元素周期律
- 格式:ppt
- 大小:1.41 MB
- 文档页数:21
元素周期律元素周期律,指元素的性质随着元素的原子序数(即原子核外电子数或核电荷数)的增加呈周期性变化的规律。
周期律的发现是化学系统化过程中的一个重要里程碑。
基本概念元素的性质随着元素核电荷数的递增而呈现周期性变化的规律叫做元素周期律。
元素周期律由俄国的门捷列夫首先发现,并根据此规律创制了元素周期表。
结合元素周期表,元素周期律可以表述为:随着原子序数的增加,元素的性质呈周期性的递变规律:在同一周期中,元素的金属性从左到右递减,非金属性从左到右递增,在同一族中,元素的金属性从上到下递增,非金属性从上到下递减;同一周期中,元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右逐渐增高;同一族的元素性质相近。
主族元素同一周期中,原子半径随着原子序数的增加而减小。
同一族中,原子半径随着原子序数的增加而增大。
如果粒子的电子构型相同,则阴离子的半径比阳离子大,且半径随着电荷数的增加而减小。
(如O2->F->Na+>Mg2+)内涵结合元素周期表,元素周期律可以表述为:元素的性质随着原子序数的递增而呈周期性的递变规律。
随着原子序数的增加,元素的性质呈周期性的递变规律:在同一周期中,元素的金属性从左到右递减,非金属性从左到右递增,在同一族中,元素的金属性从上到下递增,非金属性从上到下递减;同一周期中,元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右逐渐增高;同一族的元素性质相近。
主族元素同一周期中,原子半径随着原子序数的增加而减小。
同一族中,原子半径随着原子序数的增加而增大。
如果粒子的电子构型相同,则阴离子的半径比阳离子大,且半径随着电荷数的增加而减小。
本质元素核外电子排布的周期性决定了元素性质的周期性。
原子半径同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;同一族中,从上到下,随着原子序数的递增,元素原子半径递增。
(注):阴阳离子的半径大小辨别规律由于阴离子是电子最外层得到了电子而阳离子是失去了电子所以, 总的说来(同种元素)(1) 阳离子半径<原子半径(2) 阴离子半径>原子半径(3) 阴离子半径>阳离子半径(4)或者一句话总结,对于具有相同核外电子排布的离子,原子序数越大,其离子半径越小。
元素周期律知识点总结元素周期律是现代化学的基础之一,它是根据元素的原子序数和原子结构的周期性规律将元素按照一定顺序排列的表格。
以下是元素周期律的一些重要知识点总结:1. 元素周期律的排列方式:元素周期律中元素按照原子序数顺序排列,一般从左上角到右下角,纵列称为“周期”,横行称为“族”。
2. 周期表的组成:周期表分为横行(周期)和竖列(族)。
横行称为周期,表示电子层的数量,竖列称为族,表示原子中对外电子的数量和性质。
3. 周期表的区域划分:周期表可以分为主族元素和过渡元素两部分。
主族元素位于周期表的1A到8A族,对外电子为s和p电子;过渡元素位于4B到11B族和3A到8A 族,对外电子为d和s电子。
不包含2A族和3B族的过渡元素。
4. 周期表的电子层结构:周期表中的行数代表电子层数,从1行到7行依次填充电子,并按能级顺序填充。
例如,第1行只有1s轨道,第2行有2s和2p轨道,依此类推。
5. 周期表的周期性规律:周期表中的元素按照一定规律呈现周期性变化。
例如,原子半径逐渐减小,电离能逐渐增大,在同一周期内,电负性逐渐增大等。
6. 主族元素的性质:主族元素的性质随族数的增加而呈现一定的规律性。
例如,1A族元素是碱金属,具有低电离能、低电负性、金属性等特征;7A族元素是卤素,具有高电离能、高电负性、非金属性等特征。
