如何证明尺规作图三等分一个角是不可能问题
- 格式:doc
- 大小:37.50 KB
- 文档页数:1
磬折形尺如何三等分一个角
三等分一个角是引起许多数学发现的古老的三大不可能作图题之一。
虽然仅仅用圆规和直尺不能把一个角三等分,但是可用被希腊人称做磬折形尺的工具达到这个目的。
磬折形尺可用来作出和确定直角。
古希腊人用它来三等分一个角的方法如下:
第1步:用磬折形尺作一直线,平行于角的一边,如第2步所示。
第3步:将磬折形尺放得如图所示,使一个标记在角的一边上,另一个在平行线上,尺的长柄内侧经过角的顶点。
第4步:作虚线以形成3个三角形。
由斜边和直角边知△PCB≌△PAB。
由两边夹一角知△PCB≌△PCD。
于是△PCB≌△PCD≌△PAB,因此∠1 =∠2=∠3,即∠P被三等分了。
尺规作图不能问题就是不可能用尺规作图完成的作图问题。
这其中最著名的是被称为几何三大问题的古典难题:■三等分角问题:三等分一个任意角;■倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;■化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。
在2400年前的古希腊已提出这些问题,直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。
1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题。
【尺规作图不能问题的另类做法】[编辑本段]■总述人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.■关于三等分一任意角问题★作法一尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA★作法二帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA★作法三帕普斯(Pappus,约公元320年)方法,对于∠AOB,在它的两边上截取OA=OB.连结AB 并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA★作法四玫瑰线方法:交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA■关于立方倍积问题★作法一柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边.★作法二门纳马斯(Menaechmus,约公元前375—325年)方法:从a∶x=x∶y=y∶2a可得y2=2ax,x2=ay.所以,在直角坐标平面上画出上述两个二次方程所对应的两条抛物线(图16).这两条抛物线交于O、A两点,那么点A在x轴上的投影到原点的距离,就是所求的立方体的棱长.★作法三阿波罗尼(Apollonius de Perge,约公元前260—200年)方法:作一矩形ABCD,这里AB=a、AD=2a.以此矩形对角线交点G为圆心,以适当长度为半径作圆,与AB、AD之延长线分别交于E、F,使E、C、F三点共线,则AB∶DF=DF∶BE=BE∶AD,线段DF之长即为所求立方体的棱长.■化圆为方问题★作法:对于已知圆O,作出它在第一象限的圆积线①l.连结这一圆积线的两个端点B、F,过点B引BF的垂线BG,交x轴于G.在OA上取一点H,使HA=1/2GO.以H为圆心,HG 为半径画弧,交y轴于点K.则以OK为一边的正方形,即为所求作的与圆O等积的正方形.【尺规作图不能问题的积极意义】[编辑本段]我们可以看出,几何三大问题如果不限制作图工具,便很容易解决.从历史上看,好些数学结果是为解决三大问题而得出的副产品,特别是开创了对圆锥曲线的研究,发现了一批著名的曲线,等等.不仅如此,三大问题还和近代的方程论、群论等数学分支发生了关系.【尺规作图不能问题的相关趣事】[编辑本段]阿纳克萨戈勒斯是古希腊著名学者,在天文学中,他曾因解释日,月食的成因而闻名遐迩,并且认识到月球自身并不发光.正是他出色的研究成果给他带来了不幸, 在他大约50岁的时候,横祸从天而降,蒙受了冤狱之苦.