地震资料属性介绍
- 格式:ppt
- 大小:1.17 MB
- 文档页数:4
1、属性名称:反射强度(Reflection Strength),振幅包络(Amplitude Envelope),瞬时振幅(Instaneous Amplitude)REFLSTAN (缩写)定义:在解释中的应用:用于振幅异常的品质分析;用于检测断层、河道、地下矿床、薄层调谐效应;从复合波中分辨出厚层反射。
属性特征:提供声阻抗差的信息。
横向变化常与岩性及油气聚集有关。
值总是正的。
2、属性名称:瞬时相位(Instaneous Phase)INSTPHAS(缩写)定义:在解释中的应用:进行地震地层层序和特征的识别;加强同相轴的连续性,因此使得断层、尖灭、河道更易被发现。
可对相位反转成图,有可能指示含气与否。
属性特征:描述了复相位图中实部和虚部之间的角度。
它的值总在±180°之间。
瞬时相位是不连续的,从+180°到-180°的反转可引起锯齿状波形3、属性名称:瞬时频率(Instaneous Frequency)INSTFREQ(缩写)定义:在解释中的应用:用于气体聚集带和低频带的识别;确定沉积厚度;显示尖灭、烃水界面边界等突变现象属性特征:瞬时相位对时间的变化率。
值域为(-fw, + fw)。
然而,大多数瞬时相位都为正。
可提供同相轴的有效频率吸收效应及裂缝影响和储层厚度的信息4、属性名称:正交道(Quadrature Trace),希尔伯特变换(Hilbert Transform)QUADRATR(缩写)定义:h(t)是f(t)的希尔伯特变换,也是f(t)的90°相移在解释中的应用:用于复数道分析的品质控制属性特征:当实地震道代表地震响应中质点位移的动能时,正交道相当于质点位移的势能5、属性名称:视极性(Apparent Polarity)APPAPOLA(缩写)定义:在振幅包络峰值处实地震道的极性在解释中的应用:用于振幅异常的品质分析属性特征:为实地震道的符号位,假设零相位子波、视极性与反射系数的极性相同6、属性名称:响应相位(Response Phase)RESPPHAS(缩写)定义:在振幅包络峰值处的瞬时相位值在解释中的应用:地震地层层序的识别、检测。
地震属性精讲什么是地震属性?地震属性指的是那些由叠前或叠后地震数据,经过数学变换而导出的有关地震波的几何形态、运动学特征和统计特征,其中没有任何其它类型数据的介入。
长时间以来,我们使用地震属性进行地震解释。
自60年代起,利用薄层调谐厚度的概念,进行薄层解释。
70年代以来,使用了反射波振幅变化特征——亮点、暗点、平点,对含气砂岩储集体进行预测。
80年代,出现了AVO分析技术,改进了含气砂岩和岩石孔隙中的饱和液成分的预测;给出了岩石柏松比对比度增大的标志,以鉴别岩性和岩石孔隙度。
在这个期间,地震属性多半是基于振幅测量的瞬时属性。
70年代后期到80年代,地震地层学解释迅速发展,广泛应用。
通过分析地震反射特征,确定地震相类型并作岩相转换,这是地震地层学分析的基本方法。
瞬时振幅和瞬时频率被用于岩性解释,瞬时相位被用于检测地层的接触关系。
90年代以来,由于储层描述和3D数据体解释的需要,地震属性技术急剧发展。
利用地震属性技术进行储层不均匀性描述。
一般是利用测井资料解释储层物性参数与井旁地震道地震属性之间的相关性,将地震属性转换成储层物性,并推算到井间或无井区。
这项工作被称为地震引导测井储层物性估计,用以制作岩石物性剖面。
因此,地震属性技术在储层预测、储层特征参数描述、储层动态监视等方面的应用,已成为石油工业注意的焦点。
3D地震数据能形成3D的地震属性体,如倾角、方位、相干体和方差体等,所解决的问题是地下空间范围的问题;高速发展的计算机技术(硬件)和计算技术(软件),大大地提高了测量地震波的几何学、运动学、动力学和统计学的能力,使得地震属性的提取简便、快捷;人机交互工作站的使用和强大的功能,使得解释人员能正确选用地震属性,合理地解释地质现象;物探、地质和油藏技术人员的结合,赋予地震属性更加有效的地质意义,尤其是对储层的研究开辟了一个新的途径。
