2015年高考数学(文)一轮课件:8-2直接证明与间接证明
- 格式:ppt
- 大小:3.47 MB
- 文档页数:8
第六节直接证明与间接证明1.了解直接证明的两种基本方法——分析法和综合法,了解分析法和综合法的思考过程、特点.2.了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.知识梳理一、直接证明1.综合法:从题设的已知条件出发,运用一系列有关已确定真实的命题作为推理的依据,逐步推演而得到要证明的结论,这种证明方法叫做综合法.综合法的推理方向是由已知到求证,表现为由因索果,综合法的解题步骤用符号表示是:P0(已知)⇒P1⇒P2⇒…⇒P n(结论).特点:由因导果,因此综合法又叫顺推法.2.分析法:分析法的推理方向是由结论到题设,论证中步步寻求使其成立的充分条件,如此逐步归结到已知的条件和已经成立的事实,从而使命题得证,表现为执果索因,分析法的证题步骤用符号表示为B(结论)⇐B1⇐B2⇐…⇐B n⇐A(已知).特点:执果索因,因此分析法又叫逆推法或执果索因法.二、间接证明假设原命题的结论不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.这样的证明方法叫反证法.反证法是一种间接证明的方法.1.反证法的解题步骤:否定结论—推演过程中引出矛盾—肯定结论.2.反证法的理论依据是:原命题为真,则它的逆否命题为真,在直接证明有困难时,就可以转化为证明它的逆否命题成立.3.反证法证明一个命题常采用以下步骤:(1)假定原命题的结论不成立;(2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;(3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;(4)肯定原来命题的结论是正确的.即“反设—归谬—结论”.4.一般情况下,有如下几种情况的证明题目常常采用反证法:第一,问题共有n种情况,现要证明其中的1种情况成立时,可以想到用反证法把其他的n-1种情况都排除,从而肯定这种情况成立;第二,命题是以否定命题的形式叙述的;第三,命题用“至少”、“至多”的字样叙述的;第四,当命题成立非常明显,而要直接证明所用的理论太少,且不容易说明,而其逆命题又是非常容易证明的.基础自测1.设t=a+2b,s=a+b2+1,则下列关于t和s的大小关系中正确的是()A.t>s B.t≥sC.t<s D.t≤s解析:因为s -t =a +b 2+1-a -2b =(b -1)2≥0,所以s ≥t . 答案:D2.实数a 、b 、c 不全为0是指( ) A .a 、b 、c 均不为0 B .a 、b 、c 中至少有一个为0 C .a 、b 、c 至多有一个为0 D .a 、b 、c 至少有一个不为0解析:不全为“0”并不是“全不为0”,而是“至少有一个不为0”.故选D. 答案:D3.(2012·广东六校联考)定义运算法则如下:a b =a 12+b 13,ab =lg a 2-lg b .若M=2141258,N =2 125,则M +N =__________.解析:由定义运算法则可知, M =2141258=94+31258=32+52=4, N =2⊗125=lg(2)2-lg ⎝⎛⎭⎫12512=lg 2+lg 5=1, ∴M +N =5. 答案:54.(2013·保定模拟)若P =a +a +7,Q =a +3+a +4,a ≥0,则P 、Q 的大小关系是________.解析:分析法,要证P <Q ,需证P 2<Q 2即可. 答案:P <Q1.如图所示,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形.证明:(1)因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP.(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形,又因为PC ⊥AB , 所以DE ⊥DG ,所以四边形DEFG 为矩形.2.(2013·江苏卷)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.(1)证明:由|a -b |=2,即(cos α-cos β)2+(sin α-sin β)2=2,整理得cos αcos β+sin αsin β=0, 即a ·b =0,因此a ⊥b .(2)解析:由已知条件⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,又0<β<α<π,cos β=-cos α=cos(π-α),则β=π-α, sin α+sin(π-α)=1,所以sin α=12,得α=π6或α=5π6.当α=π6时,β=5π6(舍去).当α=5π6时,β=π6.1.(2013·惠州第三次调研)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥VB 1-EFC 的体积.(1)证明:连接BD 1,如图,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则⎭⎬⎫EF //D 1BD 1B ⊂平面ABC 1D 1EF ⊄平面ABC 1D 1.⇒EF //平面ABC 1D 1.(2)证明:⎭⎬⎫B 1C ⊥ABB 1C ⊥BC 1AB ,B 1C ⊂平面ABC 1D 1⇒⎭⎪⎬⎪⎫B 1C ⊥平面ABC 1D 1BD 1⊂平面ABC 1D 1⇒⎭⎪⎬⎪⎫B 1C ⊥BD 1EF //BD 1⇒EF ⊥B 1C .(3)解析:因为CF ⊥平面BDD 1B 1, ∴CF ⊥平面EFB 1且CF =BF =2, 因为EF =12BD 1=3,B 1F =BF 2+BB 21=(2)2+22=6, B 1E =B 1D 21+D 1E 2=12+(22)2=3.所以EF 2+B 1F 2=B 1E 2即∠EFB 1=90°, 所以V B 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12×EF ×B 1F ×CF =13×12×3×6×2=1.2.