combustion unit (GCU). However, an early result from the dynamic model simulations was an indication that the plant would be capable of full reliquefaction at QG2 LNG design composition. This has been subsequently proven in actual service with a composition that is slightly more nitrogen rich than the original design basis. Implementing advanced concepts.Later on, in the project, HGS introduced the improved Mark III reliquefaction plant to the project for evaluation. The main feature of the new plant is that it uses a pre-heater instead of the pre-cooler as in Mark I (See Figure 11). The new concept is based on the interesting thermal phenomena of the refrigeration process when the heat exchanging operation of the hot BOG takes place in the cold box, the energy efficiency is improved by some 800kW. Figure 11The implementation of the Mark III LNG reliquefaction system will also have effect on other equipment than that delivered by HGS. Since the BOG cycle pressure may become higher than the N2 refrigeration loop, all equipment should be placed in hazardous area zone 1. This implies that all electrical equipment must be (Ex) classified in accordance with this zone.The bulkhead which previously separated the motor room from the compressor room can be removed. Equipment can therefore be arranged more efficient in the room, and it consequently seems to be a potential for reducing the room size in total. When removing the bulkhead, all bulkhead seals are removed. This results in reduced instrument air/N2 consumption. (See Figure 12 HGS Mark III design).Figure 12Due to a more energy efficient system, N2 compander motor can be significantly reduced along with the associated frequency converter, cables, and similar. The BOG compressor motor becomes larger. Overall motor power is reduced while number of motors remains the same. Cooling water system (including pumps, pipes, valves, heat exchangers, etc.) can in total be reduced since the cooling water demand for the LNG Reliquefaction system will be reduced proportionally with the rated power. See Table 5 below for the estimated power demand for the Mark I and Mark III:8 IPTC12445 Equipment/system MarkIMarkIIIN2 Compander 4681 3572BOG Compressor 381 870Total kW 5062 4442Table 5The power demand is approximately 13-15% higher forMark I than for Mark III. This will consequently represent amajor advantage to the owners in terms of operational costsfor the LNG Reliquefaction plant. Mark III was then the bestchoice for the rest of the 11 Q-Flex’s.Promoting commercial competiveness.Following signing of the Shipbuilding Contract (SBC)with the three shipyards, different vendors were put forwardby the yards for consideration as Reliquefaction vendors. At that time with HGS being sole supplier, the project was well aware that such a situation did not necessarily promote design development and/or commercial competiveness and so a project decision was made to identify at least one additional suitable vendor.Having appraised the initial submissions it was clear, careful evaluation was required. In the pursuit of finding another qualified vendor; the project team with specialist support in both rotating equipment and process applications fields being provided by ExxonMobil Upstream Research Company (EMURC) has subjected both hardware and software aspects of the various proposals to:•Close scrutiny and inspection, with particular emphasis being placed on the software/control applications. •Process evaluations using sophisticated Dynamic Modeling System (DMS) techniques.