地震属性分析与应用
- 格式:pdf
- 大小:10.25 MB
- 文档页数:145
地震属性含义及其应用地震属性含义及其应用一、瞬时属性 19假定复数道表示为:)t (iy )t (x )t (u +=,则1. 瞬时实振幅 IReAmp ( Instantaneous Amplitude )是在选定的采样点上地震道时域振动振幅。
是振幅属性的基本参数。
广泛用于构造和地层学解释。
用来圈定高或低振幅异常,即亮点、暗点。
反映不同储集层、含气、油、水情况及厚度预测。
2. 瞬时虚振幅 IQuadAmp (Inst. Quadrature Amplitude)是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。
即正交道,为虚振幅。
因它只能在特定的相位观测到,多用来识别与薄储层中的AVO 异常。
3. 瞬时相位IPhase ( Instantaneous Phase)))t (x )t (y tan(A )t (=γ, 定义为正切,输出相位已转换为角度,数值范围是[-180o ,180o ]。
为q(t)/f(t)的一个角,是采样点处地震道的相位。
有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。
由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。
4. 瞬时相位余弦 CIP ( Cosine of Inst. Phase )是瞬时相位导出的属性。
其计算式为))t ((Cos γ常用来改进瞬时相位的变异显示。
并用于相位追踪和检查地震剖面对比、解释的质量。
多与瞬时相位联用。
5. 瞬时频率 IFreq (Inst. Frequeney)定义为瞬时相位对时间的函数dt )t (d γ(以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。
用来计算、估算地震波的衰减。
油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。
地震属性分析技术及应用姓名(吉林长春130000)摘要:地震属性是指由登前或叠后地震数据,经数学变换而得到的有关地震波的几何学、运动学、动力学和统计学特征。
目前地展属性主要用于储层岩性及岩相、储层物性和含油气性分析,随着油气勘探的不断深入特别是在常规地震资料含有微弱油气信息而人工难以分辨的情况下,人们致力于从三维地震数据体中提取其地震属性参数,并利用各种数学方法对地震闭等形成的隐蔽油气藏,在油气勘探中所占份量越来越大。
本文对地震属性分析技术的发展状况进行了归纳、总结,分析了其基本原理和工作流程,并对提取的地震属性进行了抽象分类和具体分类,特别对新地震属性进行了具体介绍。
最后对该技术进一步的研究工作进行了总结和展望。
关键词:地震属性属性分类储层预测叠前数据叠后数据油气预测1前言地震属性是指叠前或叠后的地震数据经过数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征的特殊度量值。
地震勘探技术通过60多年的发展,在油气勘探开发中,已经有效地解决了一系列复杂的地质问题,在各种复杂构造油气藏和隐蔽油气藏的勘察方面取得了重大成果,给生产带来了客观的经济效益。
特别是90年代,各种勘探技术大量涌现并应用于实际生产中,使得地震勘探工作思路扩宽、成果也越丰富。
纵观这些勘探技术,无一不是将各种先进的数学方法、计算机技术以及先进的物探技术进行综合应用的结果。
[5]在早期,地震勘探技术的发展主要以地震资料处理、成像技术为重点,在地震资料的使用上也只是以解决构造问题为主。
到了后期,获得高质量高精度的地震资料已不在成为技术难点,地震勘探技术的重点又转化为如何充分挖掘出采集、处理得到的昂贵地震资料中所包含的岩性、流体信息,从而将资料利用最大化。
这就是地震属性分析技术的研究目标。
现代能源地震勘探示意图总之,地震属性分析技术可以从地震资料中提取隐藏其中的多种有用信息,这为油气勘探与开发提供了丰富宝贵的资料,也为解决复杂地质体评价提供了实用的分析手段。
SIS 软件软件技术应用技术应用技术应用之一之一斯伦贝谢伦贝谢科技服务科技服务科技服务((北京北京))有限公司2007年3月GeoFrame 地震属性分析和应用地震属性分析和应用1地震属性分析和应用应用地震属性开展储层横向预测是地震资料综合解释的重要研究内容。