设数列{}a n 是公差为d 的等差数列,其前n 项和为S n . (1)已知a 1=1,d =2, ①求当n ∈N *时,S n +64n的最小值; ②当n ∈N *时,求证:2S 1S 3+3S 2S 4+…+n +1S n S n +2<516.(2)是否存在实数a 1,使得对任意正整数n ,关于m 的不等式a m ≥n 的最小正整数解为3n -2?若存在,则求a 1的取值范围;若不存在,则说明理由.(1)解析:①∵a 1=1,d =2,∴S n =na 1+n (n -1)d 2=n 2,S n +64n =n +64n ≥2n ×64n=16,当且仅当n =64n ,即n =8时,上式取等号.故S n +64n 的最小值是16.②证明:由①知S n =n 2, 当n ∈N *时,n +1S n S n +2=n +1n 2(n +2)2=141n 2-1(n +2)2,则2S 1S 3+3S 2S 4+…+n +1S n S n +2=14112-132+14⎝⎛⎭⎫122-142+…+141n 2-1(n +2)2=14⎝⎛⎭⎫112+122+…+1n 2-14132+142+…+1(n +1)2+1(n +2)2=14⎣⎢⎡⎦⎥⎤112+122-1(n +1)2-1(n +2)2, ∵1(n +1)2+1(n +2)2>0, ∴2S 1S 3+3S 2S 4+…+n +1S n S n +2<14112+122=516. (2)对∀n ∈N *,关于m 的不等式a m =a 1+(m -1)d ≥n 的最小正整数解为c n =3n -2, 当n =1时,a 1+(c 1-1)d =a 1≥1;当n ≥2时,恒有⎩⎪⎨⎪⎧ a 1+(c n -1)d ≥n ,a 1+(c n -2)d <n , 即⎩⎪⎨⎪⎧(3d -1)n +(a 1-3d )≥0,(3d -1)n +(a 1-4d )<0, 从而⎩⎪⎨⎪⎧ 3d -1≥0,(3d -1)×2+(a 1-3d )≥0,3d -1≤0,(3d -1)×2+(a 1-4d )<0,⇒d =13,1≤a 1<43. 当d =13,1≤a 1<43时,对∀n ∈N *且n ≥2时,当正整数m <c n 时,有a 1+m -13<n . 所以存在这样的实数a 1,且a 1的取值范围是⎣⎡⎭⎫1,43.。
1.直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法特点从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件步骤的符号表示P0(已知)⇒P1⇒P2⇒P3⇒P4(结论)B(结论)⇐B1⇐B2…⇐B n⇐A(已知)2.间接证明(1)反证法的定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒tt与假设矛盾,或与某个真命题矛盾,从而判定綈q为假,推出q为真的方法,叫做反证法.(2)应用反证法证明数学命题的一般步骤:①分清命题的条件和结论;②做出与命题结论相矛盾的假设;③由假设出发,应用演绎推理方法,推出矛盾的结果;④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明命题为真.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ ) (6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1b D.b a >ab答案 B解析 对于A ,若c =0,则ac 2=bc 2,故不正确. 对于B ,∵a <b <0,∴a -b <0,∴a 2-ab =a (a -b )>0, ∴a 2>ab ,∴ab -b 2=b (a -b )>0,∴ab >b 2, ∴a 2>ab >b 2,故B 正确.对于C ,∵a <b <0,∴1a -1b =b -aab >0,∴1a >1b,故错; 对于D ,∵a <b <0,b a -a b =b 2-a 2ab <0,∴b a <ab,故错. 2.(2014·山东)用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实数C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 答案 A解析 方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A. 3.要证a 2+b 2-1-a 2b 2≤0只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0 答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________. 答案 a ≥0,b ≥0且a ≠b 解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形. 答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.题型一 综合法的应用例1 对于定义域为[0,1]的函数f (x ),如果同时满足: ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数. (1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是不是理想函数.(1)证明 取x 1=x 2=0,则x 1+x 2=0≤1, ∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0, ∴f (0)≥0.于是f (0)=0.(2)解 对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②, ∴f (x )=2x ,(x ∈[0,1])不是理想函数.对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1. 