2耗能减震结构设计与应用
- 格式:ppt
- 大小:14.88 MB
- 文档页数:92
浅谈消能减震技术消能减震技术是一种利用材料的变形和摩擦来减少或消除冲击能量的技术。
它在工程领域发挥着重要作用,能够有效地保护设备和结构免受外部冲击的影响。
本文将就消能减震技术的基本原理、应用领域和发展趋势进行浅谈。
消能减震技术的基本原理是利用材料的弹性和耗能特性来减少外部冲击能量的传递。
常见的消能减震材料包括聚合物、金属和复合材料等。
这些材料具有一定的弹性,当受到外部冲击力时能够发生形变,并通过内部结构的摩擦和阻尼来消耗能量。
这样一来,外部冲击力的传递就会得到有效地减缓,从而保护设备和结构不受损。
消能减震技术在众多领域都得到了广泛的应用,包括建筑工程、航空航天、交通运输等。
在建筑工程中,消能减震技术可以通过设置减震支座或减震结构来减少地震或风力对建筑物的影响,从而提高建筑物的抗震性能。
在航空航天领域,消能减震技术可以用于飞机主起落架和座舱的设计,有效地保护飞机和乘客免受起降冲击的影响。
在交通运输领域,消能减震技术可以用于车辆的减震系统和轨道交通设施的设计,提高车辆和轨道设施的抗震性能,保障交通运输的安全和稳定。
随着科学技术的不断发展,消能减震技术也在不断创新和进步。
一方面,随着材料科学和工程技术的进步,新型的消能减震材料不断涌现,具有更高的弹性和耗能性能,可以更有效地减少外部冲击能量的传递。
随着计算机仿真技术和数字化设计技术的发展,消能减震技术的设计和优化也变得更加精确和高效。
通过数字化设计和仿真分析,可以更准确地预测材料的弹性和耗能特性,从而优化消能减震系统的设计方案,提高抗震性能和使用寿命。
消能减震技术是一种非常重要的工程技术,能够有效地保护设备和结构不受外部冲击的影响。
随着科学技术的不断发展,消能减震技术也在不断创新和进步,将会在更多的领域得到应用,并发挥更为重要的作用。
相信随着技术的进步和发展,消能减震技术将会为人们的生活带来更多的安全和便利。
消能减震技术在工程中的应用1class消能减震概念结构消能减震技术主要指的是在结构的某些部位,如层间空隙、节点连接部分或者连接缝等一些位置安装消能减震装置,或者是将结构的支撑、连接件或非承重剪力墙等一些次要构件设置为能够消能的构件。
在地震来临时,这些装置或者构件可以通过摩擦、塑性变形、粘滞液体流动等一些变化,为结构提供较大的阻尼,消耗地震动输入的能量,消减主体结构的地震动反应,从而起到保护主体结构安全的作用。
与传统增大截面抵抗地震作用不同,消能减震技术主要是通过消能减震构件吸收、消耗地震能量降低主体结构地震响应,是建筑物抗震的另一个有力手段。
消能减震技术中,安装消能器增加结构阻尼的被动消能减震方法,由于其传受力明确、安装维护方便、制作成本低、适用范围广等特点,受到业内人士的青睐。
消能减震原理结构消能减震的实质是在结构中设置消能器,地震时输入结构的能量率先为消能器吸收,大量消耗输入结构的地震能量,有效衰减结构的地震反应。
消能器在地震中起到结构附加阻尼和附加刚度的作用。
相比常规设计提高结构的抗震性能只能通过增加结构构件尺寸或者钢筋的方法,更加经济合理高效,这也是消能减震结构具有经济性优势的主要原因。
结构在地震中任意时刻的能量方程为:传统结构:Ein= Ev+Ec+Ek+Eh;消能减震结构:E'in= E'v+E'c+E'k+E'h+Ed;式中Ein、E'in——地震过程中输入传统抗震结构、消能减震结构体系的能量;Ev、E'v——传统抗震结构、消能减震结构体系的动能;Ec、E'c——传统抗震结构、消能减震结构体系的粘滞阻尼耗能;Ek、E'k——传统抗震结构、消能减震结构体系的弹性应变能;Eh、E'h——传统抗震结构、消能减震结构体系的滞回耗能;Ed——消能器耗散或吸收的能量。