•Presentation of proven track record system in marine cryogenic system applications,•Demonstration of having adequate resources, technical ability and capabilities to produce a working plant. Following this strategy, Cryostar attained vendor qualification in 2005 and have been awarded the contracts for the Q-Max vessels now being constructed.The Ecorel system that has been proposed by Cryostar is for full reliquefaction of LNG BOG with up to 1% N2 content, with no venting or waste gas handling required. Design highlight of the system include:•Upstream of the compressor, part of condensate stream from the condenser outlet is recycled into a spray cooler in order to reduce and control the vapor inlet temperature •The condensed stream after the expansion valve is remixed with an LNG stream taken from spray pumps inorder to sub-cool the mixed stream before returning this stream into the tank.•The system design relies upon specialized distribution manifold within each tank to ensure good mixing of the condensate into tank.A schematic of the Cryostar system is presented in Figure 13 Figure 13Functionality assurance.All plant designs are a combination of major cryogenic components supplied by different vendors and onshore testing of the complete plant prior to installation was not practicable. In recognition of the interface complexity the Project developed an alternative testing schedule to mitigate any risk: •All major rotating equipment subject to full performance Factory Acceptance Testing (FAT).•Adoption of an integrated Mechanical Acceptance & Completion (MAC) matrix based on established upstreamproject methodology.•Process verification using snapshot and DMS techniques. •DMS model subject to functionality testing, while integrated with vessels Distributed Alarm & Control System (DACS) to confirm control algorithms before anylive tests being conducted onboard•Prior to Gas Trial each yard to undertake a N2 onboard reliquefaction test on the first vessels.Adopting a consistent project philosophy for all PC based sys-tems installed has significantly reduced the potential for the introduction of faults and errors. Thus a guiding principle of a single point of contact (generally the DACS vendor) to adopt responsibility for all integrated solutions was instigated.Reliquefaction operation overview.Minimise thermal cycling and improve plant availability.Minimizing plant exposure to thermal cycling is one of the major design concept and philosophies to be achieved. This was addressed by ensuring that at all times the nitrogen (N2) cycle would be maintained in cold conditions. Other than for equipment changeover and/or maintenance, the N2 Compander will be running continuously, including during vessel loading and unloading, for which a standby mode is adopted with the BOG cycle shutdown and N2 cycle on minimum load. In order to reduce the BOG start-up times upon completion of cargo loading; the project has investigated the possibility of using BOG free flow mode without running BOG compressor.。
LNG运输船市场现状及未来前景一、LNG运输船市场现状1.需求增长近年来,随着全球对清洁能源的需求不断增长,LNG的需求也在不断扩大。
特别是在亚太地区,LNG需求增长迅猛,主要受到中国、印度等国家的推动。
相应的,LNG运输船市场也呈现出了增长的态势。
由于欧洲和美国等地区也在逐渐增加对LNG的需求,因此全球范围内LNG运输船市场的需求也将呈现出增长的趋势。
2.船龄更新目前全球范围内运行的LNG运输船大部分都已经具有较高的船龄,因此随着LNG需求的增长和市场的发展,液化天然气运输船的需求也将进一步增加。
随着技术的不断进步和环保要求的加强,老旧的LNG运输船将逐渐被新型更为高效和环保的船舶所取代。
3.市场竞争LNG运输船市场虽然需求增长迅猛,但是市场竞争也日益激烈。
各大造船企业在LNG运输船领域展开了激烈的竞争,同时LNG运输船的运营商也在不断扩大船队规模,从而更好地满足市场需求。
在这种市场竞争的背景下,各参与者需要不断提高自身的技术水平和服务质量,以获取更多的市场份额。
未来,全球对清洁能源的需求将继续增长,而LNG作为清洁高效的能源将成为最为主要的选择之一。
尤其是在发展中国家和新兴经济体,LNG的需求将会继续增长。
LNG运输船市场的需求也将呈现出持续增长的趋势。
伴随着LNG需求的增长,LNG运输船的设计和技术也将不断更新。
未来的LNG运输船将更加注重环保性能和能效性能,从而将更好地满足全球对清洁能源的需求。
新型LNG运输船也将更注重船舶的安全性能和操作效率,以应对日益激烈的市场竞争。
未来,LNG运输船市场将面临着很多机遇。
随着世界各国对清洁能源的需求不断增加,LNG运输船市场的需求将会持续扩大。
特别是在亚太地区,LNG运输船市场的发展将更为迅猛。
LNG作为清洁能源的推广将会成为未来的发展趋势,这必将为LNG运输船市场带来更多的发展机遇。
LNG运输船市场在未来将面临着巨大的发展机遇,但是同时也将面临更为激烈的市场竞争。
LNG运输船是指载运LNG(常压下沸点为-162.5℃)的专用船舶。
LNG(液化天然气)的主要成分是甲烷,还有一些乙烷、丙烷、少量的氮、二氧化碳、硫化氢等。
天然气常温常压下为气体,而同等质量的LNG体积只有天然气的1/600左右,所以,为了提高天然气的运输效率,通常都将天然气液化成LNG进行运输。
LNG船目前的标准载货量在12万~15万m3之间,一些先进国家已经能设计出16万m3、20万m3、甚至30万m3的LNG船,但是由于船只尺寸通常受到港口码头和接收站条件的限制,所以LNG船的舱容量可能会稳定在十几万立方米的水平上。
LNG船的储罐是独立于船体的特殊构造。
在该船的设计中,考虑的主要因素是能适应低温介质的材料,对易挥发、易燃物的处理。
LNG船的使用寿命一般为35~40年。