7. 过渡元素的性质:过渡元素具有多样的性质,但总体上具有较高的电离能和电负性,良好的催化性能和各种维度的配位化学。
这些是元素周期律中的一些重要知识点,但仅仅列举了一小部分。
元素周期律是化学研究的基础,涉及到更多的化学性质和规律。
【化学】《元素周期律》知识点总结元素周期律项目同周期(左→右)同主族(上→下)核电荷数逐渐增大逐渐增大电子层数相同逐渐增多原子半径逐渐减小逐渐增大离子半径阳离子逐渐减小,阴离子逐渐减小r(阴离子)>r(阳离子)逐渐增大化合价最高正化合价由+1→+7(O、F除外),负化合价=-(8-主族序数)相同最高正化合价=主族序数(O、F除外)元素的金属性和非金属性金属性逐渐减弱非金属性逐渐增强金属性逐渐增强非金属性逐渐减弱离子的氧化性、还原性阳离子氧化性逐渐增强阴离子还原性逐渐减弱阳离子氧化性逐渐减弱阴离子还原性逐渐增强气态氢化物稳定性逐渐增强逐渐减弱最高价氧化物对应水化物的酸碱性碱性逐渐减弱酸性逐渐增强碱性逐渐增强酸性逐渐减弱重难突破一、元素金属性、非金属性比较1.元素金属性强弱的判断(1)比较元素的金属性强弱,其实质是看元素原子失去电子的难易程度,越容易失去电子,金属性越强。
(2)金属单质和水或非氧化性酸反应置换出氢越容易,金属性越强;最高价氧化物对应水化物的碱性越强,金属性越强。
2.元素非金属性强弱的判断(1)比较元素的非金属性强弱,其实质是看元素原子得到电子的难易程度,越容易得到电子,非金属性越强。
(2)单质越容易与氢气化合,生成的氢化物越稳定,非金属性越强;最高价氧化物对应水化物的酸性越强,说明其非金属性越强。
典例2X、Y为同周期元素,如果X的原子半径大于Y,则下列判断不正确的是()A.若X、Y均为金属元素,则X的金属性强于YB.若X、Y均为金属元素,则X的阳离子氧化性比Y的阳离子强C.若X、Y均为非金属元素,则Y的非金属性比X强D.若X、Y均为非金属元素,则最高价含氧酸的酸性Y强于X【答案】B典例1已知X、Y、Z是三种原子序数相连的元素,最高价氧化物对应水化物的酸性相对强弱的顺序是HXO4>H2YO4>H3ZO4,则下列判断正确的是()A.气态氢化物的稳定性:HX>H2Y>ZH3B.非金属活泼性:Y<X<ZC.原子半径:X>Y>ZD.原子最外层电子数:X<Y<Z【答案】A二、微粒半径大小的比较1. 同周期元素的微粒同周期元素的原子(稀有气体除外),从左到右原子半径或最高价阳离子的半径随核电荷数增大而逐渐减小。
元素周期表的性质1、元素周期表:元素周期表有7个横行,叫周期。
第1到第3周期被称为短周期,第4到第6周期被称为长周期,第7周期被称为不完全周期。
元素周期表中有18个列,叫族。
其中有7个主族,7个副族,1个第Ⅷ族,1个0族。
周期序素=电子层数,主族元素=最外层电子数。
2、元素周期律:元素的性质随着原子序数的递增而呈周期性变化。
3、主族元素化合价:最高正价=最外层电数,最低负价=-(8-最高正价),金属元素最低正价为0。
4、前20号元素:ⅠA ⅡA ⅢA ⅣA ⅤA ⅥA ⅦA 01 H He2 Li Be B C N O F Ne3 Na Mg Al Si P S Cl Ar4 K Ca5、第三周期元素化合物性质比较:族ⅠA ⅡA ⅢA ⅣA ⅤA ⅥA ⅦA元素Na Mg Al Si P S Cl最高价氧化物Na2O MgO Al2O3SiO2P2O5SO3Cl2O7NaOH Mg(OH)2Al(OH)3H2SiO3H3PO4H2SO4HClO4最高价氧化物对应水化物酸、碱性强碱中强碱两性弱酸中弱酸强酸最强酸气态氢化物SiO4PH3H2S HCl不稳定较稳定稳定热稳定性比较很不稳定6、元素性质:在同一周期中,从左到右原子半径逐渐减小,失电子能力逐渐减弱,得电子能力逐渐增强,元素的金属性逐渐减弱,非金属性逐渐增强。