任意的x 1,x 2∈[0,1],x 1+x 2≤1, f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2). ∴f (x )=x 2(x ∈[0,1])是理想函数.对于f (x )=x ,x ∈[0,1],显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0, 即f 2(x 1+x 2)≤[f (x 1)+f (x 2)]2.∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设知(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1.题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22,即证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由均值不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证a 2+1a 2-2≥a +1a-2.证明 要证 a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.题型三 反证法的应用 命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. (1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N +), 则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*)又因为p <q <r ,且p ,q ,r ∈N +,所以r -q ,r -p ∈N +. 所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证. 命题点2 证明存在性问题例4 (2015·济南模拟)若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎨⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在. 命题点3 证明唯一性命题例5 已知M 是由满足下述条件的函数构成的集合:对任意f (x )∈M ,(ⅰ)方程f (x )-x =0有实数根; (ⅱ)函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x4是不是集合M 中的元素,并说明理由;(2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根. (1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根为0; ②f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素.(2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β), 满足f (β)-f (α)=(β-α)f ′(c ). 因为f (α)=α,f (β)=β,且α≠β, 所以f ′(c )=1.与已知0<f ′(x )<1矛盾. 又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论; 第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N +),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N +,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N +,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.24.1反证法在证明题中的应用典例 (12分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直. 规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[6分] 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[8分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直.[10分] 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[12分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知. 2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来. [失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练 (时间:45分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( ) A .①与②的假设都错误 B .①与②的假设都正确 C .①的假设正确;②的假设错误 D .①的假设错误;②的假设正确 答案 D解析 反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确. 3.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( ) A .a -b >0 B .a -c >0 C .(a -b )(a -c )>0 D .(a -b )(a -c )<0 答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定答案 C解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q . 