鉴于LNG特殊的理化性质,对LNG船的各方面性能要求极高。
所以,LNG船被称为是前所未有的高技术、高难度和高附加值的船舶。
2 LNG的危险性LNG由于是低温液体,所以LNG除了具有和原油相似的危险性外,还有着其特殊的低温危险性,具体表现在以下几个方面。
首先,LNG是-162.5℃的低温液化气体,当其与人体直接接触时,裸露在外的皮肤会被冻伤。
如果皮肤与LNG 接触时间过长,就会造成永久性的伤害。
严重时,可能会危及生命。
再者,工作人员进入舱内作业时,由于LNG 的蒸发,如果达到一定的浓度,会造成窒息甚至死亡。
其次,由于LNG在储存过程中出现的沸腾与翻滚现象,容易导致液货舱内的压力急剧升高,冲开安全阀,从而导致大量的天然气释放到空气中。
一方面是能源的浪费,一方面会造成天然气在空气中的浓度超过规定,而引起爆炸以及火灾,对于船体的本身及港口、设备的安全也造成极大的威胁。
3 LNG船修理的相关安全要求由于LNG具有其特殊的低温危险特征,所以,对LNG船安全性能的要求比油轮和其他一些化学品船高得多,具体要求如下。
液化气船在未经置换、未经除气的情况下,只可在船厂进行停泊或进坞,但是在该停泊位或干船坞周围要有一个25m的安全区,25m的距离是从船舶处开始测量的。
全球造船业发展报告(DOC 67页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑产业发展报告青岛胶南市人民政府二〇一二年五月目录第一章全球造船业发展现状 (7)第一节船舶类型及三大指标 (7)一、船舶类型及走向 (7)二、造船三大指标 (7)第二节世界船舶产业格局 (7)一、中国 (8)二、韩国 (8)三、日本 (8)四、欧洲 (9)第三节主要造船企业 (9)一、中国主要造船企业 (9)(一)外高桥造船 (9)(二)大连船舶重工 (10)(三)江南长兴 (10)(四)南通中远川崎船舶 (10)(五)江苏新世纪造船 (10)(六)渤海船舶重工 (10)二、韩国主要造船企业 (11)(一)现代重工 (11)(二)三星重工 (11)(三)大宇造船 (11)(四)STX造船 (11)三、日本主要造船企业 (11)(一)今治造船 (12)(二)万国造船 (12)(三)川崎造船 (12)(四)常石造船 (12)第四节世界造船业发展态势及趋势预测 (12)一、造船业发展态势 (13)二、造船产业发展趋势预测 (14)(一)未来船舶市场将呈现出需求结构变化明显。
(14)(二)造船行业兼并重组加剧。
(14)第五节金融危机对造船业发展的影响 (15)一、对日本造船业的影响 (15)二、对韩国造船业的影响 (16)三、对中国造船业的影响 (17)第六节全球新造船市场特点 (17)第二章造船产业发展特点 (18)一、中韩主导新船市场 (19)二、散货船为交,海工船需求增加 (19)三、中韩造船业呈错位态势 (20)四、兼并重组趋势明显 (20)五、主要造船企业利润明显下降 (21)六、日韩加强全球战略布局 (21)七、主要船企加大海工发展力度 (22)八、欧洲船舶融资紧缩 (23)九、中韩竞争加剧,中国或爆发大规模兼并重组 (23)十、兼并重组将进入实质性操作阶段 (24)十一、造船业利润呈下滑趋势 (24)第三章船舶配套业的发展 (25)第一节船舶配套业总体特点 (25)一、船配强手各有所长 (25)二、欧洲——世界船用设备研发中心 (26)三、日本——世界最强的船用设备制造国 (27)四、韩国——快速崛起的船用设备制造国 (28)五、中国——船配尚有差距 (28)第二节欧洲船舶配套业的发展特点 (29)第三节日本船舶配套业的发展特点 (30)第四节韩国船舶配套业的发展特点 (31)第五节中国船舶配套业的发展特点 (32)第四章中国造船业的发展 (33)第一节发展历程 (33)一、原始期 (33)二、开创期 (33)三、盛行期 (33)四、衰落期 (34)五、恢复发展期 (34)六、兴旺期 (35)第二节船舶业发展现状 (36)第三节船舶业运行分析 (37)一、经济运行基本情况 (37)二、经济运行的主要特点 (38)三、存在的问题 (41)四、预测和建议 (43)第四节发展目标 (46)一、科技综合实力跃居世界前列 (46)二、产业结构优化升级 (46)三、效率效益显著提升 (46)四、配套能力和水平大幅提高 (46)第五节船舶配套业发展现状 (47)一、发展现状 (47)二、技术水平 (50)三、存在的主要问题 (52)第六节技术发展方向 (53)一、技术比较 (53)二、发展方向 (54)第七节发展建议 (56)一、培育垄断竞争型企业 (56)二、加快产品结构调整升级和优化 (56)第五章山东造船业的发展 (57)第一节造船业发展现状 (57)一、产业体系不断完善,经济运行态势良好。
全球LNG运输船大盘点(DOC 68页)2015年5月全球LNG运输船大盘点2015年06月03日14:04全球建造LNG运输船最多的国家是韩国和日本,不是欧美国家。
中国算不上老几,但比美国强得多,中国悄悄地爬到世界第三。
2008年中国首次建造的LNG运输船LNG(液化天然气,Liquefied Natural Gas) 是在一定的温度和压力条件下被液化了的以甲烷为主的天然气。
它是储存与运输天然气的经济方式,适用于远距离海运。
LNG被鼓吹为新能源,那是忽悠人的。
LNG本质仍然是天然气,天然气是化石燃料的一种,不是清洁能源。
LNG只是天然气的一种输送形式,适合于开发如中东、东南亚等的“闲置天然气”,生产成LNG便于海洋航运到消费地区如东亚。
中国地处东亚,天然气资源相对贫乏,中国进口LNG比日本足足迟缓45年,但是中国LNG进口量上升很快。
美国页岩气开发获得成功,媒体大肆鼓吹美国LNG大举出口,输往全球并与卡塔尔抢市场,当然制造LNG运输船首当其冲,给人造成错觉:美国是LNG运输船生产大国。
全球LNG运输船状况究竟如何?本文用2015年5月的最新数据回答这个问题:全球建造LNG运输船最多的国家是韩国和日本,不是欧美国家。
中国算不上老几,但比美国强得多,中国悄悄地爬到世界第三。
LNG运输船舱容是怎么发展的?LNG船舱容是指运载的专用船舶LNG的载货体积。
形成工业规模的天然气液化和海运始于1964年。
当时处于试运阶段,舱容小,在1975年前,都小于100 000 m3,属于小型LNG运输船。
其后发展到100 000~200 000 m3,主要在126 000~133 000 m3之间,称为“标准型”,船龄为25~30年。
到20世纪70年代进入大规模发展阶段,各国建造的液化天然气运输船也越来越多。
时间推移到1971年,卡塔尔和伊朗发现了有世界上最大的气田—南帕尔斯/北部穹窿凝析气田(South Pars / North Dome Gas-Condensate field),可采储量高达36万亿立方米。
也就是说,比美国全国天然气可采储量9.3万亿立方米(2014年)高4倍。
图1南帕尔斯/北部穹窿凝析气田由于卡塔尔远离天然气消费市场,主要通过LNG运输船外运,从能源和环境保护考虑,出现了冠以“Q(Qatar的字头)”的超大型运输船:Q-Fleet和Q-Max。
别认为海洋上巨无霸是航空母舰,Q-Max(LNG运输船)和Prelude Floating LNG(“前奏号”浮动式LNG生产平台,船长488米)都比航空母舰大得多。
哪个国家建造LNG运输船最多?Q-Fleet和Q-Max的营运管理由卡塔尔气体运输公司(Qatar Gas Transport Company ,简写Nakilat)执行。
美国是一个经济发达的国家,提起美国LNG出口,吹嘘想霸占全球,想当然的是美国建造LNG运输船领先,错了。
LNG及其运输船风起欧美国家,在20世纪70年代生产小型LNG运输船,随后发展到生产标准型LNG运输船,但数量很少,后来全盘转移到东亚国家,见表2。
LNG运输船建造速度很快,2012年服役的LNG运输船有361艘,2015年跃居415艘,增幅为15%。
船舶生产是不断生产并不断交付的,本数据的交付服役和正在建造的时间分界线是2015年5月,所以本表是刚“出笼”的新鲜数据。
这张表颠覆了传统观念,欧美国家生产LNG运输船早已没落,美国在1980年9月以后就没有生产了,西班牙在2007年11月算是欧美国家生产最后一艘LNG运输船,代之而起的是东亚国家,特别是韩国。
中国在世界LNG造船业中后进,算不上老几,可是发展很快,尽管只有7艘船服役,但正在建造的有14艘,其中已经有外国订货,比美国强多了。
如果按照正在建造的数量来看,中国为14艘,排行第三,仅次于韩国64艘和日本15艘。
哪家公司生产LNG运输船最多?说道LNG运输船的建造,美国是没有戏的,不会提到美国有多么强大。
根据2015年5月的数据显示,交付服役的前三位公司都在韩国:三星、大宇和现代,其次是日本三家公司:三菱长崎、川崎坂出和三井千叶。
中国LNG运输船建造属于后起之秀,排在第九位;如果按照订单来看,中国排在第三位,仅次于大宇和三星。
后来者紧追,也不错了。
哪家公司生产LNG运输船最大?LNG运输船按照舱容的大小可以分为4类,见表4。
小型船舶已经很少生产了。