随着地球物理理论、数学理论的不断发展,通过各种计算方法能够提取和分析的地震属性越来越多,如何从众多的地震属性中选择能够反映客观地质现象的属性对目的层储层开展分析,这是地球物理人员在实际工作中面对的一个主要问题。
GeoFrame 综合地学平台为地球物理人员开展储层横向预测研究提供了一套完善的工具。
SATK 、SeisClass 、LPM 以及GeoViz 的组合应用,可以帮助研究人员完成从属性提取、属性优化、定性分析到定量计算的储层预测全过程。
本文重点阐述GeoFrame 储层预测的基本思路及地震属性的地质应用。
1、地震属性储层预测的基本思路地震地层学原理假定,地震剖面上的反射波同相轴具有年代分界面的意义,要研究地层岩性和沉积相主要依据的是地震反射特征及其横向变化,也就是地震属性的变化,这是应用地震属性进行储层预测的基本理论依据。
应用地震属性进行储层横向预测要解决的主要问题是多解性问题,即:一种地震属性参数的变化受多种地质因素的影响,而一种地质现象的改变,也会造成多种地震属性的异常。
因此,在对地震属性分析预测过程中,如何从众多的地球物理参数中选取能反映地质特征变化的参数,是地震属性预测的主要问题。
实际工作表明,必须做好以下两项工作:① 正确认识地震属性正确认识地震属性是做好属性预测的基础,不同的地震属性参数,它的地球物理含义、数学含义不一样,反映的地质规律也不一样。
如:半时能量和总能量,尽管都是振幅类参数,但具体的展布规律却不一样(图1)。
图1 1 相同地区相同地区相同地区半时能量半时能量半时能量和和总能量总能量对比图对比图对比图半时能量半时能量((Energy half-time )总能量总能量((Total Energy )② 地震属性的优化选择能正确反映实际地质因素变化的地震属性是应用地震属性进行储层预测的关键。
常用地震属性的意义地震属性是描述和衡量地震的一些参数和特征,对于了解地震的性质和影响具有重要意义。
常用的地震属性有震级、震源深度、震源机制、震源距离和烈度等。
下面将逐一解释这些地震属性的意义。
首先是震级。
震级是衡量地震能量大小的指标,常用的有里氏震级和矩震级。
里氏震级是根据地震的震源破裂面积和破裂时释放的能量,反映地震破坏力的大小。
矩震级是通过测量地震波振幅的分布,计算地震矩并转换为震级,可以更准确地估算地震能量。
震级可以用来评估地震对人类和建筑物的破坏程度,以及确定地震预警和防护措施的需求。
其次是震源深度。
震源深度是指发生地震的地下位置,并可分为浅源地震、中源地震和深源地震。
不同震源深度的地震具有不同的地表震感和破坏范围。
浅源地震震源深度通常在0-70公里,地震波在传播过程中能量损失较小,对地表造成明显的破坏;中源地震震源深度通常在70-300公里,地震波经过一定的路径传播,能量损失较大,对地表影响较小;深源地震震源深度通常大于300公里,能量损失更大,对地表几乎没有明显影响。
因此,了解震源深度有助于评估地震可能带来的破坏程度。
接下来是震源机制。
震源机制是描述地震震源破裂过程和发生地震的力学特征,常用的有走滑断层、逆冲断层和正断层。
具体的震源机制参数包括断层面的走向、倾角和滑动方向等。
震源机制可以指示地震波扩散方向和强度,对于地震危害评估和断层活动研究具有重要意义。
对于不同类型的震源机制,地震破坏的方式和强度也有所不同。
然后是震源距离。
震源距离是指震源与观测点的水平距离,通常以赤道上其中一点为参照。
震源距离对地震波的传播和衰减有显著影响。
随着震源距离的增加,地震波能量逐渐减弱,对地表造成的破坏也会减轻。
了解震源距离可以用来估算地震对不同观测点的影响范围,指导地震灾害防护工作。
最后是烈度。
烈度是根据地震对地表造成的影响程度进行划分的评价指标,常用的有麦氏烈度和中国地震烈度。
麦氏烈度用地震引起的物理现象和人们感受到的震感,与地震波强度之间的关系进行刻画。
地震属性分析技术地震属性分析技术是地震学研究中的一种重要手段,用于研究地震震源的性质、地震波传播的特征以及地下地震波通过地壳和地球内部介质的响应过程。
本文将从地震属性的定义、地震属性分析方法以及地震属性对地震学研究的意义三个方面展开介绍,以期全面了解地震属性分析技术的基本概念和应用。
地震属性是指与地震波传播性质有关的物理量或特征。
地震学研究中常用的地震属性包括地震波振幅、频率谱、速度和极性等。
这些地震属性可以通过对地震观测数据(地震图像)进行分析和处理得到,进而揭示地震震源机制、地壳介质特性以及地球内部结构等信息。
地震属性分析方法主要分为时域方法和频域方法。