在上述能量方程中,由于Ev和E'v、Ek和E'k仅发生能量转化,并不耗散能量,而Ec和E'c仅占总能量的很小部分(约5%左右),可以忽略不计。
新《减震抗震设计规范》中的隔震与消能减震资料3、隔震和消能减震设计的主要优点隔震体系能够减小结构的水平地震作用,已被理论和国外强震记录所证实。
国内外的大量试验和工程经验表明:“隔震”一般可使结构的水平地震作用降低60%左右,从而消除或有效地减轻结构和非结构的地震损坏,提高建筑物及其内部设施、人员在地震时的安全性,增加震后建筑物继续使用的能力。
采用消能方案可以减少结构在风作用下的位移已是公认的事实,对减少结构水平和竖向地震反应也是有效的。
4、隔震和消能减震设计的适用范围1)、隔震设计的适用范围规范12.1.3条对隔震结构提出了一些使用要求。
根据研究:隔震结构主要用于体型基本规则的低层和多层建筑结构。
日本和美国的经验表明,不隔震时基本周期小于1.0秒的建筑结构减震效果与经济性均最好,对于高层建筑效果较差。
国外对隔震建筑工程的较多考察资料表明:硬土场地较适合于隔震建筑;软弱场地滤掉了地震波的中高频分量,延长结构的周期有可能增大而不是减小其地震反应。
墨西哥地震就是一个典型的例子。
日本“隔震结构设计技术标准”(草案)规定,隔震建筑适用于一、二类场地。
我国Ⅰ、Ⅱ、Ⅲ类场地的反应谱周期均较小,故都可建造隔震建筑。
隔震设计中对风荷载和其他非地震作用的水平荷载给予一些限制(规范12.1.3条3款)是为了保证隔震结构具有可靠的抗倾覆能力。
就使用功能而论,隔震结构可用于:医院、银行、保险、通讯、警察、消防、电力等重要建筑;首脑机关、指挥中心以及放置贵重设备、物品的房屋;图书馆和纪念性建筑;一般工业与民用建筑;建筑物的抗震加固。
2)、消能设计的适用范围消能部件的置入,不改变主体承载结构的体系,又可减少结构的水平和竖向地震作用,不受结构类型和高度的限制,在新建和建筑抗震加固中均可采用。
二、隔震与消能减震设计要求1、设计方案建筑结构的隔震和消能减震设计,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与建筑抗震设计的设计方案进行技术、经济可行性的对比分析后,确定其设计方案。
结构消能减震技术随着城市化进程的加快和城市人口的不断增加,对于建筑物的安全性要求也越来越高。
地震是世界各地常见的自然灾害之一,造成了巨大的人员伤亡和财产损失。
因此,地震减灾成为了建筑领域的重要研究方向之一、结构消能减震技术作为一种有效的地震减灾措施,受到了广泛的关注和研究。
1.液体阻尼器:液体阻尼器是一种常用的减震装置,它利用液体的黏性来消耗地震能量。
液体阻尼器通常由一个密封的容器和内部的流体组成,地震发生时,流体在容器中产生摩擦和阻力,从而减轻地震对建筑物的冲击力。
液体阻尼器具有体积小、使用方便、适应性强等优点。
2.弹性材料:弹性材料是一种能够在地震发生时吸收和释放能量的材料。
它通常用于建筑结构的隔震层或缓冲层,能够减轻地震对建筑物的冲击力和振动。
常见的弹性材料包括橡胶、聚合物等,它们具有良好的弹性特性和高耐久性。
3.摩擦减震器:摩擦减震器是一种利用材料之间的摩擦力对地震力进行减震的装置。
它通常由两个平行的金属板之间夹有摩擦材料组成,地震发生时,摩擦材料中的摩擦力能够减轻建筑物的振动和变形。