这些都是地震属性技术能够快速发展的重要因素。
地震属性技术在我国的发展,起步于80年代中后期。
地震属性含义及其应用一、瞬时属性19 假定复数道表示为:u(t) = x(t) • iy(t),则1. 瞬时实振幅IReAmp ( In sta nta neous Amplitude )是在选定的采样点上地震道时域振动振幅。
是振幅属性的基本参数。
广泛用于构造和地层学解释。
用来圈定高或低振幅异常,即亮点、暗点。
反映不同储集层、含气、油、水情况及厚度预测。
2. 瞬时虚振幅IQuadAmp (I nst. Quadrature Amplitude)是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。
即正交道,为虚振幅。
因它只能在特定的相位观测到,多用来识别与薄储层中的AVO异常。
3. 瞬时相位IPhase ( Instantaneous Phase)(t)二Atan(y(t).x(t)),定义为正切,输出相位已转换为角度,数值范围是[-180o,180°]。
为q(t)/f(t)的一个角,是采样点处地震道的相位。
有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。
由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。
4. 瞬时相位余弦CIP ( Cos ine of In st. Phase )是瞬时相位导出的属性。
其计算式为Cos( (t))常用来改进瞬时相位的变异显示。
并用于相位追踪和检查地震剖面对比、解释的质量。
多与瞬时相位联用。
5. 瞬时频率IFreq (I nst. Freque ney)定义为瞬时相位对时间的函数 d (t) dt (以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。
用来计算、估算地震波的衰减。
油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。
高频成份多显示为尖锐的界面或薄层,亦可反映岩相的粗、细变化及地层旋回。
关于地震的资料
关于地震的资料
关于地震的资料(一):
地震(earthquake)又称地动、地振动,是地壳快速释
放能量过程中造成振动,期间会产生地震波的一种自然现象。
全
球每年发生地震约五百五十万次。
地震常常造成严重人员伤亡,
能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还
可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。
主要资料
地球分为三层:中心层是地核,中间是地幔,外层是地壳。
地震不仅仅发生在地壳之中,也会发生在软流层当中。
据地
震部门测定,深源地震一般发生在地下300~700km处。
到目前为止,已知的最深的震源是720公里。
[1]从这一点来看,传统的
板块挤压地层断裂学说并不能合理解释深源地震,因为720公里
深处并不存在固态物质。
超级地震指的是震波极其强烈的大地震。
但其发生占总地震7%~21%,破坏程度是原子弹的数倍,所以超级
地震影响十分广泛,是十分具有破坏力的。
[由
整理]。
地震属性建模1.地震属性优选:碳酸盐岩缝洞型油藏连通性的地震属性进行优选,确定的最大曲率属性在反映碳酸盐岩缝洞型油藏微断裂和裂缝的发育程度、描述垂向上的非连续性以及表征裂缝的线型特征等方面均优于相干和地震倾角属性。
最大曲率属性识别和描述微断裂—裂缝体系,追踪大尺度裂缝的延伸方向,并结合振幅梯度属性,刻画缝洞连通体的空间形态。
曲率属性在反映某些微小断裂、裂缝和褶皱时的效果很好,表现为可以分辨的挠曲特征,最大曲率属性中,断裂表现为正负相间曲率的特征,正、负曲率分别代表断裂的上升盘和下降盘,可以识别一些小型的断裂和裂缝。
