只产生微小偏差(增量)。
第二章 自动控制系统的数学模型
编写微分方程是描述系统动态特性最基本的方法。 系统微分方程式的建立的基本步骤如下: ⑴ 明确要解决问题的目的和要求,确定系统的输入变量和输出变量; ⑵ 对问题进行适当的简化,抓住能代表系统运动规律的主要特征,舍去一些次要因素,必要时也
可进行一些合理的假设; ⑶ 根据系统所遵循的物理、化学定律,从输入端开始,按照信号传递顺序,依次列出组成系统各
第二章 自动控制系统的数学模型
数学模型的种类: ①经典:微分方程,差分方程,瞬态响应函数,传递函数,频率特性。 ②现代:状态方程,状态空间表达式。 本章重点以机理分析法为基础,介绍微分方程,瞬态响应函数和传递函数的建立。
第二章 自动控制系统的数学模型
2.1.1 动态微分方程式的编写 微分方程是描述自动控制系统动态特性的最基本数学模型。 建立微分方程的前提条件: ①给定发生变化或出现扰动瞬间之前,系统应处于平衡状态,被控量各阶段导数为零。(初始为零); ②在任一瞬间,系统状态可用几个独立变量完全确定; ③被控量几个独立变量原始平衡状态下工作点确定后,当给定变化或有扰动时,它们在工作点附近
次数 一般不高于分母多项式的次数 ,且所有系数都为实数。 ⑶ 传递函数与系统的微分方程相联系,两者可以互相转换。 ⑷ 传递函数是系统单位脉冲响应的拉氏变换。 ⑸ 传递函数是与 平面上的零、极点图相对应。 ⑹ 传递函数只描述系统的输入—输出特性,而不能表征系统的物理结构及内部所有状况的特性。
不同的物理系统可以有相同的传递函数。同一系统中,不同物理量之间对应的传递函数也不 相同。
元件的微分方程; ⑷ 消去中间变量,最后得到描述系统输出量与输入量的微分方程。 ⑸ 写出微分方程的规范形式,即所有与输出变量有关的项写在方程左边,所有与输入变量有关的