同一主族元素,从上到下电子层数增多,原子半径增大,失电子能力逐渐增强,得电子能力逐渐减弱,元素的金属性逐渐增强,非金属性逐渐减弱。
在同一周期中,从左到右,主族元素最高价氧化物对应水化物的碱性逐渐减弱,酸性逐渐增强;它们气态氢化物的热稳定性逐渐增强。
在同一主族中,从上到下,元素最高价氧化物对应水化物的酸性逐渐减弱,碱性逐渐增强;它们的气态氢化物的热稳定性逐渐减弱。
原子半径金属性非金属性最高价氧化物对应水化物气态氢化物的稳定性酸性碱性同一横行减小减小增大减小增大增大同一列增大增大减小增大减小减小2011.11.12。
一.元素周期表1。
原子序数=核电荷数=核内质子数=核外电子数2.主族元素最外层电子数=主族序数3。
电子层数=周期序数4。
碱金属元素:密度逐渐增大,熔沸点逐渐变大,自上而下反应越来越剧烈银白色金属,密度小,熔沸点低,导电导热性强5.判断元素金属性强弱的方法:单质与水(酸)反应置换出氢的难易程度最高价氧化物的水化物(氢氧化物)的碱性强弱单质间的置换6。
卤族元素:密度逐渐增大,熔沸点逐渐升高与氢气反应剧烈程度越来越弱,生成氢化物稳定性渐弱7.判断元素非金属性强弱的方法:与氢气生成气态氢化物的难易程度以及氢化物的稳定性最高价氧化物的水化物的酸性单质间的置换8。
质量数:核内所有质子和中子的相对质量取近似整数相加9。
核素:具有一定数目质子和一定数目的中子的一种原子10。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素天然稳定存在的同位素,无论是游离态还是化合态各同位素所占的原子个数百分比一般是不变的在相同状况下,各同位素的化学性质基本相同(几乎完全一样),物理性质有所不同12。
原子相对原子质量=1个原子的质量/(1/12 C12的原子质量)13。
原子的近似相对原子质量=质量数14。
元素的相对原子质量=各同位素的相对原子质量的平均值=A·a%+B·b%…15.元素的近似相对原子质量=各同位素质量数的平均值=A·a%+B·b%…二.元素周期律1.K、L、M、N、O、P、Q(1,2,3,4,5,6,7,)层数越大,电子离核越远,其能量越高2.能量最低原理3.各电子层最多容纳电子数:2n^24.最外层不超过8,次外层18,倒数第三层325.原子半径:同周期主族元素,原子半径从左到右逐渐减小同主族元素,元素原子半径从上到下逐渐增大6.元素性质的周期性变化是元素原子的核外电子排布的周期性变化的结果(实质)7.同一周期元素,电子层数相同,从左到右,核电荷数增多,原子半径减小,失电子的能力逐渐减弱,得电子的能力逐渐增强8.同一主族,自上而下,元素的金属性逐渐增强,非金属性逐渐减弱,最外层电子数相同,电子层数增多,原子半径增大9.最高正价=最外层电子数最低负价=8—最外层电子数10.各周期元素种类:2,8,8,18,32,3211.稀有气体原子序数;2,10,18,36,54,8612.同族上下相邻的原子序数差:2,8,18,3213.同周期IIA族与IIIA族原子序数相差:1,1,11,11,2514.电子层数不同,原子序数(核电荷数)均不同时,电子层数越多,半径越大15.电子层数相同,原子序数(核电荷数)不同时,原子序数(核电荷数)越大,半径越小16.电子层数,原子序数(核电荷数)均相同时,核外电子数越多,半径越大17.电子排布相同的离子,离子半径随核电荷数递增而减小选修三.原子结构与性质1.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d 轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。