LNG运输船主要生产标准型,Q-Fleet和Q-Max生产量少,由韩国现代(Hyundai Heavy Industries)、大宇重工造船海洋工程公司(Daewoo Shipbuilding & Marine Engineering Company)、三星重工业(Samsung Heavy Industries)制造。
这三家公司均属韩国,共计生产43艘,见表5,但在2011年后已经不生产了。
LNG运输船籍怎么啦?车有牌照,人有户口,自家孩子跟自家姓,可是海洋航行的轮船却是自家孩子跟别人姓,生产的船只既不是生产国的,也不是船东的,譬如,法国有25艘LNG 运输船,只有4艘挂法国旗,其他船籍分别为挂文莱旗4艘、百慕大旗2艘、阿尔及利亚5艘、马来西亚10艘。
这种船称为便宜置籍船,简单可叫“方便旗(Flag of Convenience ship,FOC)”,指在外国注册登记,悬挂外国国旗并在国际市场上进行营运的船舶。
即船东没有在本国登记,将船转移到国外登记,以图逃避国家重税和军事征用,自由制定运价不受政府管制,自由处理船舶与运用外汇,自由雇佣外国船员以支付较低工资等。
主要在利比亚、巴拿马、塞浦路斯、新加坡、文莱,……等国家登记,通过这种登记可增加登记国家的外汇收入。
这种情况在油轮、LNG运输船和LPG(液化石油气)船很普遍。
只有中国、比利时、意大利和西班牙例外,LNG运输船挂本国的国旗。
LNG运输船哪种货仓系统最多?LNG运输船货仓系统是指载运LNG的专用安全壳液货仓。
天然气液化的临界温度在一个大气压时为-1640C。
在此低温下,船用碳素钢均呈脆性,为此液化天然气船的液货舱只能用较昂贵的镍合金钢或铝合金制造。
液货舱内的低温靠液化天然气本身蒸发带走热量来维持。
蒸发出来的天然气通常只能作为船上锅炉的补充燃料。
液货舱和船体构件之间有优良的绝热层,既可防止船体构件过冷,又可使液货的蒸发量维持在最低值。
液货舱和船体外壳保持一定的距离,以防在船舶碰撞、搁浅等情况下受到破坏。
目前液化天然气运输船主要有三种基本船型,即法国TZ Mk. III(薄膜货舱)、法国GT NO 96(薄膜货舱)和挪威MOSS型(球形货舱)。
见表6,该表是根据2015年5月的数据对交付和在建的艘数分类,可以看出薄膜货舱占主导地位。
建造LNG运输船要比建造油船需要大量的劳动力和更高的技术工艺,具有极其严格的质量控制体系,是船舶制造业中技术工艺要求最为严格的一种,尤其是建造密封系统需要特殊的设备和装置以及技术熟练的人员,并须获得制造密封系统的许可证。
因此全世界LNG运输船的建造能力受到限制。
建造Q-Max和Q-Flex超级LNG运输船,大宇(Daewoo)采用GT NO 96货仓,而现代(Hyundai)和三星(Samsung)采用TZ Mk. III货仓。
中国沪东中华建造的LNG运输船均属标准型,采用GT NO 96货仓系统。
图2薄膜货舱球形货舱全球LNG运输船是哪些公司建造的?这是个大问题,痛快点把2015年5月整个统计表列出来,想研究就仔细琢磨。
表中没有把造船厂家、船名、船东等翻译出来,如果花很大精力翻译出来,总算把它变成了一张废纸了。
读者可以通过英文输入到百度等搜索引擎中查询更加详细的资料。
表中有绿色部分,表示在建的尚未交付的船。
另外,自从LNG运输船运营以来,报废的LNG运输船有54艘,现在运营和在建的船只可以在这个表中看到。
表72015年5月全球服役和在建的LNG运输船造船厂家船名船东交付时间储罐系统舱容/m3比利时Boelwerf Methania Distrigas 1978.1GT NO85131,235中国大连中远CNOOC Energy 2015.3 T GE C 28,000沪东中华大鹏昊China LNGShipping2008.4.GT NO96147,00沪东中华大鹏月China LNGShipping2008.7.GT NO96147,00沪东中华闽榕China LNGShipping2009.2.GT NO96147,00沪东中华闽鹭China LNGShipping2009.8.GT NO96147,10沪东中华大鹏星China LNGShipping2009.10.GT NO96147,10沪东中华Shen Hai China LNGShipping2012.9.GT NO96147,10沪东中华 PapuaAquarius LNG 2015.2.GT NO 96 172,00沪东中华Beidou Star2015.10.GT NO 96172,000沪东中华Southern Cross2015.2.GT NO 96 172,000 沪东中华2016.2.GT NO 96 172,000 沪东中华Sinopec/CSG2016.4.GT NO 96 174,000 沪东中华Sinopec/CSG2016.8.GT NO 96 174,000 沪东中华Sinopec/CSG2016.12.GT NO 96174,000沪东中华Sinopec/CSG2017.4.GT NO 96 174,000 沪东中华Sinopec/CSG2017.8.GT NO 96 174,00沪东中华Sinopec/CSG2017.11.GT NO 96174,000沪东中华Teekay LNG2017.9.GT NO 96 174,000 沪东中华Teekay LNG2018.1.GT NO 96 174,000 沪东中华Teekay LNG2018.6.GT NO 96 174,000 沪东中华Teekay LNG2019.1.GT NO 96 174,00芬 兰 Kvaerner-Ma saMubarazNational Gas Shipping 1996.1. Moss136,357 Kvaerner-Ma saMrawehNational Gas Shipping 1996.6. Moss136,357 Kvaerner-Ma saAl HamraNational Gas Shipping1997.1. Moss136,357 Kvaerner-Ma Umm Al NationalGas 1997.5. Moss136,35sa Ashtan Shipping 7法 国Atlantique BebatikBrunei Shell Tankers 1972.10.TZ Mk. I 75,100Atlantique LNG LagosBonny Gas Transport1976.12.GT NO 85122,00AtlantiqueLNG Port Harcourt BonnyGas Transport 1977.9.GT NO 85 122,000 AtlantiqueMourad Didouche SNTM-Hyproc 1980.7.GT NO 85 126,130 AtlantiqueRamdane AbaneSNTM-Hyproc 1981.7.GT NO 85 126,13Atlantique Puteri Intan M.I.S.C.1994.8.GT NO 96 130,405 Atlantique Puteri Delima M.I.S.C.1995.1.GT NO 96 130,405 Atlantique Puteri Nilam M.I.S.C.1995.6.GT NO 96 130,405Atlantique Puteri Zamrud M.I.S.C.1996.5.GT NO 96 130,405 Atlantique Puteri Firus M.I.S.C.1997.5.GT NO 96 130,405 Atlantique GDFSuezGlobal EnergyGDF Suez2006.12. CS1 74,100Atlantique Provalys GDF Suez 2006.11.CS1153,500 Atlantique Gaselys GDF Suez/NYK 2007.3. CS1153,500Dunkerque Sunrise Dynacom1977.12.GT NO 85129,299Dunkerque Tenaga Dua M.I.S.C.1981.8.GT NO 88 130,000 Dunkerque Tenaga Tiga M.I.S.C.1981.12.GT NO 88130,000Dunkerque Tenaga Satu M.I.S.C.1982.9.GT NO 88 130,00La Ciotat BelanakBrunei ShellTankers1975.7. TZ Mk. I 75,000La CiotatMostefaBen Boulaid SNTM-Hyproc 1976.8. TZ Mk. I125,26La Seyne BilisBrunei Shell Tankers 1975.3. GT NO82 77,731La Seyne BubukBrunei Shell Tankers1975.10. GT NO8277,670La SeyneLarbi Ben M'Hidi SNTM-Hyproc 1977.6.GT NO 85 129,767La SeyneBachir Chihani