时域方法是指通过对地震波形振幅随时间变化的分析,获取地震属性信息。
常用的时域分析方法有包络函数、短时傅里叶变换、小波变换等。
频域方法则是通过对地震波频率谱的分析,获得地震属性。
频域分析方法包括傅里叶变换、功率谱估计、谱比法等。
这些地震属性分析方法能够提取地震波的特征参数,从而揭示地震事件的本质特征。
地震属性分析技术在地震学研究中具有广泛的应用。
首先,它可以帮助我们深入了解地震震源的机制。
地震源机制研究是地震学的一个重要分支,通过分析地震属性可以获取地震震源的矩张量、震中距依赖性以及非正常破裂机制等信息,从而推断地震发生的构造背景和应变状况,有助于了解地震的发生机理。
其次,地震属性分析可以揭示地壳介质的性质。
地壳介质特性对地震波的传播和反射会产生明显影响,通过对地震属性的分析,我们可以了解地震波在地壳中的传播速度、衰减系数和散射特性等信息,从而推测地下地质构造、介质类型以及岩性等地质参数。
这对油气勘探、地质灾害预测等领域具有重要意义。
最后,地震属性分析还可以研究地震波的能量衰减过程和相位变化。
地震波的能量在传播过程中会出现衰减和散射,地震属性分析可以定量评估这些过程,并通过反演方法还原地震源处的能量分布以及介质的方向性响应。
这对地震工程和地震预测等应用具有指导意义。
石油勘探中的地震数据处理与属性分析在石油勘探领域,地震数据处理与属性分析在确定油田储量和优化油藏开发方案方面起着至关重要的作用。
本文将探讨地震数据处理和地震属性分析的原理、方法以及在石油勘探中的应用。
一、地震数据处理地震数据处理是指对地震勘探过程中获取的原始地震数据进行滤波、去噪、叠前和叠后处理等一系列步骤,以提高数据质量,准确地还原地下地质构造的目标。
地震数据处理的主要步骤包括数据质量评价、静校正、时域与频域滤波、打靶叠加和剖面叠前处理等。
1. 数据质量评价地震勘探过程中采集到的地震数据中可能包含一些噪声,如自然噪声和人为干扰。
数据质量评价是通过检测噪声的存在并对其进行定量评估,以确定后续处理的可行性和精度。
一般常用的评价方法包括信噪比分析和频谱分析等。
2. 静校正静校正是对地震记录进行时间校正,消除射线路径上的静态时移,以实现地震记录的时间对准。
常用的方法包括搬移校正、视速度校正和剩余静校正等。
通过静校正,可以准确还原地下地质构造,提高地震剖面的分辨率。
3. 时域与频域滤波时域滤波和频域滤波是对地震记录进行去噪和增强的关键步骤。
时域滤波可通过设计和应用数字滤波器来实现,常见的有低通滤波和高通滤波。
而频域滤波则是将地震记录转换到频率域,通过选择特定频率段的信号来实现滤波效果。
4. 叠前与叠后处理叠前和叠后处理是地震数据处理中的重要环节。
叠前处理是指在地震记录中根据地震波在地下的传播过程进行综合处理,以还原地下地质模型。
叠后处理则是对叠前处理结果进行后处理和解释,获取地下构造和岩性等信息。
这些处理方法包括共炮点叠加、共收发线叠加、速度分析和偏移成像等。
二、地震属性分析地震属性分析是指通过对地震数据进行统计、分析和解释,获取地下地质属性和油藏潜力等信息。
地震属性可以是地震数据的一些特征参数,如振幅、频率、相位、轮廓等,也可以是地震数据在地下地质结构中的反射性质。
地震属性分析的核心任务是提取有效的属性信息,揭示地下构造和油气分布规律。
基于统计学方法的地震属性分析技术应用
地震属性分析技术是一种基于统计学方法的地震资料分析技术,主要是通过对地震资料中的某些属性进行分析,以预测地震活动的趋势和规律,有助于提高地震预测的准确性。
本文将介绍地震属性分析技术及其在地震预测中的应用。
地震属性分析技术主要包括两个部分:特征提取和模式识别。
其中,特征提取是指从地震数据中提取一些特定的属性,如频率、幅度、相位等等;而模式识别则是对这些属性进行分类、分析,并从中找出一些规律性的变化,以确定地震的发生趋势、位置、强度等信息。
具体来说,在地震属性分析技术中,常用的方法包括:R/S分析、小波分析、Hurst指数、分形分析等等。
这些方法主要通
过对地震事件中的震级、持续时间、频率、能量等属性进行统计分析,来确定地震的发生规律和趋势。
在实际应用中,地震属性分析技术主要用于地震预测、震级预测和震源定位等方面。
例如,在地震预测中,可以通过对地震记录中的震级、持续时间、频率等属性进行分析,来预测未来可能的地震发生时间和位置。
在震级预测中,通常基于震级与地震能量之间的关系,对未来可能发生的地震强度进行估计。
而在震源定位中,可将不同观测站测得的地震波形属性进行匹配,以确定地震的发生位置和方向。
