m维各向异性热传导方程的奇异内边界问题研究
- 格式:pdf
- 大小:670.38 KB
- 文档页数:24
第四章复习题1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。
2、 试说明用热平衡法建立节点温度离散方程的基本思想。
3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似,为什么前者得到的是精确描述,而后者解出的确实近似解。
4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数用差分公式表示来建立。
试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。
5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之.6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题?7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成?8.有人对一阶导数()()()221,253x t t t xti n i n i n in ∆-+-≈∂∂++你能否判断这一表达式是否正确,为什么? 一般性数值计算4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。
试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ3,2,1,tan ==n Binn μμ并用计算机查明,当2.02≥=δτa Fo 时用式(3-19)表示的级数的第一项代替整个级数(计算中用前六项之和来替代)可能引起的误差。
Bi n n =μμtanFo=0.2及0.24时计算结果的对比列于下表:4-2、试用数值计算证实,对方程组⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=++=++=-+5223122321321321x x x x x x x x x用高斯-赛德尔迭代法求解,其结果是发散的,并分析其原因。
解:将上式写成下列迭代形式()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--=-+=--=2131323213212/1252/1x x x x x x x x x假设3,2x x 初值为0,迭代结果如下:迭代次数012341x 02.52.6252.093752.6328125 2x 0-0.750.4375-1.1718751.261718253x 01.25-0.06252.078125-0.89453125显然,方程迭代过程发散因为迭代公式的选择应使每一个迭代变量的系数总大于或等于式中其他变量的系数绝对值代数和。
各向异性热传导问题杂交Trefftz有限元法及数值实现摘要:当前各向异性热传导问题,在热学领域得到了广泛的关注,许多学者开展了深入的研究。
Trefftz有限元法是一种新兴的解决此类问题的数值计算方法,该方法通过采取基于边界积分方程的Trefftz函数,避免了网格依赖性的问题。
本文介绍了Trefftz有限元法对各向异性热传导问题的显式方法,同时还对其相关的数值实现做出了详细的介绍。
经过验证,该方法不仅具有高精度和准确性,而且大大提高了计算效率,有很好的应用前景。
关键词:各向异性热传导、Trefftz有限元法、边界积分方程、数值实现、计算效率一、引言各向异性热传导问题一直是研究热学领域的重要问题。
各向异性材料的热传导特性的复杂性,使得该问题的数学模型的建立和数值计算变得十分困难。
近年来,解决这一问题的方法也得到了迅速发展。
Trefftz有限元法是最近新兴的解决各向异性热传导问题的数值计算方法之一。
该方法的特点是采用基于边界积分方程的Trefftz函数,克服了传统有限元方法中的网格依赖性问题,同时为计算提供了更好的精度和准确性。
本文将详细介绍Trefftz有限元法在各向异性热传导问题中的显式方法,并对其给出的数值实现做出详尽的分析和说明。
最后,通过数值实验的结果,验证了该方法的高精度和较高的计算效率。
二、热传导问题的数学模型本文所考虑的是各向异性介质内的热传导问题。
根据热传导学中的基本假设,我们基于傅里叶定律、热对流定律和热辐射定律等假设,建立如下的热传导方程:(1)∇·k∇T+f=ρC(T)其中,k是热传导系数,T是温度,f是热源项,ρ是密度,C是比热容。
在各向异性材料中,k是一个矩阵,可以写为:(2)k=[k11 k12 k13][k21 k22 k23][k31 k32 k33]其中,各个元素反映了各向异性材料的传热特性。
下一步,我们需要将上述方程变形为适合于数值计算的形式。
这里采用Trefftz有限元法进行求解。
热传导问题中的特殊函数解析二维传热方程与分离变量法热传导问题在物理学和工程领域中有着广泛的应用。
