Floyd证明留着的练习题
- 格式:ppt
- 大小:104.50 KB
- 文档页数:2
《生活中的数学》形成性考核作业二_0001一、单项选择题(共 10 道试题,共 100 分。
)得分:1001. ( B )是化学反应中催化剂或阻化剂的结构模型。
分形A. 谢尔宾斯基三角形垫片B. 门杰海绵C. 谢尔宾斯基地毯D. 朱利亚集满分:10 分2. ( A )被用来制作雪花模型。
A. 科克曲线B. 芒德勃罗集C. 朱利亚集D. 谢尔宾斯基地毯满分:10 分3.混沌理论之父罗伦兹在讲述其发现的结论时,用了( D )这只动物作比喻,后来这句话被广为流传。
A. 蟋蟀B. 蜻蜓C. 蜜蜂D. 蝴蝶满分:10 分4. 下列出版物中(A )不是用数学知识写成的。
分形内容A. 《世界是平的》B. 《分形》C. 《扁平国》D. 《隐匿的数字》(美国伊格尔·特珀)满分:10 分5. 有“胜利”、“权威”、“公正”含义的五角星暗含着下面哪个图形,并体现黄金分割比?(C)A. 黄金矩形B. 黄金椭圆C. 黄金三角形D. 黄金双曲线满分:10 分6. “失之毫厘,谬以千里”所体现的一个数学分支名称为“( B )理论”。
A. 分形B. 混沌C. 代数D. 图形满分:10 分7. 许多经典建筑中含有黄金分割美,下列四个建筑中除( D )外均含有黄金矩形。
A. 埃及金字塔B. 古希腊帕特农神殿C. 巴黎圣母院D. 上海东方明珠满分:10 分8. 许多西方艺术作品体现黄金分割美,下面四幅作品均为代表作品,其中(A )属于达·芬奇创作。
A. 《蒙娜丽莎的微笑》B. 《圣家庭》C. 《刑罚》D. 《最后的圣餐》满分:10 分9. 斐波那契数列为1,1,2,3,5,……,则数列中第8位数字是(A )A. 21B. 13C. 26D. 34满分:10 分10. 莫扎特的《D大调奏鸣曲》第一乐章全长160小节,再现高潮部分在第(D )小节处,恰恰是黄金分割点上,完全符合黄金分割之美。
A. 80B. 89C. 95D. 99满分:10 分。
北师大版初三上册第三章《证明(三)》练习题(北师大版初三上)doc 初中数学一、填空题1、如图,平行四边形 ABCD ,对角线AC 、BD 交于点0,请你写出图中三对一定相等的线 段 。
1cm ,那么 AB= ______ cm , BC = ______ c m 。
第4题图3、如图,将两块完全相同的含有 30:角的三角板一边重合拼在一起, 能够得到一个四边形 ABCD , 那么四边形ABCD 是 〔回答是什么四边形〕;假设BC=10 cm ,那么对角线BD = _____________ cm 。
4、 如图平行四边形 ABCD 中,AE 、AF 分不是BC 和CD 边上的高,假设 EAF 65,那么 B 度, C _____________ 度。
5、 如图,将两根等宽的纸条叠放在一起,重叠的部分〔图中阴影部分〕是一个四边形,对那个 四边形的形状你认为最准确的一个描述是:那个四边形是 ________________ 四边形。
5题图)AB = ________________ 。
8、对角线 的四边形是正方形。
二、择题9、 如图,平行四边形 ABCD 中,AE=CF ,那么图中的平行四边形的个数是〔 丨个 A.2 B.3 C.4 D.510、 假设第1题的条件中,除原有条件外,再增加FA = FD ,那么图中的等腰梯形个数是 〔 〕个A.2B.3C.4D.511、 以下关于平行四边形的判定中正确的选项是〔 〕A. 一组对边相等,另一组对边平行的四边形是平行四边形2、在上题图中,假设平行四边形 ABCD 的周长为30cm ,且 AOB 的周长比 BOC 的周长小第7题图6、 菱形ABCD 的面积是50、3 cm 2,其中一条对角线的长是的内角为 _______________ ,菱形 ABCD 的边长为 ______________ 。
7、 女口图,矩形ABCD 中,BE 丄AC 于E , DF 丄AC 于F ,假设AE=1 , EF = 2,那103 cm ,9那么菱形 ABCD 的较小FC =18、辨析纠错:如图 ABC 中,AD 是 BAC 的角平分线,DE // AC , 求证:四边形AEDF 是菱形。
一、应用题1.首先将如下图所示的无向图给出其存储结构的邻接链表表示,然后写出对其分别进行深度,广度优先遍历的结果。
1题图答.深度优先遍历序列:125967384宽度优先遍历序列:123456789注:(1)邻接表不唯一,这里顶点的邻接点按升序排列(2)在邻接表确定后,深度优先和宽度优先遍历序列唯一(3)这里的遍历,均从顶点1开始2.给出图G:(1).画出G的邻接表表示图;(2).根据你画出的邻接表,以顶点①为根,画出G的深度优先生成树和广度优先生成树。
(3)宽度优先生成树3.在什么情况下,Prim算法与Kruskual算法生成不同的MST?答.在有相同权值边时生成不同的MST,在这种情况下,用Prim或Kruskal也会生成不同的MST4.已知一个无向图如下图所示,要求分别用Prim 和Kruskal 算法生成最小树(假设以①为起点,试画出构造过程)。