因此,最大曲率属性是认识微裂缝—裂缝系统的有效手段,其优点是包含了形状的信息,可用来区别断裂和褶曲的线型特征,反映出微断裂和裂缝的发育程度;可识别出小型的挠曲、褶皱和凸起等,更好地描述垂向上岩性的非连续性;可展现裂缝的线型特征,进而反映缝洞体的空间分布、配置关系及其连通性。
相干属性常用于识别和刻画储层的断裂特征和地质体的非连续性,可用于描述大型断裂特征,岩性的不连续(河道边界)和断裂也会引起相干属性的变化,但其对于小型断裂、与裂缝相关的成岩特征以及河道边界、河谷底部等的分辨效果却较差。
断裂和裂缝在地震倾角属性平面图上往往表现为长条形的线型特征,可确定其长度,但无法确定其形态,难以区分出断裂和褶曲。
波阻抗:研究区的缝洞发育带较上覆碎屑岩层及奥陶统碳酸盐基质具有低密度低速度的特征,因此在波阻抗表现为低值,这是地球物理反演技术识别缝洞型油藏储层发育的理论基础地球物理反演波阻抗流程该流程主要包括3个过程:①井震标定及子波提取;②建立波阻抗低频模型;③反演运算,得到相对阻抗体和绝对阻抗体。
在井震标定获得时深关系的同时,可以进行子波的提取,代替理论子波以提高井震标定和反演的精度。
从绝对阻抗体的井旁道提取波阻抗曲线,统计井点处不同储集体类型与波阻抗数据之间的关系,结合钻井时放空漏失表以及测井解释结论,得到缝洞储集体与基质碳酸盐岩在阻抗上的门槛值为 1.57*107kg/(m2s),据此可对目的层缝洞储集体作出三维雕刻。
地震基本参数地震是地球上常见的自然灾害之一,其基本参数包括震级、震源深度、震中位置和震源机制等。
本文将从这些方面介绍地震的基本参数。
一、震级震级是衡量地震强度的参数,通常用里氏震级(M)或面波震级(Ms)表示。
里氏震级是根据地震释放的能量来估算的,它是以10为底的对数尺度,每增加一个单位震级,地震能量增加10倍。
面波震级则是根据地震产生的面波振幅来计算的,面波震级通常比里氏震级略大。
二、震源深度震源深度是指地震发生的深度位置,一般用公里(km)表示。
地震震源深度的测定对于研究地震的机制和灾害影响具有重要意义。
通常,浅源地震(震源深度小于70公里)发生在板块边界附近,而深源地震(震源深度大于300公里)则发生在板块内部。
三、震中位置震中是指地震发生的水平位置,一般用经度和纬度来表示。
震中的确定是通过多个地震台站记录到的地震波数据进行三角定位或反演计算得出的。
震中位置的准确测定对于确定地震的规模和震源机制具有重要意义。
四、震源机制震源机制是指地震发生时产生地震波的方式和能量释放的方式。
地震波可以分为纵波和横波,而地震的震源机制可以用球体坐标系来描述。
常见的震源机制类型包括走滑型、逆冲型和正断型等。
走滑型震源机制表明地震是沿断层发生的水平错动,逆冲型震源机制表明地震是因板块之间的挤压而发生的,正断型震源机制表明地震是因板块之间的拉伸而发生的。
总结:地震的基本参数包括震级、震源深度、震中位置和震源机制等。
震级反映了地震的强度,震源深度决定了地震的性质,震中位置确定了地震的发生地点,震源机制揭示了地震的产生过程。
地震的基本参数对于了解地震活动规律、预测地震灾害和研究地球内部结构都具有重要意义。
通过不断深入研究地震的基本参数,可以更好地保护人类生命财产安全,减轻地震灾害的损失。
常用地震属性的意义地震属性是描述和衡量地震的一些参数和特征,对于了解地震的性质和影响具有重要意义。
常用的地震属性有震级、震源深度、震源机制、震源距离和烈度等。
下面将逐一解释这些地震属性的意义。
首先是震级。
震级是衡量地震能量大小的指标,常用的有里氏震级和矩震级。
里氏震级是根据地震的震源破裂面积和破裂时释放的能量,反映地震破坏力的大小。
矩震级是通过测量地震波振幅的分布,计算地震矩并转换为震级,可以更准确地估算地震能量。
震级可以用来评估地震对人类和建筑物的破坏程度,以及确定地震预警和防护措施的需求。
其次是震源深度。
震源深度是指发生地震的地下位置,并可分为浅源地震、中源地震和深源地震。
不同震源深度的地震具有不同的地表震感和破坏范围。