5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤答案 C解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立. 8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A答案 A解析 ∵a +b 2≥ab ≥2ab a +b, 又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( )A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形答案 D解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形. 由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N +,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n, ∴c n 随n 的增大而减小,∴c n +1<c n .14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0,∴b =-1-ac .又a >0,c >0,∴b <-1.二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a , 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.(1)解 由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为c 1=34, 公比为23的等比数列,即c n =34·(23)n -1, 故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0, 故a n =(-1)n -1 1-34·(23)n -1. b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1] =14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列, 于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。
第六节直接证明与间接证明1.了解直接证明的两种基本方法——分析法和综合法,了解分析法和综合法的思考过程、特点.2.了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.知识梳理一、直接证明1.综合法:从题设的已知条件出发,运用一系列有关已确定真实的命题作为推理的依据,逐步推演而得到要证明的结论,这种证明方法叫做综合法.综合法的推理方向是由已知到求证,表现为由因索果,综合法的解题步骤用符号表示是:P0(已知)⇒P1⇒P2⇒…⇒P n(结论).特点:由因导果,因此综合法又叫顺推法.2.分析法:分析法的推理方向是由结论到题设,论证中步步寻求使其成立的充分条件,如此逐步归结到已知的条件和已经成立的事实,从而使命题得证,表现为执果索因,分析法的证题步骤用符号表示为B(结论)⇐B1⇐B2⇐…⇐B n⇐A(已知).特点:执果索因,因此分析法又叫逆推法或执果索因法.二、间接证明假设原命题的结论不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.这样的证明方法叫反证法.反证法是一种间接证明的方法.1.反证法的解题步骤:否定结论—推演过程中引出矛盾—肯定结论.2.反证法的理论依据是:原命题为真,则它的逆否命题为真,在直接证明有困难时,就可以转化为证明它的逆否命题成立.3.反证法证明一个命题常采用以下步骤:(1)假定原命题的结论不成立;(2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;(3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;(4)肯定原来命题的结论是正确的.即“反设—归谬—结论”.4.一般情况下,有如下几种情况的证明题目常常采用反证法:第一,问题共有n 种情况,现要证明其中的1种情况成立时,可以想到用反证法把其他的n -1种情况都排除,从而肯定这种情况成立;第二,命题是以否定命题的形式叙述的; 第三,命题用“至少”、“至多”的字样叙述的;第四,当命题成立非常明显,而要直接证明所用的理论太少,且不容易说明,而其逆命题又是非常容易证明的.基础自测1.设t =a +2b ,s =a +b 2+1,则下列关于t 和s 的大小关系中正确的是( ) A .t >s B .t ≥s C .t <sD .t ≤s解析:因为s -t =a +b 2+1-a -2b =(b -1)2≥0,所以s ≥t . 答案:D2.实数a 、b 、c 不全为0是指( ) A .a 、b 、c 均不为0 B .a 、b 、c 中至少有一个为0 C .a 、b 、c 至多有一个为0 D .a 、b 、c 至少有一个不为0解析:不全为“0”并不是“全不为0”,而是“至少有一个不为0”.故选D. 答案:D3.(2012·广东六校联考)定义运算法则如下:ab =a 12+b 13,ab =lg a 2-lg b .若M=2141258,N =2 125,则M +N =__________.解析:由定义运算法则可知,M =2141258=94+31258=32+52=4, N =2⊗125=lg(2)2-lg ⎝⎛⎭⎫12512=lg 2+lg 5=1, ∴M +N =5. 答案:54.(2013·保定模拟)若P =a +a +7,Q =a +3+a +4,a ≥0,则P 、Q 的大小关系是________.解析:分析法,要证P <Q ,需证P 2<Q 2即可. 答案:P <Q1.如图所示,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形.证明:(1)因为D ,E 分别为AP ,AC 的中点, 所以DE ∥PC .又因为DE ⊄平面BCP ,所以DE ∥平面BCP .