灾难的起因是他认为太阳是一块炽热的石头.由于当时的宗教早已一口咬定太阳是神灵,而这位学者却无视宗教的权威,说太阳是一块石头,因而被投入监狱.尽管被囚禁的时间并不太长,可是,在被囚禁的日子里冤屈,苦闷,无聊实在让人度日如年.在阴暗,潮湿的牢房里,阿纳克萨戈勒斯看不到外面的朝霞暮霭,每天只有不长时间,阳光能穿过牢房那狭小的方形窗户进入室内.每当阳光进入囚室,在墙壁上撒下一片光亮时,总会引起作为学者的他的种种联想.有一天,他在凝视圆圆的太阳赏赐给他的方形的光亮时,他那习惯于思索的头脑突发奇想:能不能(仅用直尺和圆规)作一个正方形,使其面积与一个已知圆的面积恰好相等呢就这样,一道世界名题——"化圆为方"问题诞生了,它与"立方倍积"问题,"三等分任意角"问题一起被后人称作古希腊几何作图三大难题. 阿纳克萨戈勒斯想到化圆为方问题之后非常兴奋,因为他身边没有书籍,没有笔,很难研究别的问题,而这个问题却不同,只要用草棍在地上画就行了,草棍在牢房里有的是.他在进入高墙之前做梦也没有想到,在他最痛苦的时候,是数学排除了他的几分烦恼.不过,他一生也未能解决他提出的这个问题。
世界难题三分角答案规尺作图华罗庚难题的十八种答案和分角定理副高级周易研究师高春阳二十世纪五十年代,华罗庚教授提出:用圆规直尺三等分任意角和步行上月球一样是不可能的。
就因为‘三分角难题’是由华罗庚提出来的,中国人称它‘华罗庚难题'或“华罗庚数学发展计划”,应该是无可非议的。
总体分析如果不想让人们研究破解,最好是不提不让人想到。
既然提了出来并引起了研究兴趣。
这是任何强权都没法阻止的痴迷思想动力。
先提出“此地无银”,然后再用“三百两”推翻自己的提出,绝非智者所为。
因此,提出难题的目的只能是希望有人研究它破解它。
否定说不成立。
具体分析1.给定条件是‘一样’:意思是‘三分角’和‘上月球’一样是目的;‘用规尺’和‘用步行’一样是方法。
2.论断:因为目的是唯一的,没有对错分别的;方法是多种多样的,有对错优劣差别的。
所以,‘不可能’一词只能否定方法,绝不是否定目的。
3.论证:指导生存革命的中国古代《易经》占卜术提出:“顺(顺应切合)天(自然)命(规律)则昌;逆(违背不切合)天命则亡”。
用现代马克思主义思想解释它,就是主观自我的行为方法步骤,切合了客观实际自然规律,就必然取得成功,趋向昌盛;如果方法步骤违背了实际自然规律,就必然趋向失败,甚至自取灭亡。
这说明古今中外所有的革命科学一律都用是否切合实际来检验自己方法的对和错。
随意放弃(否定)目的停止探索的不是科学思想。
《易经》还提出:“穷(不通)则变,变则通,通则久。
”意思是如果自己行不通,想不通,就应当改变自己的想法做法(行为计划)重新实验。
经过反复多次地自改自验,自验证自改,总会有自己行得通想得通的时刻,这时自己思想中对物变因果规律过程的知觉认识,就是今后可以长期用来指导自身行为实践的真知(觉)真理(解)。
这不仅是古占卜学的中心思想,也是毛泽东《实践论》一书的中心思想。
更是所有科学家一贯继承和坚持的科研思想方法.华罗庚确实说过“不要再钻牛犄角尖了......”“牛犄角尖”一词,正是指用量角器或钟表盘之类行不通又不肯动脑改想新法的死板错误做法。
角三等分和平前言一百多年来,国内外数学界一致认为用尺规(尺指的是不带刻度的直尺,规指的是圆规,简称为尺规)作图将一任意角三等分已被证明了这是一个“作图不能问题”的结论是完全正确的。
其实这个结论肯定是错误的,我就能,肯定能推翻这个错误的结论。
下面我用角三等分和剖析角三等分及解两种不同的解题方法中的一种方法即角三等分来证明用尺规作图可将一任意角三等分,並对大小各不相等的角进行角三等分尺规作图达2470多次,装订成册24本,验证了这个理论是完全正确的。
让角三等分无解的结论彻底破灭,也为角的其他等分的解决打下基础,角三等分也是角尺规等分法中的一部分。
由于本人水平有限,如有错误和缺欠,恳请给以指正。
2011-4-3 和平一角三等分∠α为任意一个角,用尺规作图将∠α三等分。
以∠α角顶点o为圆心,以任意长为半径画圆为A圆(图中只画圆的一部分),见图3-1,A 圆交∠α两边分别是A点和B点,在A圆上作∠AOB=∠BOC=∠AOD=∠α=1/3∠DOC,设∠OCD=∠β,2∠β+3∠α=180°.如果3∠α大于或等于180°时,先将∠α缩小偶数倍的角再扩大3倍的角小于180°为止。