浅源地震震源深度通常在0-70公里,地震波在传播过程中能量损失较小,对地表造成明显的破坏;中源地震震源深度通常在70-300公里,地震波经过一定的路径传播,能量损失较大,对地表影响较小;深源地震震源深度通常大于300公里,能量损失更大,对地表几乎没有明显影响。
因此,了解震源深度有助于评估地震可能带来的破坏程度。
接下来是震源机制。
震源机制是描述地震震源破裂过程和发生地震的力学特征,常用的有走滑断层、逆冲断层和正断层。
具体的震源机制参数包括断层面的走向、倾角和滑动方向等。
震源机制可以指示地震波扩散方向和强度,对于地震危害评估和断层活动研究具有重要意义。
对于不同类型的震源机制,地震破坏的方式和强度也有所不同。
然后是震源距离。
震源距离是指震源与观测点的水平距离,通常以赤道上其中一点为参照。
震源距离对地震波的传播和衰减有显著影响。
随着震源距离的增加,地震波能量逐渐减弱,对地表造成的破坏也会减轻。
了解震源距离可以用来估算地震对不同观测点的影响范围,指导地震灾害防护工作。
最后是烈度。
烈度是根据地震对地表造成的影响程度进行划分的评价指标,常用的有麦氏烈度和中国地震烈度。
麦氏烈度用地震引起的物理现象和人们感受到的震感,与地震波强度之间的关系进行刻画。
1、属性名称:反射强度(Reflection Strength),振幅包络(Amplitude Envelope),瞬时振幅(Instaneous Amplitude)REFLSTAN (缩写)定义:在解释中的应用:用于振幅异常的品质分析;用于检测断层、河道、地下矿床、薄层调谐效应;从复合波中分辨出厚层反射。
属性特征:提供声阻抗差的信息。
横向变化常与岩性及油气聚集有关。
值总是正的。
2、属性名称:瞬时相位(Instaneous Phase)INSTPHAS(缩写)定义:在解释中的应用:进行地震地层层序和特征的识别;加强同相轴的连续性,因此使得断层、尖灭、河道更易被发现。
可对相位反转成图,有可能指示含气与否。
属性特征:描述了复相位图中实部和虚部之间的角度。
它的值总在±180°之间。
瞬时相位是不连续的,从+180°到-180°的反转可引起锯齿状波形3、属性名称:瞬时频率(Instaneous Frequency)INSTFREQ(缩写)定义:在解释中的应用:用于气体聚集带和低频带的识别;确定沉积厚度;显示尖灭、烃水界面边界等突变现象属性特征:瞬时相位对时间的变化率。
值域为(-fw, + fw)。
然而,大多数瞬时相位都为正。
可提供同相轴的有效频率吸收效应及裂缝影响和储层厚度的信息4、属性名称:正交道(Quadrature Trace),希尔伯特变换(Hilbert Transform)QUADRATR(缩写)定义:h(t)是f(t)的希尔伯特变换,也是f(t)的90°相移在解释中的应用:用于复数道分析的品质控制属性特征:当实地震道代表地震响应中质点位移的动能时,正交道相当于质点位移的势能5、属性名称:视极性(Apparent Polarity)APPAPOLA(缩写)定义:在振幅包络峰值处实地震道的极性在解释中的应用:用于振幅异常的品质分析属性特征:为实地震道的符号位,假设零相位子波、视极性与反射系数的极性相同6、属性名称:响应相位(Response Phase)RESPPHAS(缩写)定义:在振幅包络峰值处的瞬时相位值在解释中的应用:地震地层层序的识别、检测。
地震属性分析技术地震属性分析技术是地震学研究中的一种重要手段,用于研究地震震源的性质、地震波传播的特征以及地下地震波通过地壳和地球内部介质的响应过程。
本文将从地震属性的定义、地震属性分析方法以及地震属性对地震学研究的意义三个方面展开介绍,以期全面了解地震属性分析技术的基本概念和应用。
地震属性是指与地震波传播性质有关的物理量或特征。
地震学研究中常用的地震属性包括地震波振幅、频率谱、速度和极性等。
这些地震属性可以通过对地震观测数据(地震图像)进行分析和处理得到,进而揭示地震震源机制、地壳介质特性以及地球内部结构等信息。
地震属性分析方法主要分为时域方法和频域方法。
时域方法是指通过对地震波形振幅随时间变化的分析,获取地震属性信息。
