定 理一 : f (z) u(x, y) v(x, y)i
x
y
在 一点z x iy可 导的 充 分必 要 条:件 为
u(x, y),v(x, y)在 点z(x, y)可 导;
满 足柯 西 黎 曼方 程u: v , u v x y y x
定理二f(: z)u(x, y)v(x, y)i 在 区D域内 解 析 的 充 分 必为要:条 件 u(x, y),v(x, y)在D内可导; 在D内 ( CR方 程 ): u v, u v x y y x
g ( z )2
6、 f [ g ( z )] f ( w ) g ( z ) w g ( z )
2、解析函数
w f (z)在点z0解析: f (z)在z0及z0的邻域内处处可导
在区D 域 内解析f(: z)在D内每一点解析。
f(z)在z0不解 析 z0为奇点。
定理: 1) 如果f (z),g(z)在区域D内解析,有 :
a,b,c,d?可f使 (z)处 处 解 析 。
例 3 、 f'(z)0 在 D 内 f(z)常数
例 4、如f果 (z): uiv为解析函 f(z)数 0 , 则曲 :线 u(x组 ,y)c1和 v(x,y)c2互 相 正
证明:
f (z)
1 i uy
vy
0
u y ,v y不全为
0
uy,v
都不为
f (z) g(z), f (z) g(z), f (z) , 在D内都解析。 g(z)
2) h=g(z)在D内解析,w=f(h)在G内解析, 如果函数h=g(z)的函数值集合落在G内,则 复合函数w=f[g(z)]在D内解析
有 理 函 数 ( 多 项整式个)复在平 面 上 解 析 。 wP(z)a0 a1zanzn 有理分w式 P(z)(两个多项式的分商母)不除 0的 为