连接CD交OA线上G点,作∠AOB角平分线OH,∠AOH=∠HOB=1/2∠AOB=1/2∠α,连接BD交OH 线上H1点,连接BG並延长交OD线上P点,连接AP交CD线上F点,连接BF交OH线上b2点,连接GH1、Gb2、H1A、AD、AB、BC,求证:∠H1Gb2=1/3×1/2∠α=1/3∠GOH1=1/3×1/2∠AOB。
在△OGH1中,分别作OG和GH1边的垂直平分线交于O2点,连接O2O, 以O2点为圆心,以O2O为半径经过O、G、H1三点的圆为B圆(图中只画圆的一部分),GD=GB,ABGD为菱形,H1A=H1G=H1B,证明省略,B圆也经过B点,∠H1GB=∠H1BG=∠GBD=1/2∠α,∠DH1G=∠H1GB+∠H1BG=∠α=∠GOB,∠DH1G=∠GOB, ∠GOB+∠GH1B=180°,O、G、H1、B四点共圆,又∵O、G、H1三点可确定一个圆均在B圆上,∴B点也在B圆上。
初中-数学-打印版
初中-数学-打印版
“三等分任意角”属于几何作图三大名题(也是难题)之一.
数学上已经证明,仅用圆规、直尺三等分任意角是不可能的.使用量角器三等分任意角的方法简便易行,但准确性太差.
在工程作图中,为了提高工作效率,适应施工的需要,制图的工具不受圆规、直尺的限制.利用圆的切线的有关性质,可以制作一个三等分任意角的工具——三等分角仪,能把任意一个角分成三等分.
把板材(纸板、木板、金属板、塑料板等)制成图中阴影部分的形状,使AB 与半圆的半径CB 、CD
相等,PB 垂直于AD (即PB 与半圆相切,切点为B ).这便做成了一个“三等分角仪”.
如果要把∠MPN 三等分时,可将三等分角仪放在∠MPN 上,适当调整它的位置,使PB 通过角的顶点P ,使A 点落在角的PM 边上,使角的另一边与半圆相切于E 点.最后通过B 、C 两点分别作两条射线PB 、PC ,则∠MPB =∠BPC =∠CPN .
证明:连结CE ,则CE ⊥PN .
∵Rt △PAB ≌Rt △PCB ≌Rt △PCE ,
∴∠APB =∠BPC =∠CPE =13
∠MPN . 注:在“三等分角仪”的制作和应用过程中,涉及了圆的切线的下列性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;
(4)经过圆心垂直于切线的直线必经过切点;(5)经过切点垂直于切线的直线必经过圆心;
(6)从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.。
㊀㊀㊀㊀㊀140数学学习与研究㊀2020 10三等分任意角的作法探讨三等分任意角的作法探讨Һ蔡长青㊀(咸丰县中等职业技术学校,湖北㊀咸丰㊀445600)㊀㊀ʌ摘要ɔ 三等分角 是古希腊几何中尺规作图的名题,和化圆为方㊁倍立方问题并列为古代数学的三大难题,2400多年以来,不少学者进行了无数次尝试,都未能找到好的解决方法,笔者经过40余载的不断探索,吸取前人的数学智慧,突破传统思维,找到简单易行的求作三等分角的方法,该方法可以广泛应用到几何教学或工程技术领域.ʌ关键词ɔ三等分;任意角;作法;证明1979年的九月,进入咸丰一中学习的第一堂数学课上,满头银发的数学老师文渊不但满怀激情地介绍了高中三年数学学习的目标和学习方法,还向大家抛出了古代数学的三大难题,即用尺规作图法求作三等分任意角㊁化圆为方以及倍立方问题,从此笔者与三等分角问题结下了不解之缘.三等分角是号称古希腊三大几何问题之一,该问题的完整叙述为:只用圆规及一把没有刻度的直尺将一个给定角三等分.该问题自公元前480年以来,不少学者进行了长期的探索,甚至不少著名数学家从不同角度论证了用尺规作图法不可能解决 三等分角 问题,本着吸取前人数学智慧㊁传承文明㊁尊重科学的治学态度,本人就解决使用 尺规作图法 三等分任意角问题进行了长期的探索,现将偶有所得分享给大家,希望起到抛砖引玉的作用.一㊁关于三等分任意角的历史溯源1.三等分任意角问题产生的历史背景根据历史记载,公元前480年,古希腊和当时的波斯国在当时的雅典郊外萨尼克湾展开了一场惨烈的海战,古希腊大获全胜,从此雅典作为古希腊的政治㊁文化㊁经济中心逐渐走向繁荣.