常用的时域分析方法有包络函数、短时傅里叶变换、小波变换等。
频域方法则是通过对地震波频率谱的分析,获得地震属性。
频域分析方法包括傅里叶变换、功率谱估计、谱比法等。
这些地震属性分析方法能够提取地震波的特征参数,从而揭示地震事件的本质特征。
地震属性分析技术在地震学研究中具有广泛的应用。
首先,它可以帮助我们深入了解地震震源的机制。
地震源机制研究是地震学的一个重要分支,通过分析地震属性可以获取地震震源的矩张量、震中距依赖性以及非正常破裂机制等信息,从而推断地震发生的构造背景和应变状况,有助于了解地震的发生机理。
其次,地震属性分析可以揭示地壳介质的性质。
地壳介质特性对地震波的传播和反射会产生明显影响,通过对地震属性的分析,我们可以了解地震波在地壳中的传播速度、衰减系数和散射特性等信息,从而推测地下地质构造、介质类型以及岩性等地质参数。
这对油气勘探、地质灾害预测等领域具有重要意义。
最后,地震属性分析还可以研究地震波的能量衰减过程和相位变化。
地震波的能量在传播过程中会出现衰减和散射,地震属性分析可以定量评估这些过程,并通过反演方法还原地震源处的能量分布以及介质的方向性响应。
这对地震工程和地震预测等应用具有指导意义。
第五篇地震属性的地球物理含义及地质含义1、引言随着三维地震勘探技术的日益普及,关于地震属性的研究日益深化,不断完善,目前已经形成一门专项技术,称为地震属性分析技术,包括属性提取,属性标准化,属性关系分析,属性优化处理优化属性的转换与应用等。
2、地震属性的定义关于地震属性的定义可以概括为以下3种:(1) 从地震属性的提取过程看,地震属性是一种描述和量化地震资料的特性,是原始地震资料所包含全部信息的子集,而地震属性的求取是对地震数据进行分解,每个地震属性都是地震数据的一个子集。
(2)从应用地球物理的角度来看,地震属性是地震数据中反映不同地质信息的子集,是刻画、描述地层结构、岩性以及物性等地质信息的地震特征量。
(3)从数学意义上来看,地震属性是地震资料的几何学,运动学,动力学及统计学特征的一种量度。
3、地震属性的提取地震属性的提取采用多种数学方法如傅氏变换、复数道分析、自相关函数和自回归分析等来实现。
到20世纪和90年代中期,随着统计学属性的出现和发展,大量地质统计学方法在属性提取中得到广泛的应用,如协方差、线性回归、小波变换、模拟退火等。
这些技术对提取相干体等地震属性,识别和定性描述断层、河道砂体乃至碳酸盐岩储层中缝洞发育等起到了重要的作用。
小波变换是90年代比较活跃的地震属性提取方法,它不仅能提高地震属性分辨率的潜力,而且能优化属性提取的时窗长度。
4、地震属性分析技术的应用在油气勘探开发中,利用地震属性分析技术及其分析结果可以划分构造,检测断层,预测岩性,确定有利储集体,描述油藏内部的储集特性,甚至可用于监测内部的流体运动等其他油藏工程研究。
近年来,随着油气田开发对油藏描述精度需求的提高和地震属性分析技术的发展,该技术被越来越多地应用于油气藏表征、提高采收率和油气藏动态监测领域。
在应用地层属性分析技术解决各种地质问题特别是定量问题时,必须进行地震属性的标定。
对地震属性进行标定,是应用地震属性进行各种研究的前提条件。
地震属性参数的特征意义地震属性参数的特征意义,其中如下所述:目前可以从地震数据体中提取近百种属性,大致可分为瞬时类参数(如瞬时相位、瞬时频率、瞬时振幅等)、相关统计类参数、频(能)谱类参数、层序统计类参数、混沌参数、突变参数等,常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。
用于帮助识别岩性、地层层序变化、不整合、断层、流体的变化、储层的孔隙率变化、河流、三角洲砂体、某种类型的礁体、地层调谐效应。
第1,振幅统计类。
主要属性为均方根振幅、平均绝对振幅、最大峰值振幅、平均峰值振幅、最大谷值峰值、绝对振幅能量、振幅总量、平均能量、能量总体、平均振幅、平均反射强度、平均瞬时频率、平均瞬时相位等,主要地质意义是反映岩性、地层层序变化、不整合、断层、流体的变化、储层的孔隙率变化、河流、三角洲砂体、某种类性的礁体、地层调谐效应、气体、流体的特征、地层序列、裂缝等第2 ,瞬时类参数。