SNTM-Hyproc 1979.2.GT NO 85 129,767La Seyne Tenaga Empat M.I.S.C.1981.3.GT NO 88 130,000 La Seyne Tenaga Lima M.I.S.C.1981.9.GT NO 88 130,00德 国 HDWGolar Freeze Golar LNG1977.2. Moss 125,82HDW Gandria Golar LNG 1977.10.Moss125,82意大利Genova Sestri LNGPortovenereLNG Shippingspa1996.6.GT NO9665,000Genova Sestri LNG LericiLNG Shippingspa1998.3.GT NO9665,000日本IHI Chita Polar Spirit Teekay LNG 1993.6. IHI SPB 89,880IHI Chita Arctic Spirit Teekay LNG 1993.12.IHI SPB 89,880Kawasaki Sakaide Golar Spirit Golar LNG 1981 Moss129,00Kawasaki Sakaide WilPower Awilco LNG 1983.8. Moss125,70Kawasaki Koto J3 Consortium 1984.1. Moss 125,19Sakaide 9Kawasaki Sakaide NorthwestShearwaterNW ShelfShipping1991.9. Moss127,50Kawasaki Sakaide LNG Flora J3 Consortium 1993.3. Moss127,705Kawasaki Sakaide ShahamahNational GasShipping1994.10.Moss136,872Kawasaki Sakaide Surya AkiMCGCInternational1996.2. Moss 19,474Kawasaki Sakaide Al Rayyan J4 Consortium 1997.3. Moss135,358Kawasaki Sakaide Al Wakrah J4 Consortium1998.12.Moss135,358Kawasaki Sakaide Al Biddah J4 Consortium1999.11.Moss135,279Kawasaki Sakaide EnergyFrontierTokyo LNGTankers2003.9. Moss147,599Kawasaki Energy Tokyo LNG 2005.3. Moss 145,00Sakaide Advance Tankers 0Kawasaki Sakaide Fuji LNG Aletheia Owning 2004.3. Moss149,172Kawasaki Sakaide Arctic Voyager K Line 2006.4. Moss140,00Kawasaki Sakaide Lalla FatmaN'SoumerAlgeria NipponGas2004.12.Moss145,445Kawasaki Sakaide EnergyProgressMitsui OSK Line2006.11.Moss145,00Kawasaki Sakaide LNG Dream Osaka Gas 2006.9. Moss145,00Kawasaki Sakaide Nizwa LNGOryx LNGCarriers2005.12.Moss145,00Kawasaki Sakaide Neva River K Line2007.12.Moss145,00Kawasaki Sakaide LNG EbisuPioneerNavigation2008.12.Moss145,00Kawasaki LNG Barka Osaka Gas 2008.1Moss 153,00Sakaide 2. 0Kawasaki Sakaide LNG Jupiter Osaka Gas2008.11.Moss153,00Kawasaki Sakaide Sun ArrowsMaple LNGTransport2007.9. Moss 19,100Kawasaki Sakaide EnergyNavigatorTokyo LNGTankers2008.3. Moss145,00Kawasaki Sakaide EnergyConfidenceTokyo LNGTankers2009.3. Moss153,00Kawasaki Sakaide Taitar No. 2 NYK Line2009.12.Moss145,00Kawasaki Sakaide Taitar No. 4 NYK Line2010.10.Moss145,00Kawasaki Sakaide EnergyHorizonTokyo LNGTransport2011.8. Moss177,00Kawasaki Sakaide Grace Dahlia Tokyo Gas2013.10.Moss177,00Kawasaki LNG LNG Fukurokuju 2015.6. Moss 165,00Sakaide Fukurokuju S'g.0 Kawasaki SakaideK Line 2015.12. Moss165,000 Kawasaki SakaideK Line 2016.10.Moss182,000 Kawasaki SakaideMitsui & Co. 2017 Moss155,000 Kawasaki SakaideMitsui & Co. 2018 Moss155,000 Kawasaki SakaideK Line 2016 Moss165,000Koyo Dock Trinity Arrow K Line2008.3.TZ Mk. III 154,200 Koyo Dock Trinity Glory K Line2008.12.TZ Mk. III154,000Koyo Dock GDFSuezPoint FortinTrinity LNG2010.2.TZ Mk. III 154,200 MHIWilEnergyAwilco LNG1983.1Moss 125,50Nagasaki 0. 0MHI Nagasaki Echigo Maru J3 Consortium 1983.8. Moss125,568MHI Nagasaki WilGas Awilco LNG 1984.7. Moss125,60MHI Nagasaki NorthwestSanderlingNW ShelfShipping1989.6. Moss127,50MHI Nagasaki LNG Swift J3 Consortium 1989.9 M oss127,50MHI Nagasaki EkaputraHumpussConsortium1990.1. Moss136,40MHI Nagasaki NorthwestSeaeagleNW ShelfShipping1992.11.Moss127,50MHI Nagasaki LNG VestaTokyo GasConsortium1994.6. Moss127,547MHI Nagasaki DwiputraHumpussConsortium1994.3. Moss127,386MHI Ish National Gas 1995.1Moss 136,82Nagasaki Shipping 1. 4MHI Nagasaki NorthwestStormpetrelNW ShelfShipping1994.12.Moss127,50MHI Nagasaki Al Khor J4 Consortium1996.12.Moss137,354MHI Nagasaki Al Wajbah J4 Consortium 1997.6. Moss137,354MHI Nagasaki Doha J4 Consortium 1999.6. Moss137,354MHI Nagasaki Al Jasra J4 Consortium 2000.7. Moss137,10MHI Nagasaki Golar MazoGolar/ChinesePet.2000.1. Moss135,225MHI Nagasaki LNG JamalOsaka Gas/J3Cons.2000.10.Moss135,333MHI Nagasaki Sohar LNG Oman Gas/MOL2001.10.Moss137,248MHI Abadi Brunei Shell 2002.6. Moss 135,00Nagasaki Tankers 0MHI Nagasaki Puteri IntanSatuM.I.S.C.2001.12.GT NO96137,10MHI Nagasaki Puteri NilamSatuM.I.S.C. 2003.9.GT