计算机控制技术-10离散系统的数学分析基础
- 格式:ppt
- 大小:1.63 MB
- 文档页数:18
离散控制系统的基本原理和概念离散控制系统是指通过离散的方式对连续的物理过程进行控制的系统。
它通过在不连续的时间间隔内对物理过程的状态进行采样和决策,以实现对系统行为的调节和优化。
离散控制系统在工业生产、交通运输、电力系统等领域都有重要的应用。
本文将介绍离散控制系统的基本原理和概念。
一、离散控制系统的基本原理离散控制系统的基本原理可以概括为以下几点:1. 状态采样:离散控制系统通过在特定的时间间隔内对系统的状态进行采样,获取系统当前的信息。
采样可以通过传感器或者测量设备实现,常用的采样方法有周期性采样和事件驱动采样。
2. 状态量量化:离散控制系统通过量化采样得到的状态量,将连续的物理量转化为离散的数字信号。
量化可以通过模拟-数字转换器(ADC)或者编码器来实现,将模拟信号或者连续的物理量转化为数字信号或者离散的状态。
3. 控制决策:离散控制系统通过对采样得到的状态量进行处理和分析,根据预先设定的控制策略和算法,决策出下一时刻的系统控制指令。
常见的控制策略有比例控制、积分控制、微分控制等。
4. 控制执行:离散控制系统根据决策出的控制指令,通过执行机构对系统进行控制。
执行机构可以是电机、执行器、调节器等,它们根据控制指令调节系统的输入、输出或者参数,使系统达到预期的控制目标。
5. 反馈调节:离散控制系统通常配备反馈机制,通过对系统输出或者状态的反馈信息进行采样和分析,实时调节控制策略和参数。
反馈控制可以提高系统的鲁棒性和稳定性,使系统能够自动适应外部扰动和变化。
二、离散控制系统的概念1. 离散事件:离散控制系统所控制的物理过程通常是由一系列离散事件组成的。
离散事件可以是系统状态变化、信号发生改变、控制指令变化等。
2. 采样周期:采样周期是离散控制系统进行状态采样和控制决策的时间间隔。
采样周期的选择需要考虑到系统的动态特性、采样准确性和计算开销等因素。
3. 控制周期:控制周期是离散控制系统执行控制指令的时间间隔,它决定了系统对外部扰动和变化的响应速度。
《计算机控制技术》课程标准(执笔人:韦庆审阅学院:机电工程与自动化学院)课程编号:0811305英文名称:Computer Control Techniques预修课程:计算机硬件技术基础B、自动控制原理B、现代控制理论学时安排:36学时,其中讲授32学时,实践4学时。
学分:2一、课程概述(一)课程性质地位本课程作为《自动控制理论》的后续课程,是控制科学与工程、机械工程及其自动化和仿真工程专业本科学员理解和掌握计算机控制系统设计的技术基础课。
(二)课程基本理念本课程作为一门理论与工程实践结合紧密的技术基础课,结合自动控制原理技术、微机接口技术,以学员掌握现代化武器装备为目的。
本课程既注重理论教学,也注重教学过程中的案例实践教学环节,使学员在掌握基本理论的基础上,通过了解相关实际系统组成,综合培养解决工程实际问题的能力。
(三)课程设计思路本课程主要包括计算机控制原理和计算机控制系统设计两大部分。
在学员理解掌握自动控制原理的基础上,计算机控制原理部分主要介绍了离散系统的数学分析基础、离散系统的稳定性分析、离散系统控制器的分析设计方法等内容;计算机控制系统设计部分结合实际的项目案例,重点介绍了计算机控制系统的组成、设计方法和步骤、计算机控制原理技术的应用等内容。
二、课程目标(一)知识与技能通过本课程的学习,学员应该了解计算机控制系统的组成,理解计算机控制系统所涉及的采样理论,掌握离散控制系统稳定性分析判断方法,掌握离散控制系统模拟化、数字化设计的理论及方法,掌握一定的解决工程实际问题的能力。
(二)过程与方法通过本课程的学习和实际系统的演示教学,学员应了解工程实际问题的解决方法、步骤和过程,增强积极参与我军高技术武器装备建设的信心。
(三)情感态度与价值观通过本课程的学习,学员应能够提高对计算机控制技术在高技术武器装备中应用的认同感,激发对自动化武器装备技术的求知欲,关注高技术武器装备技术的新发展,增强提高我军高技术武器水平的使命感和责任感。
离散控制系统的基本原理和应用离散控制系统是一种运用数字技术进行控制的系统,通过采样和量化输入信号,然后进行逻辑判断和计算,最后输出控制信号来实现对被控对象的精确控制。
本文将介绍离散控制系统的基本原理和应用。
一、离散控制系统的基本原理离散控制系统是通过离散时间和离散信号来进行控制的。
它的基本原理可以分为以下几个方面:1. 采样与量化:离散控制系统需要从被控对象中获取输入信号并进行离散采样,然后对采样得到的模拟信号进行量化,将其转换为数字信号。
2. 信号传输与处理:经过量化后的数字信号通过通信线路传输给控制器进行处理。
控制器对输入信号进行滤波、放大等操作,使其适合于后续的逻辑判断和计算。
3. 逻辑运算与控制算法:离散控制系统采用逻辑运算和控制算法来对输入信号进行处理和判断。
逻辑运算可以包括比较、与、或、非等操作,而控制算法可以是PID控制、模糊控制、遗传算法等。
4. 输出控制信号:根据逻辑运算和控制算法的结果,控制器输出相应的控制信号。
这些控制信号通过数字-模拟转换器或数字输出模块发送给被控对象,实现对被控对象的控制。
二、离散控制系统的应用离散控制系统广泛应用于工业自动化、交通运输、航空航天等领域。
以下是几个常见的应用场景:1. 工业自动化:离散控制系统在工业自动化领域起着至关重要的作用。
它可以控制各种工业过程,如流水线生产、机器人操作、微观电子元件制造等。
离散控制系统通过对生产过程进行监控和调节,提高了生产效率和产品质量。
2. 交通信号控制:离散控制系统被广泛应用于交通信号灯的控制。
通过对交通流量的检测和分析,离散控制系统可以智能地控制交通信号的切换,优化交通流畅度,减少交通拥堵。
3. 航空航天:离散控制系统在航空航天领域的应用十分重要。
它可以控制飞机、导弹、卫星等航空航天器的飞行姿态、导航、自动驾驶等。
离散控制系统的高精度和可靠性使得航空航天器能够在复杂的环境中完成各种任务。
4. 电力系统:离散控制系统在电力系统中用于监测和控制电网的运行状态。