其中,解析方法是一种常用的求解二维传热方程的方法之一。
而特殊函数与分离变量法是解析方法的重要组成部分。
本文将介绍热传导问题中的特殊函数以及应用分离变量法解析求解二维传热方程的过程。
一、特殊函数特殊函数是一类具有特殊性质的函数,它们在数学中有着重要的地位和广泛的应用。
在热传导问题中,我们常常会遇到以下三类特殊函数:傅里叶级数、傅里叶正弦级数和傅里叶余弦级数。
1. 傅里叶级数傅里叶级数是一组正交函数的线性叠加,可以将任意周期函数表示为这些正交函数的级数形式。
对于具有周期为2L的函数f(x),其傅里叶级数定义如下:f(x) = a_0 + ∑(a_n*cos(nx) + b_n*sin(nx))其中,a_0、a_n和b_n为函数f(x)的系数,可以通过傅里叶级数的三角函数正交性质计算得到。
2. 傅里叶正弦级数傅里叶正弦级数是一类只包含正弦函数的级数,适用于奇函数的展开。
对于奇函数f(x),其傅里叶正弦级数定义如下:f(x) = ∑(b_n*sin(nx))其中,b_n为函数f(x)的系数,同样可以通过傅里叶级数的正交性质计算得到。
3. 傅里叶余弦级数傅里叶余弦级数是一类只包含余弦函数的级数,适用于偶函数的展开。
对于偶函数f(x),其傅里叶余弦级数定义如下:f(x) = a_0/2 + ∑(a_n*cos(nx))其中,a_0和a_n为函数f(x)的系数,同样可以通过傅里叶级数的正交性质计算得到。
二、分离变量法分离变量法是解析求解偏微分方程的一种常用方法。
对于二维传热方程,我们可以利用分离变量法将其分解为两个关于单独自变量的常微分方程,再通过求解这些常微分方程得到二维传热方程的解。
以一个典型的二维传热方程为例:∂²u/∂x² + ∂²u/∂y² = 0首先假设解具有形式 u(x,y) = X(x) * Y(y),将其代入方程中得到:X''(x) * Y(y) + X(x) * Y''(y) = 0两边同时除以 X(x) * Y(y) 并整理得到:(X''(x)/X(x)) + (Y''(y)/Y(y)) = 0由于左侧和右侧只依赖于 x 和 y 对应的变量,所以它们必须相等于一个常数,假设为 -λ²,得到两个常微分方程:X''(x)/X(x) = λ² 和 Y''(y)/Y(y) = -λ²分别解这两个常微分方程,可以得到 X(x) 和 Y(y) 的解,再将它们乘积得到 u(x,y) 的解。
一维传热问题边界条件处理当计算区域的边界为第二,第三类边界条件时,边界节点的温度是未知量。
为使内部节点的温度代数方程组得以封闭,有两类方法可以采用,即补充以边界节点代数方程的方法及附加原项法。
这里将介绍边界节点代数方程的方法。
对于无限大平板的第二类边界条件,采用泰勒展开法时,只要把边界条件B q x dX dT ==δλ中的导数用差分表达式来代替即可,即k q x T T B M M ⋅+=-δ111。
上式的截差为一阶,而内点上如采用中心差分,则截差为二阶。
为了得出具有二阶截差的公式,可以采用虚拟点法。
在边界外虚设一点M1+1,这样节点M1就可视为内节点,其一阶导数即可采用中心差分:B M M q xT T =--+δλ21111 为了消去TM1+1,由一维、稳态、含内热源的控制方程可得在M1点的离散形式:()02211111=++--+S x T T T M M M δλ从以上两式中消去11+M T 得,()()λδλδxq S x x T T B M M +∆+=-111其中2/x x δ=∆,是节点M1所代表的控制容积的厚度。
下面给出一个算例进行说明。
设有一导热型方程,022=-T dx T d ,边界条件为x=0,T=0; x=1, dT/dx=1。
试将该区域4等分,用区域离散方法求出各节点温度。
解:采用区域离散方法时,网格划分如下图所示,内点上采用中心差分。
右端点采用二阶截差,离散方程为: 0163332=-T T 01633432=-+-T T T 01633543=-+-T T T 41323354=+-T T编程解上述方程组得出每个节点的温度。
方程代码如下(Fortran6.6):PROGRAM MAINUSE IMSLIMPLICIT NONEREAL :: A(4,4)=(/ 2.0625,-1.0,0.0,0.0,&-1.0,2.0625,-1.0,0.0,&0.0,-1.0,2.0625,-1.0,&0.0,0.0,-1.0,2.0625/) !矩阵A 的元素REAL :: B(4,1)=(/0.0,0.0,0.0,0.25/) !矩阵B 的元素REAL :: T(4,1) !4个节点的温度矩阵!EQUATION:!2.0625T2-T3=0!-T2+2.0625T3-T4=0!-T3+2.0625T4-T5=0!-T4+2.0625T5=0CALL LIN_SOL_GEN(A,B,T) !A*T=B,求解TWRITE(*,"(4F5.2)")TSTOPEND PROGRAM 0 T1 T3 T2 1/4 1/2 T5 T4 13/4。