NO96137,10MHI Nagasaki Galea Shell Shipping2002.10.Moss134,425MHI Nagasaki Gallina Shell Shipping 2003.3. Moss134,425MHI Nagasaki Pacific NotusPacific LNGShipping2003.9. Moss137,006MHI Nagasaki Puteri FirusSatuM.I.S.C. 2004.9.GT NO96137,10MHI Nagasaki Gemmata Shell Shipping 2004.3. Moss138,104MHI Nagasaki Arctic PrincessHoeghLNG/MOL2006.6. Moss147,20MHI Arctic Lady Hoegh 2006.5. Moss 147,20Nagasaki LNG/MOL 0MHI Nagasaki Pacific Eurus LNG Marine Tpt 2006.3. Moss137,00MHI Nagasaki Ibri LNG Oman Gas/MOL 2006.7. Moss147,20MHI Nagasaki Alto Acrux LNG Marine Tpt 2008.3. Moss147,20MHI Nagasaki Seri Bakti M.I.S.C. 2007.4.GT NO96152,30MHI Nagasaki Seri Begawan M.I.S.C.2007.12.GT NO96152,30MHI Nagasaki Seri Bijaksana M.I.S.C. 2008.2.GT NO96152,30MHI Nagasaki Seri Balhaf M.I.S.C. 2008.9.GT NO96152,00MHI Nagasaki Seri Balqis M.I.S.C.2008.12.GT NO96152,00MHI Grand Elena Sovcomflot/NYK 2007.1Moss 147,20Nagasaki Line 0. 0MHI Nagasaki Grand AnivaSovcomflot/NYKLine2008.1. Moss147,20MHI Nagasaki CygnusPassageCygnus LNGShipping2009.1. Moss145,40MHI Nagasaki PacificEnlightenLNG Marine Tpt 2009.3. Moss145,00MHI Nagasaki Taitar No. 1 NYK Line2009.10.Moss145,00MHI Nagasaki Taitar No. 3 NYK Line 2010.1. Moss145,00MHI Nagasaki Pacific Arcadia LNG Marine Tpt 2014.5. Moss145,40MHI Nagasaki LNG Venus Osaka Gas/MOL2014.11.Sayaendo155,00MHI Nagasaki Osaka Gas/MOL 2015Sayaendo155,00MHI Mitsui OSK Line 2015 Sayaend155,00Nagasaki o 0MHI Nagasaki Mitsui OSK Line 2016Sayaendo155,00MHI Nagasaki 2016Sayaendo155,00MHI Nagasaki 2016Sayaendo155,00MHI Nagasaki Ocean BreezeLNG2017Sayaendo155,00MHI Nagasaki NYK Line 2017Sayaendo155,00MHI Nagasaki Mitsui & Co. 2018 Moss177,00MHI Nagasaki Mitsui & Co. 2019 Moss177,00Mitsui Chiba S enshu Maru J3 Consortium 1984.2. Moss 125,00 0Mitsui Chiba W akaba Maru J3 Consortium 1985.4. Moss 125,00Mitsui Chiba NorthwestSwallowJ3 Consortium1989.11.Moss127,50Mitsui Chiba NorthwestSnipeNW ShelfShipping1990.9. Moss127,50Mitsui Chiba NorthwestSandpiperNW ShelfShipping1993.2. Moss127,50Mitsui Chiba A l Khaznah National GasShipping1994.6. Moss136,872Mitsui Chiba G hasha National GasShipping1995.6. Moss136,824Mitsui Chiba A l Zubarah J4 Consortium 1996.12.Moss137,573Mitsui Chiba B roog J4 Consortium 1998.5. Moss 135,46 6Mitsui Chiba Z ekreet J4 Consortium 1998.12.Moss135,42Mitsui Chiba Puteri Delima M.I.S.C. 2002.4. GT NO 137,10Satu 96 0Mitsui Chiba Puteri ZamrudSatuM.I.S.C. 2004.1.GT NO96137,10Mitsui Chiba D ukhan J4 Consortium 2004.10.Moss135,00Mitsui Chiba Puteri MutiaraSatuM.I.S.C. 2005.4.GT NO96137,10Mitsui Chiba ArcticDiscovererK Line 2006.1. Moss140,00Mitsui Chiba G rand Mereya Primorsk/MOL/K2008.5. Moss147,20NKK Tsu Aman Bintulu Perbadanan/NYK1993.10.TZ Mk.III18,928NKK Tsu Aman Sendai Perbadanan/NYK1997.5.TZ Mk.III18,928NKK Tsu Aman Hakata Perbadanan/NYK1998.11.TZ Mk.III18,800NKK Tsu Surya Satsuma MCGC 2000.1TZ Mk. 23,096International0. IIIUniversalCheikh El Mokrani Med. LNG Tpt. Corp. 2007.6. TZ Mk.III 75,500UniversalCheikh BouamamaMed. LNG Tpt. Corp. 2008.7. TZ Mk.III75,500韩 国Daewoo SK Summit SK Shipping1999.8.GT NO 96 138,000 Daewoo K. Acacia Korea Line2000.1.GT NO 96 138,017 Daewoo K. Freesia Korea Line2000.6.GT NO 96 135,256 Daewoo Hispania Spirit Teekay LNG2002.9.GT NO 96 140,500 Daewoo Excalibur Exmar2002.10.GT NO 96138,034DaewooBW SuezBostonBW Gas2003.1.GT NO 96 138,059Daewoo Excelsior Exmar2005.1.96 0 Daewoo Galicia Spirit Teekay LNG2004.7.GT NO 96 140,624Daewoo DishaPetronet LNG Ltd. 2004.1.GT NO 96 136,026 Daewoo RaahiPetronet LNG Ltd. 2004.12.GT NO 96136,026DaewooBW SuezEverett BW Gas2003.6.GT NO 96 138,028 Daewoo Excel Exmar/MOL2003.9.GT NO 96 138,107DaewooNorthwest Swan NWShelf Shipping 2004.3.GT NO 96 138,00Daewoo Methane PrincessGolar LNG2003.8.GT NO 96 138,000 Daewoo Golar Arctic Golar LNG2003.12.GT NO 96140,648Daewoo Berge Arzew BW Gas2004.7.96 8 Daewoo Excellence GKFF Ltd.2005.5.GT NO 96 138,12DaewooLNG Pioneer Mitsui