答.Prim 算法构造最小生成树的步骤如24题所示,为节省篇幅,这里仅用Kruskal 算法,构造最小生成树过程如下:(下图也可选(2,4)代替(3,4),(5,6)代替(1,5))5.G=(V,E)是一个带有权的连通图,则:(1).请回答什么是G 的最小生成树; (2).G 为下图所示,请找出G 的所有最小生成树。
28题图答.(1)最小生成树的定义见上面26题 (2)最小生成树有两棵。
(限于篇幅,下面的生成树只给出顶点集合和边集合,边以三元组(Vi,Vj,W )形式),其中W 代表权值。
V (G )={1,2,3,4,5} E1(G)={(4,5,2),(2,5,4),(2,3,5),(1,2,7)};E2(G)={(4,5,2),(2,4,4),(2,3,5),(1,2,7)}6.请看下边的无向加权图。
(1).写出它的邻接矩阵。
(2).按Prim 算法求其最小生成树,并给出构造最小生成树过程中辅助数组的各分量值。
辅助数组各分量值:7.已知世界六大城市为:(Pe)、纽约(N)、巴黎(Pa)、伦敦(L) 、东京(T) 、墨西哥(M),下表给定了这六大城市之间的交通里程:世界六大城市交通里程表(单位:百公里)(1).画出这六大城市的交通网络图;(2).画出该图的邻接表表示法;(3).画出该图按权值递增的顺序来构造的最小(代价)生成树.8.已知顶点1-6和输入边与权值的序列(如右图所示):每行三个数表示一条边的两个端点和其权值,共11行。
一、应用题1. 首先将如下图所示的无向图给出其存储结构的邻接链表表示,然后写出对其分别进行深度,广度优先遍历的结果。
1题图答.深度优先遍历序列:4宽度优先遍历序列:9 & 注:(1)邻接表不唯一,这里顶点的邻接点按升序排列(2)在邻接表确定后,深度优先和宽度优先遍历序列唯一 (3)这里的遍历,均从顶点1开始 2.给出图G :(1).画出G 的邻接表表示图; (2).根据你画出的邻接表,以顶点①为根,画出G 的深度优先生成树和广度优先生成树。
~(3)宽度优先生成树~3.在什么情况下,Prim 算法与Kruskual 算法生成不同的MST答.在有相同权值边时生成不同的MST ,在这种情况下,用Prim 或Kruskal 也会生成不(同的MST4.已知一个无向图如下图所示,要求分别用Prim 和Kruskal 算法生成最小树(假设以①为起点,试画出构造过程)。
》答.Prim 算法构造最小生成树的步骤如24题所示,为节省篇幅,这里仅用Kruskal 算法,构造最小生成树过程如下:(下图也可选(2,4)代替(3,4),(5,6)代替(1,5)) !5.G=(V,E)是一个带有权的连通图,则:(1).请回答什么是G 的最小生成树; (2).G 为下图所示,请找出G 的所有最小生成树。
28题图:答.(1)最小生成树的定义见上面26题(2)最小生成树有两棵。
(限于篇幅,下面的生成树只给出顶点集合和边集合,边以三元组(Vi,Vj,W )形式),其中W 代表权值。
V (G )={1,2,3,4,5} E1(G)={(4,5,2),(2,5,4),(2,3,5),(1,2,7)};E2(G)={(4,5,2),(2,4,4),(2,3,5),(1,2,7)}6.请看下边的无向加权图。
(1).写出它的邻接矩阵。
(2).按Prim 算法求其最小生成树,并给出构造最小生成树过程中辅助数组的各分量值。
辅助数组内各分量值:/)7.已知世界六大城市为:北京(Pe)、纽约(N)、巴黎(Pa)、伦敦(L) 、东京(T) 、墨西哥(M),下表给定了这六大城市之间的交通里程:世界六大城市交通里程表(单位:百公里)](1).画出这六大城市的交通网络图;(2).画出该图的邻接表表示法;(3).画出该图按权值递增的顺序来构造的最小(代价)生成树.8.已知顶点1-6和输入边与权值的序列(如右图所示):每行三个数表示一条边的两个端点和其权值,共11行。
初三英语科学研究方法多样运用单选题40题1. In a science experiment, we need to ______ the data carefully.A. collectB. gatherC. saveD. store答案:A。
“collect”侧重于有目的地、有计划地收集;“gather”更强调把分散的东西聚集到一起;“save”意思是保存、节省;“store”指大量地存放。
在科学实验中,“collect”更能准确表达仔细收集数据的意思。
2. The scientist used a special tool to ______ the temperature.A. measureB. countC. calculateD. estimate答案:A。
“measure”指用工具测量;“count”通常用于数数;“calculate”强调通过计算得出结果;“estimate”是估计、估算。
测量温度用“measure”。
3. To finish the science project, we have to ______ a lot of information.A. searchB. look forC. findD. discover答案:B。