高中化学之元素周期律知识点一、原子序数1、原子序数的编排原则按核电荷数由小到大的顺序给元素编号,这种编号,叫做原子序数。
2、原子序数与原子中各组成粒子数的关系原子序数=核电荷数=质子数=核外电子数二、元素周期律我们知道:一切客观事物本来是互相联系的和具有内部规律的,所以,各元素间也应存在着相互联系及内部规律。
1.核外电子排布的周期性从3-18号元素,随着原子序数递增,最外层电子数从1个递增至8个,达到稀有气体元素原子的稳定结构,然后又重复出现原子最外层电子数从1个递增至8个的变化。
18号以后的元素,尽管情况比较复杂,但每隔一定数目的元素,也会出现原子最外层电子数从1个递增到8个的变化规律。
可见,随原子序数递增,元素原子的最外层电子排布呈周期性的变化。
2.原子半径的周期性变化从3-9号元素,随原子序数递增,原子半径由大渐小,经过稀有气体元素Ne后,从11-18号元素又重复出现上述变化。
如果把所有的元素按原子序数递增的顺序排列起来,我们会发现随着原子序数的递增,元素的原子半径发生周期性的变化。
注意:①原子半径主要是由核外电子层数和原子核对核外电子的作用等因素决定的。
②稀有气体元素原子半径的测定方法与其它原子半径的测定方法不同,所以稀有气体的原子半径与其他原子的原子半径没有可比性。
一般不比较稀有气体与其它原子半径的大小。
③粒子半径大小比较的一般规律:电子层数越多,半径越大,电子层数越少,半径越小;当电子层结构相同时,核电荷数大的半径小,核电荷数小的半径大;对于同种元素的各种粒子半径,核外电子数越多,半径越大;核外电子数越少,半径越小。
例如,粒子半径:H->H>H+;Fe3+<Fe2+。
3.元素主要化合价的周期性变化从3-9号元素看,元素化合价的最高正价与最外层电子数相同(O、F不显正价);其最高正价随着原子序数的递增由+1价递增至+7价;从中部的元素开始有负价,负价是从-4递变到-1。
从11-17号元素,也有上述相同的变化,即:元素化合价的最高正价与最外层电子数相同;其最高正价随着原子序数的递增重复出现由+1价递增至+7价的变化;从中部的元素开始有负价,负价是从-4递变到-1。
元素周期律和元素周期表1、元素周期律定义:元素的性质随着原子序数的递增而呈现的周期性变化规律即元素周期律。
2、元素周期律的内容:(1)原子半径的周期性变化规律随着元素原子序数的递增,电子层数相同的元素的原子半径呈现出从大到小的周期性变化规律。
【延伸】影响微粒半径大小的因素①电子层数越多,微粒半径越大;②电子层数相同时,核电荷数越大,微粒半径越小③核电荷数相同时,核外电子数越大,微粒半径越小【例1】X和Y两元素的阳离子具有相同的电子层结构,X元素的阳离子半径大于Y元素的阳离子半径;Z和Y两元素的原子核外电子层数相同,Z元素的原子半径小于Y元素的原子半径。
X、Y、Z三种元素原子序数的关系是( )A.X>Y>Z B.Y>X>Z C.Z>X>Y D.Z>Y>X【例2】A+,B2+,C-,D2-四种离子具有相同的电子层结构,现有以下排列顺序:①B2+>A+>C->D2-;②C->D2->A+>B2+;③B2+>A+>D2->C-;④D2->C->A+>B2+。
四种离子的半径由大到小以及四种元素原子序数由大到小的顺序是( )A.④①B.①④C.②③D.③②(2)元素的主要化合价的周期性变化规律随着元素原子序数的递增,元素的主要化合价呈现出从+1~+7、-4~-1的周期性变化规律。
3~18号元素的主要化合价见下表:同主族,元素的化合价基本相同。
主族元素的最高正化合价等于它所在主族的序数。
非金属元素的最高正化合价和它的负化合价绝对值的和等于8。
一般情况下,氧和氟由于非金属性很强,在化合物中不表现出正的化合价,即只有-2和-1价。