OSK Line 2005.7.GT NO 96 138,00Daewoo Golar Winter Golar LNG2004.3.GT NO 96 140,648 DaewooLNG RiverOrashiBW Gas2004.11GT NO 96145,914Daewoo LNG Enugu BW Gas2005.10GT NO 96145,000Daewoo LNG Oyo BW Gas2005.12GT NO 96140,500Daewoo LNG Benue BW Gas2006.3GT NO 96 145,700 Daewoo Golar Grand Golar LNG2006.1GT NO 96 145,70Daewoo RasgasAsclepiusKristenNavigation2005.7GT NO96145,00Daewoo Umm Bab KristenNavigation2005.11GT NO96145,00Daewoo LNG Lokoja BW Gas 2006.12GT NO96148,30Daewoo LNG Kano BW Gas 2007.1 GT NO96148,30Daewoo LNG Ondo BW Gas 2007.9 GT NO96148,30Daewoo LNG Imo BW Gas 2008.7 GT NO96148,30Daewoo Stena Blue Sky StenaBulk 2007.1 GT NO96145,70Daewoo Golar Maria Golar LNG2006.6 GT NO96145,70Daewoo Simaisma KristenNavigation2006.7GT NO96145,70Daewoo IbericaKnutsenKnutsen OAS2006.1GT NO96138,00Daewoo Excelerate Exmar/Excelerate2006.1GT NO96138,074Daewoo Al Marrouna Teekay LNG 2006.11GT NO96151,70Daewoo Al Areesh Teekay LNG 2007.1 GT NO96151,70Daewoo Al Daayen Teekay LNG 2007.4 GT NO96151,70Daewoo TangguhTowutiSovcomflot/NYKLine2008.1GT NO96145,70Daewoo TangguhBaturSovcomflot/NYKLine2008.12GT NO96145,70Daewoo Al Jassasiya KristenNavigation2007.5GT NO96145,70Daewoo Maran GasCoronisKristenNavigation2007.6GT NO96145,70Daewoo Al Ruwais ProNav ShipMgmt.2007.11GT NO96210,10Daewoo Al Safliya ProNav ShipMgmt.2007.11GT NO96210,10Daewoo Duhail ProNav ShipMgmt.2008.1GT NO96210,10Daewoo Al Ghariya ProNav ShipMgmt.2008.1GT NO96210,10Daewoo Al Aamriya J5 Consortium 2008.3 GT NO96210,10Daewoo Al Oraiq J5 Consortium 2008.4 GT NO96210,10Daewoo Murwab J5 Consortium 2008.5 GT NO96210,10Daewoo Fraiha J5 Consortium 2008.9 GT NO96210,10Daewoo Umm Al Amad J5 Consortium 2008.9 GT NO96210,10Daewoo Explorer Exmar/Excelerate2008.3GT NO96150,981Daewoo Al Ghuwairiya Q GTC 2008.8 GT NO96261,70Daewoo Lijmiliya QGTC 2009.1 GT NO96261,70Daewoo Al Samriya QGTC 2008.12GT NO96261,70Daewoo BW GDF SuezParisBW Gas 2009.8GT NO96162,40Daewoo BW GDF SuezBrusselsBW Gas 2009.8GT NO96162,40Daewoo K. Jasmine Korea Line 2008.3 GT NO96145,70Daewoo K.MugungwhaKorea Line2008.11GT NO96151,80Daewoo Express Exmar/Excelerate2009.5GT NO96150,90Daewoo Al Sheehaniya Q GTC 2009.2 GT NO96210,10Daewoo Al Sadd QGTC 2009.3 GT NO96210,10Daewoo Onaiza QGTC 2009.4 GT NO96210,10Daewoo BarcelonaKnutsenKnutsen OAS 2010.4GT NO96173,40Daewoo Stena CrystalSkyStenaBulk 2011.6GT NO96171,80Daewoo SevillaKnutsenKnutsen OAS 2010.5GT NO96173,40Daewoo Exquisite Exmar 2009.1GT NO96151,017Daewoo Expedient Exmar 2010.4 GT NO96151,015Daewoo Exemplar Exmar 2010.9 GT NO96151,072Daewoo Arkat Brunei ShellTankers2011.2GT NO96148,00Daewoo ValenciaKnutsenKnutsen OAS2010.1GT NO96173,40Daewoo Ribera delDueroKnutsenKnutsen OAS2010.11GT NO96173,40Daewoo Amali Brunei ShellTankers2011.7GT NO96148,00Daewoo Stena ClearSkyStenaBulk 2011.6GT NO96171,80Daewoo SonangolSambizangaSonangolShipping2011.1GT NO96160,50Daewoo SonangolEtoshaSonangolShipping2011.11GT NO96160,50Daewoo SonangolBenguelaSonangolShipping2011.12GT NO96160,50Daewoo Al Khattiya QGTC 2009.1GT NO 210,100 96 0Daewoo Al Karaana QGTC 2009.1GT NO96210,10Daewoo Al Dafna QGTC 2009.1GT NO96210,10Daewoo Al Nuaman QGTC 2009.12GT NO96210,10Daewoo WoodsideRogersMaran Gas 2013.7GT NO96155,90Daewoo WilForce Awilco LNG 2013.8 GT NO96155,90Daewoo WilPride Awilco LNG 2013.11GT NO96155,90Daewoo Maran GasDelphiMaran Gas 2014.2GT NO96155,90Daewoo Maran GasLindosMaran Gas 2014.3GT NO96155,90Daewoo Woodside Maran Gas 2013.1GT NO 155,90Goode 0 96 0Daewoo Maran GasEfessosMaran Gas 2014.6GT NO96155,90Daewoo CorcovadoLNGCardiff Marine 2014.3GT NO96159,80Daewoo Kita LNG Cardiff Marine 2014.7 GT NO96159,80Daewoo Palu LNG Cardiff Marine 2014.1GT NO96159,80Daewoo Yari LNG Cardiff Marine 2014.11GT NO96159,80Daewoo Experience Excelerate 2014.3 GT NO96174,40Daewoo Stena LNG 2015 GT NO96155,90Daewoo Stena LNG 2015 GT NO96155,90Daewoo Maran Gas Maran Gas 2015.5 GT NO 155,90Mystras 96 0Daewoo Maran