4.惰性质量块:惰性质量块是一种重点落在建筑结构顶部的质量块,它的质量较大,能够增加建筑物的弹性周期,从而减小地震对建筑物的影响力。
惰性质量块通常由钢材或混凝土制成,它的设计需要考虑地震荷载和结构响应等因素。
1.提高建筑物的抗震性能:结构消能减震技术能够有效地减轻地震对建筑物的作用力和振动,从而提高建筑物的抗震性能。
这对于地震频繁的地区来说尤为重要,能够减少人员伤亡和财产损失。
2.减少地震后的修复成本:由于结构消能减震技术能够减轻地震对建筑物的破坏程度,降低修复成本和时间。
这对于城市的恢复建设和经济发展具有重要意义。
3.增加建筑物的使用寿命:结构消能减震技术能够有效地控制建筑物的变形和振动,延长建筑物的使用寿命。
这对于提高建筑物的可持续性和资源利用效率具有重要意义。
结构消能减震技术虽然能够有效地减轻地震对建筑物的影响,但也存在一些挑战和问题。
新《减震抗震设计规范》中的隔震与消能减震隔震与消能减震是新《减震抗震设计规范》中的两个重要概念。
隔震是指通过设置隔震层,将结构与地震动进行隔离,使结构对地震的响应减小。
消能减震则是通过在结构中设置能够吸收和耗散地震能量的装置,实现地震能量的消耗和减震效果。
隔震是一种较为传统的减震措施,它通过设置隔震层,将结构与地震动进行隔离,使结构受到的地震力和位移减小,从而减小结构的破坏程度。
隔震层通常由隔震支座、隔震垫板等组成,这些装置能够在地震过程中自由移动,吸收和消散地震能量。
隔震的优点是能够有效减少结构的响应,保护结构的完整性,减小地震灾害的损失。
然而,隔震也存在一些问题,如隔震支座和隔震垫板的制造和安装难度较大,需要考虑地震过程中的水平限制等。
消能减震是相对较新的一种减震措施,它通过在结构中设置能够吸收和耗散地震能量的装置,实现地震能量的消耗和减震效果。
这些装置通常由减震器、摇摆框架等组成,它们能够在地震过程中发挥吸能和耗能的作用,从而减小结构的震动响应。
消能减震的优点是能够在地震过程中吸收和耗散大量的地震能量,降低地震对结构的破坏力度,提高结构的抗震性能。
然而,与隔震相比,消能减震要求设备的制造和维护难度较大,需要考虑装置的可靠性和耐久性等问题。
新《减震抗震设计规范》对隔震与消能减震提出了较为详细的要求和规范。
其中,对于隔震层的设置,规范要求应根据结构的抗震性能要求和场地条件进行合理的选择。
对于消能减震装置的设计,规范要求需要考虑装置的材料、减震效果以及装置的可靠性和耐久性等方面。
同时,规范还对隔震与消能减震的施工和验收提出了一系列具体的要求和标准,以保证减震措施的有效实施和质量控制。
总的来说,隔震与消能减震是新《减震抗震设计规范》中重要的减震措施。
它们通过不同的方式和装置,实现对结构的减震和减小地震响应的效果。
隔震通过隔离结构与地震动,减小结构的破坏程度;消能减震通过吸能和耗能装置,消耗地震能量,提高结构的抗震能力。
耗能减振结构的抗震设计方法一、本文概述随着地震活动的频繁发生,如何提高建筑结构的抗震性能已成为土木工程领域的研究热点。
耗能减振结构作为一种有效的抗震设计方法,近年来受到了广泛关注。
本文旨在深入探讨耗能减振结构的抗震设计方法,分析其在不同地震动条件下的耗能机制与减震效果,以期为土木工程实践提供有益的参考和指导。
本文首先介绍了耗能减振结构的基本原理和耗能元件的类型,包括阻尼器、隔震支座等。
随后,详细阐述了耗能减振结构的设计原则和设计流程,包括结构的动力特性分析、耗能元件的选型与优化、结构的地震动响应分析等。