“search”强调搜索的动作;“look for”侧重于寻找的过程;“find”强调结果,找到;“discover”指发现原本存在但未被知晓的事物。
这里需要表达寻找大量信息的过程,用“look for”。
4. The experiment result ______ that our theory was wrong.A. showedB. provedC. explainedD. described答案:A。
“showed”有展示、表明的意思;“proved”强调证明;“explained”是解释;“described”是描述。
实验结果表明用“showed”更合适。
洛谷是一个全球信息湾,提供了大量的算法题目供程序员练习和学习。
其中,floyd 算法是解决最短路径问题的经典算法之一。
在本文中,将介绍floyd算法的原理、实现步骤和应用场景,希望对读者有所帮助。
一、floyd算法的原理floyd算法,又称为Floyd-Warshal算法,是一种利用动态规划思想解决图中多源最短路径问题的算法。
其原理可以概括为:对于每一对顶点i和j,我们检查是否存在一个顶点k使得从i到j的最短路径比直接从i到j的路径更短。
如果存在这样一个顶点k,我们更新最短路径的值。
具体来说,我们用一个二维数组dist[][]记录顶点i到顶点j的最短路径长度,然后我们尝试遍历每个顶点k,检查dist[i][k] +dist[k][j]是否小于dist[i][j],如果成立,我们更新dist[i][j]的值为dist[i][k] + dist[k][j]。
二、floyd算法的实现步骤1. 初始化dist[][]数组。
对于每对顶点i和j,初始化dist[i][j]的值为i和j之间的边的权重,如果i和j之间没有边,那么初始化为正无穷大。
对角线上的元素初始化为0。
2. 遍历每个顶点k。
对于每一对顶点i和j,检查dist[i][k] + dist[k][j]是否小于dist[i][j],如果成立,更新dist[i][j]的值为dist[i][k] +dist[k][j]。
3. 最终得到的dist[][]数组即为图中每对顶点的最短路径长度。
三、floyd算法的应用场景floyd算法可以用于解决图中多源最短路径的问题。
具体来说,可以用于解决以下问题:1. 网络中节点之间的最短路径:在计算机网络中,floyd算法可以用于计算网络中每对节点之间的最短路径,从而优化网络路由。
2. 地图导航系统:在地图导航系统中,floyd算法可以用于计算城市之间的最短路径,帮助用户规划出行路线。
3. 交通运输优化:在交通运输领域,floyd算法可以用于优化货物运输的路线,降低成本。
1998年全国大学生数学建模竞赛题目B题灾情巡视路线下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。
今年夏天该县遭受水灾。
为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。
巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。
(1) 若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。
(2) 假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。
要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。
(3) 在上述关于T , t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。
(4) 若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和V改变对最佳巡视路线的影响。
灾情巡视路线模型摘要本文将求最佳巡视路线间题转化为图论中求最佳推销员回路(哈米尔顿回路)的问题,并用近似算法去寻求近似最优解。
对赋权图中的路径分组问题定义了均衡度用以衡量分组的均衡性。
对问题1和问题2先定出几个分的准则进行初步分组,并用近似算法求每一组的近似最佳推销员回路,再根据均衡度进行微调,得到较优的均衡分组和每组的近似最佳推销员回路。
对问题1,运用求任意两点间最短路的Floyd算法,得出总路程较短且各组尽可能均衡的路线,各组的巡视路程分别为216.4公里,191.1公里,192.3公里,总路程599.8公里。
对问题2,证明了应至少分为4组,并求出了分为4组时各组的较优巡视路线,各组的巡视时间分别为22.74小时,22.59小时,21.69小时,22.54小时。
对问题3,求出完成巡视的最短时间为6.43小时,并用较为合理的分组的准则,分成22个组对问题4,研究了在不影响分组的均衡条件下, T,t,V的允许变化范围,并得出了这三个变量的关系式,并由此对分三个组的情况进行了具体讨论。
一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。