社会分工逐渐细化,一部分人从繁重的体力劳动中解放出来,出现了专门传授学问㊁研究学问的辩论师或称智者,也就是现代的职业教师.这些人为古希腊文明做出了巨大的贡献,其中在几何学上亦留下了三大难题供后人进行研究和探讨:给你一把圆规和直尺(无刻度),经过有限次的步骤,能否:①对任意角作三等分?②作已知立方体的二倍体积的立方体图形?③作与已给的圆面积相等的正方形?以上三个问题分别称为三等分角问题㊁倍立方问题和化圆为方问题,也称古希腊三大几何难题,这些问题看起来很简单,但是,2400多年来,不少数学家或数学爱好者为了解决这三个问题,耗费了许多心血,都没有取得成功.2.三等分任意角可能无法用 尺规作图法 求解1637年笛卡儿(ReneDescartes,1596 1650)创立了解析几何学后,有数学家依据解析几何,认为找到了通过尺规作图法不能解决三等分任意角问题的依据.1837年法国数学家旺策尔(PierreLaurentWantzel,1814 1848)首先证明了 倍立方 和 三等分任意角 不可能用尺规作图解决.1873年埃尔米特(CharlesHermite,1822 1901)证明了e是超越数;1882年德国数学家林德曼(Lindemann,1852 1939)证明了π也是超越数,从而 变圆为方 的不可能性也得以确立.1965年以前,数学家华罗庚曾写文章告诫青少年 用直尺和圆规三等分任意角是不可能的,不要为这道难题花费精力.2001年华中师范大学数学系的王中华亦在‘数学通讯“上发文并证明使用尺规作图 三等分任意角 是不可能的.二㊁ 三等分任意角 仍有研究的价值1.高中数学教学的需要为了加强普通高中的数学教学,在新版的‘普通高中数学课程标准“中增加了 三等分角与数域扩充 问题,让三等分角问题真正进入我国高中数学教学领域,有利于扩展学生的数学视野,激发学生的学习兴趣,提高学生解决问题㊁分析问题的能力.2.可以促进人的数学思维的发展古希腊的三大几何难题,几千年来尽管耗费了历代数学家不少的心血,但是在解决这类问题的过程中,不仅促进了数学思想的发展,而且在人类其他思想史上亦具有重大意义.三㊁预备知识1. 尺规作图法关于尺规作图法,以科学出版社出版的‘数学大辞典“中的规定为主要参考依据:尺规作图法又称初等几何作图法或欧几里得作图法.仅用直尺(无刻度)和圆规(两脚足够长)两种工具按照下述步骤进行有限次的组合来完成的几何作图方法.(1)过两点可画一条直线(或一条射线),连接两点成一线段.(2)延长线段成一条直线或射线.(3)以定点为圆心定长为半径可画圆或圆弧.2.初等几何知识本文涉及的初等几何知识,我们还是沿用科学出版社出版的‘数学大辞典“中的相关论述:(1)关于角的分类平角:两边组成一条直线的角,或一条射线在平面内绕㊀㊀㊀141㊀数学学习与研究㊀2020 10着它的端点旋转,转到和原来位置构成一条直线时所形成的角.1平角=180ʎ.直角:平角的一半,一直角=90ʎ.锐角:大于0ʎ小于直角的角.钝角:大于直角小于平角的角.(2)关于三角形和圆的几个基本知识等腰三角形的定义及性质:两边相等的三角形是等腰三角形,等腰三角形的两个底角相等.三角形外角定理:三角形的外角等于和它不相邻的两个内角之和.圆心角定理:圆心角的度数等于它所对的弧的度数.圆周角定理:圆周角的度数等于它所对的弧的度数的一半.显然,同弧所对的圆心角等于圆周角的2倍.3.关于图学的几点相关知识的说明(1)图学是几何学与行为科学有机结合的综合性学科.图学一开始就是由理论几何学与行为科学有机构成的.从平面几何开始,发展到画法几何㊁工程图㊁地形图等,人们在制图过程中总要依据几何原理,经过人的科学行为(制图)表达完成各类制图工作.(2)图学是理论与实践相结合的科学,图学允许可逆.无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的,行为本身就是四维的运动(时间维㊁空间维),允许可逆自然是在四维时空中进行的.四㊁三等分任意角的作图方法以锐角为例,使用 尺规作图法 三等分任意角的作图步骤如下:第1步:给定任意角øAOB.第2步:作边OA的反向延长线OC.