【例3】A和B两种元素可以形成A2B型化合物,它们的原子序数分别是( )(A)11和16 (B)12和17 (C)6和8 (D)19和8【例4】若1-18号元素中的两种元素可以形成原子个数比为2:3的化合物,则这两种元素的原子序数之差不可能是( )(A)1 (B)3 (C)5 (D)6(3)原子核外电子排布的周期性变化规律随着元素原子序数的递增,每隔一定数目的元素,元素原子核外最外层电子重复出现1个递增到8个(第一层例外),呈现周期性变化的规律。
元素周期律元素周期律:1、元素周期律的概念:元素及其化合物的性质随着核电荷数的递增呈现周期性变化的规律。
2、元素周期律的原因:元素及其化合物的性质随着核电荷数的递增呈现周期性变化,其原因是元素的原子的核外电子排布随着核电荷数的递增呈现周期性变化,特别是最外层电子数随着核电荷数的递增呈现周期性变化。
3、元素周期性的主要表现:最高价氧化物、氢化物、最高价氧化物的水化物化学式、最外层电子数、原子半径、最高价、最低价、金属性、非金属性、与水反应置换出氢气的能力、与酸反应置换出氢气的能力、最高价氧化物的水化物的酸碱性、气态氢化物的稳定性、还原性。
3、元素周期律的发现者:俄国化学家门捷列夫。
元素周期律的具体体现1、元素的原子半径的周期性:同一周期,自左而右,原子半径依次递减。
稀有气体的原子半径比同一周期的非金属元素的原子半径要大。
2、元素的化合价的周期性:同一周期,自左而右,元素的最高价依次递增,从+1价到+7价,又回到稀有气体。
(第二周期的O、F除外);元素的最低价,从ⅣA开始,依次递增,从-4价到-1价,再回到稀有气体。
主族元素的最高价=最外层电子数(F、O除外)主族元素的最低价(从第ⅣA开始)=最外层电子数—8(H除外)主族元素的中间价(从第ⅣA开始)在最高价与最低价之间,一般依次减少2价。
3、元素的原子核外电子排布的周期性:同周期,自左而右,最外层电子数依次递增,从1个到8个。
4、元素的金属性和非金属性的周期性:同周期,自左而右,失去电子的能力依次递减,得到电子的能力依次递增,金属性依次减弱,非金属性依次增强。
5、单质与水反应产生氢气的能力的周期性:同周期,自左而右,单质与水反应产生氢气的能力依次减弱。
6、单质与酸反应产生氢气的能力:同周期,自左而右,单质与酸反应产生氢气的能力依次减弱。
7、最高价氧化物的水化物的酸碱的周期性:同周期,自左而右,最高价氧化物的水化物的酸性依次增强,碱性依次减弱。
8、单质与氢气化合能力的周期性:同周期,自左而右,单质与氢气化合的能力依次增强。
初中化学《元素周期律》优秀教案第一章:元素周期律的发现1.1 科学家的探索-介绍道尔顿、门捷列夫等科学家对元素周期律的贡献1.2 元素周期律的定义-解释元素周期律的概念:元素周期律是元素性质随着原子序数的递增而呈周期性变化的规律1.3 元素周期律的表述-介绍元素周期律的表述方式:周期表第二章:元素周期律的规律2.1 周期性变化-解释元素周期律的周期性变化:原子半径、化合价、金属性和非金属性等2.2 周期表的结构-介绍周期表的结构:周期、族、周期表的排列规律2.3 周期表的应用-讲解周期表在化学学习和实际应用中的重要性第三章:周期表中的主族元素3.1 碱金属族-介绍碱金属族的元素特点、性质及应用3.2 碱土金属族-介绍碱土金属族的元素特点、性质及应用3.3 卤族元素-介绍卤族元素的元素特点、性质及应用第四章:周期表中的过渡元素4.1 过渡元素的分类-讲解过渡元素的分类:d区和ds区4.2 过渡元素的性质-介绍过渡元素的性质:金属性、非金属性、氧化还原性等4.3 过渡元素的应用-讲解过渡元素在催化剂、合金等领域的应用第五章:周期表中的镧系和锕系元素5.1 镧系和锕系元素的发现-介绍镧系和锕系元素的发现背景及意义5.2 