主要属性为瞬时相位、瞬时频率、瞬时振幅等。
主要地质意义反映岩性、地层层序变化、不整合、断层、流体的变化、储层的孔隙率变化、河流、三角洲砂体等第3 ,(频、能)谱统计类。
主要属性为有效带宽、弧线长度、平均零交叉点频率、主频序列、主频峰值等。
主要地质意义反映裂缝发育带、含气吸收区、调协效应、岩性或吸收引起的子波变化等第4 ,层序统计类。
主要属性为能量半衰时、正负样点比例、波峰数、波谷数。
主要地质意义可识别岩性地层变化、含油气性、刻划地层层序特征、突出某种振幅异常等。
第5 ,相关统计类。
主要属性为平均信噪比、相关长度、相关分量等。
它的主要地质意义是可帮助识别断层、尖灭、数据品质、杂乱反射等。
地震资料地震是指地球地壳发生的震动现象。
地球的地壳不断地经历着运动和变化,而地震就是这种变化的结果之一。
地震是造成地壳运动的能量释放,它可以以地震波的形式传播到地球表面,给人类带来巨大的破坏和灾难。
在过去的几千年里,地震一直是人类所面临的挑战之一。
地震是由地震波引起的地壳振动。
地震波是地球内部能量释放的一种形式。
当地球内部的能量积累到一定程度时,地壳会发生断裂或滑动,释放出大量的能量,形成地震波。
地震波通过地球内部的固体物质(如岩石)传播,最终到达地球表面,引起地面的震动。
地震波分为P波、S波和表面波等不同类型,它们具有不同的传播速度和震动特点。
地震的强度和持续时间是衡量地震大小的重要指标。
地震的强度以里氏震级(简称震级)来表示,它是根据地震波在地球表面的振幅大小来确定的。
震级越大,地震的能量就越强大,对地面的震动幅度和范围就越大。
持续时间是指地震波的传播时间,它通常以秒为单位进行计量。
地震的强度和持续时间会直接影响到地震对人类、建筑物和环境的破坏程度。
地震的发生和分布与地球的构造和板块运动密切相关。
地球的外部被划分为若干个板块,它们不断地进行相互碰撞、分裂和滑动。
当板块之间的断层处于紧张状态时,能量就会积累,并最终通过地震释放出来。
地震的发生主要集中在板块边界或板块内部的断裂带上。
例如,太平洋火环带和地中海-亚洲地震带被认为是全球最活跃的地震带之一。
地震对人类社会造成的破坏是巨大的。
它可以引发建筑物的倒塌、土地的滑坡、海啸的形成等一系列灾害。
地震还常常造成人员伤亡和财产损失。
因此,理解地震的发生机制和研究地震预测成为保护人们生命和财产安全的重要工作。
地震学家通过观测和研究地震现象,探索地球内部的运动规律,制定相关的地震预警系统和防灾措施。
地震预测是指根据地震前兆和历史数据进行科学推测和预测地震的时间、地点和强度。
地震前兆是指地震发生之前的一系列变化,如震源区的地壳变形、地表沉降、地磁场异常、地下水位的变化等。
地震
地震又称地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。
地球上板块与板块之间相互挤压碰撞,造成板块边沿及板块内部产生错动和破裂,是引起地震的主要原因[1]。
地震开始发生的地点称为震源,震源正上方的地面称为震中。
破坏性地震的地面振动最烈处称为极震区,极震区往往也就是震中所在的地区[2]。
地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。
据统计,地球上每年约发生500多万次地震,即每天要发生上万次的震。
其中绝大多数太小或太远,以至于人们感觉不到;真正能对人类造成严重危害的地震大约有十几二十次;能造成特别严重灾害的地震大约有一两次。
人们感觉不到的地震,必须用地震仪才能记录下来;不同类型的地震仪能记录不同强度、不同远近的地震。
世界上运转着
数以千计的各种地震仪器日夜监测着地震的动向。
[3]
当前的科技水平尚无法预测地震的到来,未来相当长的一段时间内,地震也是无法预测的。
所谓成功预测地震的例子,基本都是巧合。
对于地震,我们更应该做的是提高建筑抗震等级、做好防御,而不是预测地震。
[4]。