第3步:以O点为圆心,R为半径长画☉O,圆弧与边OB交于F点.第4步:在☉O上,以E点为圆心,R为半径长画☉E,☉E与OA的反向延长线交于D点,配合使用圆规和直尺,确保圆心E与D,F三点在同一直线上.第5步:连接OE,最终形成如图所示的几何图形.需要特别说明的是在作图过程中,第4步圆心的确认很关键,有可能需要 多次逼近 才能确定.五㊁三等分任意角的证明通过以下两种方法分别证明前面的作图方法可以三等分任意角.方法一:在☉E中,因为øODF为圆周角,øOEF为圆心角所以øOEF=2øODF.因为OE=OF,所以әEOF为等腰三角形,øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.方法二:在әDEO中,因为DE=OE,所以әDEO为等腰三角形,所以øODE=øEOD,øOEF=2øODE,因为OE=OF,所以әEOF为等腰三角形,所以øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.六㊁结㊀论通过以上的作图和证明,我们有理由认为对 三等分任意角 的作法有革命性的突破.1.作图过程中严格遵守 尺规作图法 的要求,且在有限的步骤内准确三等分角.2.通过初等几何理论对所作图形进行了严密的证明,结果正确.3.整个作图过程符合图学是理论与实践相结合的科学观点:图学允许可逆,无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的.路曼曼其修远兮,吾将上下而求索.ʌ参考文献ɔ[1]娄桐城.中学数学词典[M].北京:知识出版社,1984.[2]王元.数学大辞典[M].北京:科学出版社,2010.[3]熙国维.运动论[M].北京:海洋出版社,1993.[4]R.柯良(RichardCourant),H.罗宾(HertbertRobbins).什么是数学[M].左平,张饴慈译.上海:复旦大学出版社,2008.[5]欧几里得.几何原本[M].邹忌译.重庆:重庆出版社,2018.[6](日)远山启著.吕砚山㊁李诵雪㊁马杰㊁莫德举译著.数学与生活[M].北京:人民邮电出版社,2014.[7]王中华.用尺规作图不可能三等分任意角[J].数学通讯,2001(19).48.。
尺规三等分角不能的向量证明第一篇:尺规三等分角不能的向量证明定义:设S={Z0=1,Z1,...Zn}是n+1个复数,将(1)Z0=1,Z1,...Zn叫做S-点;(2)过两个不同的S-点的直线叫S-直线,以一个S-点为圆心、任意两个S-点之间的距离为半径的圆叫S-圆;(3)由S-直线与S-直线、S-直线与S-圆、S-圆与S-圆相交的点也叫S-点。
上面这个定义完全刻画了尺规作图过程,如果以P表示全体S-点的集合,那么P也就是从S={Z0=1,Z1,...Zn}出发通过尺规作图所得到的全部复数。
定理:设Z1,...Zn(n≥0)为n个复数。
设F= Q(Z1,...Zn,Z1',...Zn'),(Z'代表共轭复数),那么,一个复数Z可由S={Z0=1,Z1,...Zn}作出的充要条件是 Z属于F(u1,...un)。
其中u12属于F, ui2 属于F(u1,...ui-1)。
换言之,Z含于F的一个2次根号扩张。
系:设S={Z0=1,Z1,...Zn},F= Q(Z1,...Zn,Z1',...Zn'),Z 为S-点,则 [ F(z):F] 是2的方幂。
以下证明三等分任意角不可能性,证明尺规作图不能三等分60度角:证明:所谓给了60度角,相当于给了复数Z1=1/2+√3/2 i。
从而S={Z0=1, Z1},F=Q(z1, z1')=Q(√-3)。
如果能作出20度角,当然也能得到cos20,但是cos20满足方程4x3-3x-1/2=0,即8x3-6x-1=0。
由于8x3-6x-1在Q[x]中不可约,从而[Q(cos20):Q]=3,于是6=[ Q(cos20, √-3):Q] = [F(cos20):Q]=[F(cos20):F] [F:Q] 由于[F:Q]=[Q(√-3):Q]=2,所以[F(cos20):F]=3,根据上面的系可知cos20不是S-点,从而20度不可能三等分。
如何证明尺规作图三等分一个角是不可能问题?
