第四章热传导方程
- 格式:pdf
- 大小:389.60 KB
- 文档页数:20
热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。
物理动机一维热方程图解(观看动画版)热传导在三维的等方向均匀介质里的传播可用以下方程式表达:其中:u=u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x, y,z) 的函数。
/是空间中一点的温度对时间的变化率。
uxx, uy y与uzz温度对三个空间座标轴的二次导数。
k决定于材料的热传导率、密度与热容。
热方程是傅立叶冷却律的一个推论(详见条目热传导)。
如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。
如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。
热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。
一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。
因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。
热方程也是抛物线偏微分方程最简单的例子。
利用拉普拉斯算子,热方程可推广为下述形式其中的Δ 是对空间变量的拉普拉斯算子。
热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。
热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-Uhlenbeck 过程。
热方程及其非线性的推广型式也被应用于影像分析。
量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。
就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。
扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。
[编辑本段]以傅立叶级数解热方程在理想状态下一根棍子的热传导,配上均匀的边界条件。
以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。
热传导方程引言热传导方程是描述物质内部温度分布随时间演变的一种偏微分方程。
它广泛应用于热传导领域,如材料科学、工程热学、地球科学等。
热传导方程描述了热量在物质内部的传递方式,是研究热传导过程和温度场分布的重要工具。
热传导方程的一维形式考虑物质在一维情况下的热传导,热传导方程可以写作:∂u/∂t = α * ∂²u/∂x²其中,u为物质内部的温度,t为时间,x为空间坐标,α为热扩散系数。
热传导方程的二维形式对于二维的情况,假设热传导方程适用于平面内任意点,可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y²)其中,u为物质内部的温度,t为时间,x和y为平面内的空间坐标,α为热扩散系数。
热传导方程的三维形式在三维情况下,热传导方程可以写作:∂u/∂t = α * (∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u为物质内部的温度,t为时间,x、y和z为空间坐标,α为热扩散系数。
定解条件为了求解热传导方程,需要给定一些定解条件。
常见的定解条件有:•初始条件:指定初始时刻的温度分布,即u(x, y, z, 0),其中u是温度,x、y和z分别是空间坐标,0表示初始时刻。
•边界条件:指定物体表面的温度或热流密度。
常见的边界条件有:第一类边界条件(温度指定),即u(x, y, z, t) = g(x, y, z, t);第二类边界条件(热流密度指定),即-k * ∂u/∂n = q(x, y, z, t),其中k为导热系数,n为法向量,q为热流密度。
热传导方程的数值解热传导方程是一个偏微分方程,通常无法得到解析解。
因此,需要借助数值计算方法来求解。
常见的数值方法有有限差分法、有限元法和边界元法等。
在有限差分法中,可以将空间离散为若干个网格点,时间离散为若干个时间步长。
热传导的基本理论和应用热传导是指热能通过物质的传递,它在自然界和工业生产中都具有广泛的应用。
在我们日常生活中,各种材料的热传导性质也是我们考虑的因素之一。
本文将从热传导的基本理论、热传导的影响因素以及热传导的应用三个部分来探讨热传导及其应用。
一、热传导的基本理论热传导是由物质的内部交换热能造成的。
它的特点是热能从高温处向低温处移动。
这个过程可以通过热传导方程来描述。
热传导方程:dQ/dt=-kA (dT/dx)其中,dQ/dt表示单位时间内从高温处传来的热量,k是热导率,A是横截面积,dT/dx表示温度在空间中变化的速率。
热传导的速度与物体的热导率、横截面积和温度差有关。
材料的热导率是一个比较重要的特性,是指单位时间内单位横截面积上热量的传递率,通常用W/(m·K)或W/(m·℃)来表示。
不同材料的热导率不同,一般来说,导热性能好的金属通常都有很高的热导率,而不好导热的物质热导率较低。
二、热传导的影响因素除了热导率、横截面积和温度差外,热传导的速率还受到很多其他因素的影响。
1.材料的密度和热容:材料的热导率与密度和热容有关。
通常来说,材料的密度越大,热传导速率就越快,而热容越大,则热传导速率就越慢。
2.材料的结构:材料的结构也会影响热传导的速度。
结构越复杂的材料,通常热传导速度越慢。
3.环境的影响:环境因素如空气流动、湿度等等,也会影响热传导的速度。
三、热传导的应用热传导的应用非常广泛,以下是几个常见的应用。
1.散热器:散热器是利用金属材料的热传导特性,将CPU等设备产生的热量传递出去,起到散热的作用。
2.太阳能吸热板:太阳能吸热板利用热传导原理,将太阳能转化为热能,再利用流体循环来传递热量。
3.热塑性成型:热塑性成型就是利用热形变和热传导的原理,将材料加热到一定温度,使其软化,然后利用塑料成型机械组成的模具对材料进行成型。
结语热传导的基本理论和应用具有广泛的应用范围。
了解和掌握其基本理论和影响因素,将有助于提高我们对于材料和设备的热学性质的认识,进而为我们的生活和工作带来便利。