镧系和锕系元素的性质-介绍镧系和锕系元素的元素特点、性质及应用5.3 镧系和锕系元素的研究意义-讲解镧系和锕系元素在核反应、超导体等领域的研究价值第六章:原子结构和元素周期律6.1 原子核外电子的排布-解释原子核外电子的排布规律及其与元素周期律的关系6.2 元素周期律的量子化学解释-介绍量子化学对元素周期律的解释和意义6.3 原子半径的周期性变化-讲解原子半径的周期性变化及其在周期表中的应用第七章:元素周期律与化学反应7.1 元素化合价的周期性变化-解释化合价的周期性变化及其对化学反应的影响7.2 金属性和非金属性的周期性变化-介绍金属性和非金属性的周期性变化及其在化学反应中的应用7.3 元素周期律在化学反应预测中的应用-讲解如何利用元素周期律预测化学反应的可能性及产物第八章:元素周期律在材料科学中的应用8.1 金属材料的设计与制备-介绍如何利用元素周期律设计和制备金属材料8.2 半导体材料的应用-讲解半导体材料在电子、光电子领域的应用及其与元素周期律的关系8.3 超级合金及其他先进材料-介绍超级合金及其他先进材料的设计原理及其与元素周期律的关系第九章:元素周期律在环境化学中的应用9.1 环境污染与元素周期律-解释环境污染与元素周期律的关系及其在污染治理中的应用9.2 元素生物地球化学循环-介绍元素生物地球化学循环的规律及其与元素周期律的关系9.3 环境监测与元素周期律-讲解如何利用元素周期律进行环境监测和污染物分析第十章:元素周期律在药物化学中的应用10.1 药物设计与元素周期律-介绍药物设计与元素周期律的关系及其在药物研发中的应用10.2 药物分子结构的优化-解释如何利用元素周期律优化药物分子结构以提高药效10.3 元素周期律在药物筛选中的应用-讲解元素周期律在药物筛选和构效关系研究中的作用第十一章:元素周期律在材料科学中的应用(续)11.1 纳米材料与元素周期律-介绍纳米材料的设计与元素周期律的关系11.2 复合材料的应用-讲解复合材料在各个领域的应用及其与元素周期律的关系11.3 功能材料的研究与发展-介绍功能材料的研究与发展趋势及其与元素周期律的联系第十二章:元素周期律在生物化学中的应用12.1 生物体内元素的分布与周期律-解释生物体内元素分布与元素周期律的关系12.2 酶与元素周期律-介绍酶的活性中心元素与元素周期律的关系12.3 生物地球化学与元素周期律-讲解生物地球化学研究中元素周期律的应用第十三章:元素周期律在宇宙化学中的应用13.1 宇宙中的元素分布-介绍宇宙中元素分布的特点及其与元素周期律的关系13.2 恒星演化与元素周期律-解释恒星演化过程中元素周期律的应用13.3 行星地球化学与元素周期律-讲解行星地球化学研究中元素周期律的应用第十四章:元素周期律在现代化学分析中的应用14.1 原子吸收光谱分析-介绍原子吸收光谱分析原理及其与元素周期律的关系14.2 质谱分析与应用-讲解质谱分析原理及其在元素周期律研究中的应用14.3 X射线荧光光谱分析-介绍X射线荧光光谱分析原理及其与元素周期律的关系第十五章:元素周期律的综合应用与研究前景15.1 元素周期律在多领域中的应用-总结元素周期律在多个领域的应用及其重要性15.2 元素周期律的研究新进展-介绍元素周期律研究的新技术、新方法及发展趋势15.3 元素周期律的挑战与机遇-探讨元素周期律在现代科学中的挑战及未来发展的机遇重点和难点解析本文主要介绍了初中化学《元素周期律》的相关知识,包括元素周期律的发现、规律、应用以及其在不同领域的重要性。
元素周期表元素周期律知识点总结在现实学习生活中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是学习的重点。
那么,都有哪些知识点呢?以下是店铺为大家收集的元素周期表元素周期律知识点总结,仅供参考,希望能够帮助到大家。