1).先说明尺规作图可能问题:
一个作图题中的所作的未知量,若能由若干已知量经过有限次的有理运算及开平方算出时,这个作图题便能由尺规作出。
2).定理:
一个一元三次方程若它没有有理根,则长度等于它的任何实数根的线段是不能用尺规作出的。
3).证明尺规作图三等分任意角是不可能的:
如图:设已知角为3a ,平分后的每一个角为a ,作单位圆交角于A、B、C
过B作BD⊥OA于D,过C作CE⊥OA于E ,
令OD=m ,OE=x ,则m=cos(3a) ,x=cosa ,代入三角恒等式中:
cos(3a)= 4*(cosa)^3 - 3*cosa 得:4x^3 -3x -m = 0
由于在一般的情况下4x^3 -3x -m = 0 不是都有有理根(艾森斯坦因判别法)
所以根据上面的定理,任意三等分角用尺规作出是不可能的。
林浩南。
尺规作图三等分角是在公元前五世纪由古希腊人提出来的难题,该命题已经被数学家伽罗瓦用《近世代数》和《群论》证明是不可能的。
该问题的完整叙述为:在只用圆规及一把没有刻度的直尺将一个给定角三等分。
在尺规作图(尺规作图是指用没有刻度的直尺和圆规作图)的前提下,此题无解。
三等分角大约是在公元前五世纪由古希腊人提出来的,它和“立方倍积问题”、“化圆为方问题”一起被称为“古代三大几何难题”。
两千多年来,从初学几何的青少年到经验丰富的学者,数以万计的人都曾经研究过“三等分角问题”,希腊数学家阿基米德(Archimedes,前287-前212年)曾用线条作图法宣称解决了“三等分角问题”;帕普斯(Pappus,约公元300年)在它有独创性的名著中曾证明用一固定双曲线也能解“三等分角问题”:希腊数学家尼科梅达斯(Nicomedes.公元前二世纪)称他的“蚌线法”也可三等分一个角,直至1837年,法国数学家旺策尔(Wantzel,pierrela urene,1814-1848)才用代数的方法证明了尺规作图不可能(任意角三等分)。
如何证明尺规作图三等分一个角是不可能问题?
1).先说明尺规作图可能问题:
一个作图题中的所作的未知量,若能由若干已知量经过有限次的有理运算及开平方算出时,这个作图题便能由尺规作出。
2).定理:
一个一元三次方程若它没有有理根,则长度等于它的任何实数根的线段是不能用尺规作出的。
3).证明尺规作图三等分任意角是不可能的:
如图:设已知角为3a ,平分后的每一个角为a ,作单位圆交角于A、B、C
过B作BD⊥OA于D,过C作CE⊥OA于E ,
令OD=m ,OE=x ,则m=cos(3a) ,x=cosa ,代入三角恒等式中:
cos(3a)= 4*(cosa)^3 - 3*cosa 得:4x^3 -3x -m = 0
由于在一般的情况下4x^3 -3x -m = 0 不是都有有理根(艾森斯坦因判别法)
所以根据上面的定理,任意三等分角用尺规作出是不可能的。
林浩南。