总之,地震属性分析技术是一种非常有前景的地震预测技术,它能够通过对地震事件中的多个属性进行统计分析,来找出地
震活动的一些规律,给地震预测提供了一种新的思路和方法。
在日后的地震科研中,地震属性分析技术将会得到更加广泛的应用和发展。
地震多属性分析及其在储层预测中的应用研究一、概述地震多属性分析及其在储层预测中的应用研究,是近年来地球物理勘探领域的一个重要研究方向。
随着油气勘探开发的不断深入,对储层的精细刻画和准确预测已成为提高勘探成功率、降低开发成本的关键所在。
地震多属性分析作为一种有效的技术手段,能够从地震数据中提取出多种与储层特征相关的信息,进而实现对储层的定量评价和预测。
地震属性是指从地震数据中提取的能够反映地下介质某种物理特性的量度。
这些属性可以包括振幅、频率、相位、波形等多种类型,它们与储层的岩性、物性、含油气性等因素密切相关。
通过对地震属性的分析,可以揭示出储层的空间展布规律、物性变化特征以及含油气性等信息,为储层预测提供重要的依据。
地震多属性分析也面临着诸多挑战。
地震数据本身受到多种因素的影响,如噪声干扰、地层非均质性等,这可能导致提取出的地震属性存在误差或不确定性。
不同地震属性之间可能存在一定的相关性或冗余性,如何选择合适的属性组合以最大化预测效果是一个需要解决的问题。
如何将地震属性分析与其他地质、工程信息相结合,形成综合的储层预测模型,也是当前研究的热点和难点。
本文旨在通过对地震多属性分析及其在储层预测中的应用研究进行综述和探讨,分析现有方法的优缺点及适用条件,提出改进和优化策略,以期为提高储层预测的准确性和可靠性提供有益的参考和借鉴。
同时,本文还将结合具体实例,展示地震多属性分析在储层预测中的实际应用效果,为相关领域的科研人员和实践工作者提供有益的参考和启示。
1. 研究背景:介绍地震勘探在石油勘探中的重要性,以及储层预测对于油气开发的关键作用。
地震勘探作为石油勘探领域的一种重要技术手段,其在揭示地下构造、地层岩性以及油气藏分布等方面发挥着不可替代的作用。
随着石油勘探难度的不断增加,对地震勘探技术的精度和可靠性也提出了更高的要求。
深入研究地震勘探的多属性特征,并将其应用于储层预测中,对于提高油气开发的成功率具有重要意义。
各种地震属性的物理意义和用途利用地震进行储层预测时主要从振幅属性及其延伸属性出发,分析属性的变化特征,然后与钻井和地质进行标定,赋予属性地质意义。
--------------------------------------------------------------------------------------------Average Reflection Strength 平均反射强度:识别振幅异常,追踪三角洲、河道、含气砂岩等引起的地震振幅异常;指示主要的岩性变化、不整合、天然气或流体的聚集;该属性为预测砂岩厚度的常用属性;Average Trough Amplitude 平均波谷振幅:用于识别岩性变化、含气砂岩或地层。
可以有效的区分整合沉积物、丘状沉积物、杂乱的沉积物等;预测含油气性的常用属性;Average Instantaneous Phase 平均瞬时相位:由于相位的横向变化可能与地层中的流体成分变化相关,因此该属性可以检测油气的分布。
同时还可以识别由于调谐效应引起的振幅异常,为预测含油气性的常用属性;Absorption 能量吸收属性:以滑动摩擦形式出现的内摩擦和孔隙流体之间的粘滞损失可能是波动能量转换为热能最重要的形式,其中在高渗透率岩石中,孔隙流体的粘滞损失更严重。
因此认为吸收类的属性可以作为预测含油气性的常用属性;Slope Reflection Strength 反射强度的斜率:分析垂直地层的变化趋势,识别流体成分在垂直方向的变化;预测砂岩厚度的常用属性;Percent Greater Than Threshold 大于门槛值的百分比:区分进积/退积层序,该属性有助于分析主要的沉积趋势,区分整合沉积物、丘状沉积物、杂乱的沉积物等;对层序或沿反射轴进行振幅异常成图;预测砂岩厚度的常用属性;Energy Half Time 能量半衰时:区分进积/退积层序,该属性的横向变化指示地层或由于流体成分、不整合、岩性变化引起的振幅异常;预测砂岩厚度的常用属性;Effective Bandwidth 有效带宽:识别复合/单反射的变化区域,该属性高值指示相对尖锐的反射振幅和复杂的反射,低值指示各项同性;为预测砂岩厚度的常用属性;Negative Magnitude 剖面负极值的平均值:用于识别岩性变化、含气砂岩或地层。