一、元素周期表★熟记等式:原子序数=核电荷数=质子数=核外电子数1、元素周期表的编排原则:①按照原子序数递增的顺序从左到右排列;②将电子层数相同的元素排成一个横行——周期;③把最外层电子数相同的.元素按电子层数递增的顺序从上到下排成纵行——族2、如何精确表示元素在周期表中的位置:周期序数=电子层数;主族序数=最外层电子数口诀:三短三长一不全;七主七副零八族熟记:三个短周期,第一和第七主族和零族的元素符号和名称3、元素金属性和非金属性判断依据:①元素金属性强弱的判断依据:单质跟水或酸起反应置换出氢的难易;元素最高价氧化物的水化物——氢氧化物的碱性强弱;置换反应。
②元素非金属性强弱的判断依据:单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;最高价氧化物对应的水化物的酸性强弱;置换反应。
4、核素:具有一定数目的质子和一定数目的中子的一种原子。
①质量数==质子数+中子数:a==z+n②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。
(同一元素的各种同位素物理性质不同,化学性质相同)二、元素周期律1、影响原子半径大小的因素:①电子层数:电子层数越多,原子半径越大(最主要因素)②核电荷数:核电荷数增多,吸引力增大,使原子半径有减小的趋向(次要因素)③核外电子数:电子数增多,增加了相互排斥,使原子半径有增大的倾向2、元素的化合价与最外层电子数的关系:最高正价等于最外层电子数(氟氧元素无正价)负化合价数=8—最外层电子数(金属元素无负化合价)3、同主族、同周期元素的结构、性质递变规律:同主族:从上到下,随电子层数的递增,原子半径增大,核对外层电子吸引能力减弱,失电子能力增强,还原性(金属性)逐渐增强,其离子的氧化性减弱。
元素周期律+元素周期表⼀、元素周期律数量关系:质⼦数 = 核电荷数 = 核外电⼦数 = 原⼦序数。
质量关系:质量数(A) = 质⼦数(Z) + 中⼦数(P)≈相对原⼦质量。
电量关系:核外电⼦数 = 质⼦数 ± 离⼦电荷数。
周期序数 = 核外电⼦层数 = 能级组序数。
主族序数 = 最外层电⼦数/价电⼦数/特征电⼦数 = 最⾼正价。
副族序数 = 最多可失去的电⼦数/价电⼦数/特征电⼦数。
元素周期律: 定义:元素性质随原⼦序数递增呈周期性变化的规律。
发现者:门捷列夫。
内容: ①原⼦半径:同周期从左到右,原⼦半径越来越⼩。
同主族从上到下,原⼦半径越来越⼤。
分类:共价半径、⾦属半径、范德华(Van Der Waals)半径。
共价半径: 定义:相邻两同种原⼦以共价单键相连时核间距的⼀半。
共价半径 < 真实半径。
⾦属半径: 定义:⾦属晶体中相邻两同种原⼦核间距的⼀半。
⾦属半径 = 真实半径。
范德华半径: 定义:相邻两同种原⼦以范德华⼒相连时核间距的⼀半。
范德华半径 > 真实半径。
适⽤范围:稀有⽓体。
②化合价:同周期从左到右,最⾼正价越来越⼤,最低负价越来越⼩。
同主族从上到下,最⾼正价和最低负价不变。
③第⼀电离能(势):同周期从左到右,第⼀电离能(势)越来越⼤,同主族从上到下,第⼀电离能(势)越来越⼩。
特例:铍 > 硼。
氮 >氧。
镁 > 铝。
磷 > 硫。
砷 > 硒。
定义:⽓态基态原⼦失去⼀个电⼦变为⽓态⼀价正离⼦时吸收的能量。
符号:I。
单位:国际单位(SI):焦(尔)每摩(尔)(J/mol)。
常⽤单位:千焦(尔)每摩(尔)(kJ/mol)。
第⼀电离能(势)越⼤,失电⼦能⼒越弱,得电⼦能⼒越强,⾦属性越弱,⾮⾦属性越强。
第⼀电离能(势)越⼩,失电⼦能⼒越强,得电⼦能⼒越弱,⾦属性越强,⾮⾦属性越弱。
④第⼀电⼦亲和能(势):同周期从左到右,第⼀电⼦亲合能(势)越来越⼤。