GasTroyMaran Gas 2015.6GT NO96155,90Daewoo MEGI LNG 2016 GT NO96173,00Daewoo MEGI LNG 2016 GT NO96173,00Daewoo Almi Gas 2014.7?GT NO96155,90Daewoo Almi Gas 2014.9?GT NO96155,90Daewoo MEGI LNG 2017 GT NO96173,00Daewoo Maran Gas 2016 GT NO96155,90Daewoo Maran Gas 2016 GT NO96155,90Daewoo Maran Gas 2016 GT NO 155,90Daewoo Maran Gas 2016 GT NO96155,90Daewoo MEGI LNG 2017 GT NO96173,00Daewoo MEGI LNG 2017 GT NO96173,00Daewoo SovComFlot 2016.3 GT NO96173,00Daewoo ARC 7 LNG 2017 GT NO96172,00Daewoo ARC 7 LNG 2018 GT NO96172,00Daewoo ARC 7 LNG 2019 GT NO96172,00Daewoo ARC 7 LNG 2019 GT NO96172,00Daewoo ARC 7 LNG 2019 GT NO 172,00Daewoo ARC 7 LNG 2019 GT NO96172,00Daewoo BW Gas 2017 GT NO96173,40Daewoo BW Gas 2018 GT NO96173,40Daewoo MEGI LNG 2018 GT NO96173,00Daewoo MEGI LNG 2018 GT NO96173,00Daewoo MEGI LNG 2018 GT NO96173,00Daewoo MEGI LNG 2018 GT NO96173,00Hanjin H.I. Hanjin PyeongTaekHanjin Shipping 1995.9GT NO96130,60Hanjin H.I. Hanjin Muscat Hanjin Shipping 1999.7 GT NO 138,20Hanjin H.I. Hanjin Sur Hanjin Shipping 2000.1 GT NO96138,333Hanjin H.I. Hanjin RasLaffanHanjin Shipping 2000.7GT NO96138,214Hanjin H.I. STX Kolt STX Panocean 2008.11TZ Mk.III145,70Hanjin H.I. GasLogChelseaGasLog LogisticsMay-1TZ Mk.III153,00Hyundai HyundaiUtopiaHyundai MM 1994.6 M oss125,182Hyundai YK Sovereign SK Shipping 1994.12Moss127,125Hyundai HyundaiGreenpiaHyundai MM1996.11Moss125,00Hyundai HyundaiTechnopiaHyundai MM 1999.7 M oss135,00Hyundai Hyundai Hyundai MM 2000.1 M oss 135,00Cosmopia 0Hyundai HyundaiAquapiaHyundai MM 2000.3 M oss135,00Hyundai HyundaiOceanpiaHyundai MM 2000.7 M oss135,00Hyundai LNG Rivers Bonny GasTransport2002.6 M oss137,20Hyundai LNG Sokoto Bonny GasTransport2002.8 M oss137,20Hyundai LNG Bayelsa Bonny GasTransport2003.2 M oss137,50Hyundai FSRU Toscana O LT Offshore 2003.12TZ Mk.III138,83Hyundai Golar Viking Golar LNG 2005.1 TZ Mk.III138,83Hyundai LNG AkwaIbomBonny GasTransport2004.11Moss141,00Hyundai LNG Bonny Gas 2005.6 M oss 141,00Adamawa Transport 0Hyundai LNG CrossRiverBonny GasTransport2005.9 M oss141,00Hyundai LNG RiverNigerBonny GasTransport2006.5 M oss141,00Hyundai Ob River Lance Shipping 2007.7 TZ Mk.III150,00Hyundai Grace Acacia Algaet Shipping 2007.1 TZ Mk.III150,00Hyundai Grace Barleria SwallowtailShipping2007.1TZ Mk.III150,00Hyundai Grace Cosmos AlgahuntShipping2008.3TZ Mk.III150,00Hyundai Clean Force Seacrown Mariti 2008.1 TZ Mk.III150,00Hyundai Clean Energy PegasusShipholding2007.3TZ Mk.III150,00Hyundai Neo Energy Tsakos 2007.2 M oss 150,00Navigation 0Hyundai BritishEmeraldBP Shipping 2007.6TZ Mk.III155,00Hyundai British Ruby BP Shipping 2008.7 TZ Mk.III155,00Hyundai BritishSapphireBP Shipping 2008.9TZ Mk.III155,00Hyundai Tangguh Hiri Teekay LNG 2008.11TZ Mk.III155,00Hyundai Al Gattara OverseasShipholding2007.11TZ Mk.III216,20Hyundai Al Gharaffa OverseasShipholding2008.9TZ Mk.III216,20Hyundai Al Thumama J5 Consortium 2008.1 TZ Mk.III216,20Hyundai Al Sahla J5 Consortium 2008.3 TZ Mk.III216,20Hyundai Al Utouriya J5 Consortium 2008.9 TZ Mk. 215,00III 0Hyundai Abdelkader CleopatraShipping2009.1TZ Mk.III177,00Hyundai HyundaiEcopiaHyundai M.M.2008.11TZ Mk.III145,00Hyundai Mesaimeer QGTC 2009.3 TZ Mk.III216,20Hyundai Al Kharaitiyat QGTC 2009.5 TZ Mk.III216,20Hyundai Al Rekayyat QGTC 2009.6 TZ Mk.III216,20Hyundai Hoegh Gallant Hoegh LNG 2014.11TZ Mk.IIIHyundai Independence Hoegh LNG 2014.5 TZ Mk. IIIHyundai PGN FSRULampungHoegh LNG 2014.3TZ Mk.IIIHyundai Hoegh Grace Hoegh LNG 2015.3 TZ Mk.IIIHyundai Hoegh LNG 2017 TZ Mk. IIIHyundai Yenisei River Dynagas 2013.7 TZ Mk.III155,00Hyundai Lena River Dynagas 2013.1TZ Mk.III155,00Hyundai Clean Planet Dynagas 2014.6 TZ Mk.III155,00Hyundai Clean Ocean Dynagas 2014.9 TZ Mk.III160,00Hyundai Clean Horizon D ynagas 2015.3 TZ Mk.III160,00Hyundai Clean Vision Dynagas 2015.6 TZ Mk.III160,00Hyundai BW PavilionVandaBW Gas 2015.1TZ Mk.III164,00Hyundai BW Pavilion BW Gas 2015.3 TZ Mk. 164,00。