在此基础上,通过对比分析不同耗能减振结构在不同地震动条件下的抗震性能,揭示了耗能减振结构在减小结构地震响应、提高结构安全性方面的优势。
本文还探讨了耗能减振结构在实际工程中的应用情况,分析了其在实际应用中的优缺点及适用条件。
针对耗能减振结构在设计、施工、维护等方面存在的问题和挑战,提出了相应的解决方案和建议。
本文旨在全面系统地介绍耗能减振结构的抗震设计方法,以期为土木工程实践提供有益的参考和指导。
通过深入研究耗能减振结构的耗能机制与减震效果,有助于推动土木工程领域在抗震设计方面的技术创新与进步,为保障人民生命财产安全做出积极贡献。
二、耗能减振结构的基本原理耗能减振结构是一种通过引入耗能元件,利用其在地震动作用下产生非弹性变形来耗散地震输入能量的结构体系。
其基本原理是在结构的关键部位安装耗能元件,这些元件在地震时会产生塑性变形或摩擦滑移,从而吸收并耗散地震能量,降低结构的地震响应,达到减震的目的。
耗能减振结构的设计关键在于选择合适的耗能元件和耗能机制。
耗能元件需要具备耗能能力大、耐久性好、性能稳定等特点,以确保结构在多次地震作用下仍能保持良好的减震效果。
耗能机制则需要根据结构的动力学特性、地震动特性以及使用要求等因素进行综合考虑。
耗能减振结构的优点在于其能够有效地减小地震对结构的影响,提高结构的抗震性能。
文献综述耗能减震技术在结构减震中的应用研究1. 前言传统的抗震设计是利用结构本身的抗震性能抵御地震作用,以达到抗震的目的,这是“硬碰硬”式的抗震, 是一种消极被动的抗震方法。
耗能减震技术[1]原理是通过附加的子结构或者耗能装置,以消耗地震传递给结构的能量为目的,以减小主体结构地震反应或减轻其破坏, 达到抗震的目的。
1972 年新西兰的Kelly等人[2]首先提出金属屈服耗能器,并进行了软钢耗能器的研究和试验。
为了改善地震作用下结构的工作性能,近年来国内外已开发出了各种耗能阻尼器。
目前, 已开发出多种耗能减震装置, 它们可归纳为以下三类:(1) 金属阻尼器;(2) 摩擦耗能减震装置;(3)粘弹性阻尼器。
因其减震效果好、构造简单、造价低廉、适用范围广、维护方便等特点,受到各国研究者和工程师的重视。
加拿大、意大利、日本、墨西哥、新西兰和美国等国家已将耗能减震装置应用到建筑中以减轻建筑物的地震反应, 以及在某些情况下减轻建筑物中设备振动损害的危险性。
本文总结了国内外耗能减震技术研究和工程应用的最新进展。
2. 耗能能减震的概念及原理消能减震技术属于结构减震控制中的被动控制,它是指在结构某些部位设置阻尼装置,通过阻尼装置产生摩擦,弯曲(或剪切,扭转)弹塑性滞回变形消能来消散或吸收地震能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震抗震的目的。
装有阻尼(消能)装置的结构称为耗能减震结构。
耗能减震的原理[8]可以从能量的角度来描述,如图1所示,结构在地震中任意时刻的能量方程为:(a )地震输入; (b )传统抗震结构; (c )消能减震结构图1 结构能量转换途径对比传统抗震结构:in v c k h E E E E E =+++ (1)耗能减震结构:''''in v c k h d E E E E E E =++++ (2)式中:E in 、E in ′——地震过程中输人结构体系的能量;E v 、E v ′——结构体系的动能;E c 、E c ′——结构体系的粘滞阻尼消能;E k 、E k ′——结构体系的弹性应变能;E h 、E h ′——结构体系的滞回消能;E d ——消能(阻尼)装置或消能元件消散或吸收的能量。