(2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, 所以DE ∥PC ∥FG ,DG ∥AB ∥EF . 所以四边形DEFG 为平行四边形, 又因为PC ⊥AB , 所以DE ⊥DG ,所以四边形DEFG 为矩形.2.(2013·江苏卷)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.(1)证明:由|a -b |=2,即(cos α-cos β)2+(sin α-sin β)2=2,整理得cos αcos β+sin αsin β=0, 即a ·b =0,因此a ⊥b .(2)解析:由已知条件⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,又0<β<α<π,cos β=-cos α=cos(π-α),则β=π-α, sin α+sin(π-α)=1,所以sin α=12,得α=π6或α=5π6.当α=π6时,β=5π6(舍去).当α=5π6时,β=π6.1.(2013·惠州第三次调研)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥VB 1-EFC 的体积.(1)证明:连接BD 1,如图,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则⎭⎬⎫EF //D 1BD 1B ⊂平面ABC 1D 1EF ⊄平面ABC 1D 1.⇒EF //平面ABC 1D 1.(2)证明:⎭⎬⎫B 1C ⊥ABB 1C ⊥BC 1AB ,B 1C ⊂平面ABC 1D 1⇒⎭⎪⎬⎪⎫B 1C ⊥平面ABC 1D 1BD 1⊂平面ABC 1D 1⇒⎭⎪⎬⎪⎫B 1C ⊥BD 1EF //BD 1⇒EF ⊥B 1C .(3)解析:因为CF ⊥平面BDD 1B 1, ∴CF ⊥平面EFB 1且CF =BF =2, 因为EF =12BD 1=3,B 1F =BF 2+BB 21=(2)2+22=6, B 1E =B 1D 21+D 1E 2=12+(22)2=3.所以EF 2+B 1F 2=B 1E 2即∠EFB 1=90°, 所以V B 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12×EF ×B 1F ×CF = 13×12×3×6×2=1.2.设数列{}a n 是公差为d 的等差数列,其前n 项和为S n . (1)已知a 1=1,d =2, ①求当n ∈N *时,S n +64n的最小值; ②当n ∈N *时,求证:2S 1S 3+3S 2S 4+…+n +1S n S n +2<516.(2)是否存在实数a 1,使得对任意正整数n ,关于m 的不等式a m ≥n 的最小正整数解为3n -2?若存在,则求a 1的取值范围;若不存在,则说明理由.(1)解析:①∵a 1=1,d =2,∴S n =na 1+n (n -1)d 2=n 2,S n +64n =n +64n ≥2n ×64n=16,当且仅当n =64n ,即n =8时,上式取等号.故S n +64n 的最小值是16.②证明:由①知S n =n 2,当n ∈N *时,n +1S n S n +2=n +1n 2(n +2)2=141n 2-1(n +2)2, 则2S 1S 3+3S 2S 4+…+n +1S n S n +2=14112-132+14⎝⎛⎭⎫122-142+…+141n 2-1(n +2)2=14⎝⎛⎭⎫112+122+…+1n 2-14132+142+…+1(n +1)2+1(n +2)2=14⎣⎢⎡⎦⎥⎤112+122-1(n +1)2-1(n +2)2, ∵1(n +1)2+1(n +2)2>0, ∴2S 1S 3+3S 2S 4+…+n +1S n S n +2<14112+122=516. (2)对∀n ∈N *,关于m 的不等式a m =a 1+(m -1)d ≥n 的最小正整数解为c n =3n -2, 当n =1时,a 1+(c 1-1)d =a 1≥1;当n ≥2时,恒有⎩⎪⎨⎪⎧a 1+(c n -1)d ≥n ,a 1+(c n -2)d <n ,即⎩⎪⎨⎪⎧(3d -1)n +(a 1-3d )≥0,(3d -1)n +(a 1-4d )<0,从而⎩⎪⎨⎪⎧3d -1≥0,(3d -1)×2+(a 1-3d )≥0,3d -1≤0,(3d -1)×2+(a 1-4d )<0,⇒d =13,1≤a 1<43.当d =13,1≤a 1<43时,对∀n ∈N *且n ≥2时,当正整数m <c n 时,有a 1+m -13<n .所以存在这样的实数a 1,且a 1的取值范围是⎣⎡⎭⎫1,43.。
温馨提示:此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。
考点28 直接证明与间接证明选择题1.2015·安徽高考理科·T5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A、若α,β垂直于同一平面,则α与β平行B、若m,n平行于同一平面,则m与n平行C、若α,β不平行,则在α内不存在与β平行的直线D、若m,n不平行,则m与n不可能垂直于同一平面【解题指南】根据直线与平面的位置关系判断。
【解析】选D。
2.(2015·广东高考文科·T10)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)= ( )A.50B.100C.150D.200【解析】选D.当s=4时,p,q,r都是取0,1,2,3中的一个,有4×4×4=64种,当s=3时,p,q,r都是取0,1,2中的一个,有3×3×3=27种,当s=2时,p,q,r都是取0,1中的一个,有2×2×2=8种,当s=1时,p,q,r都取0,有1种,所以card=64+27+8+1=100,当t=0时,u取1,2,3,4中的一个,有4种,当t=1时,u取2,3,4中的一个,有3种,当t=2时,u取3,4中的一个,有2种,当t=3时,u取4,有1种,所以t,u的取值有1+2+3+4=10种,同理,v,w的取值也有10种,所以card=10×10=100,所以card+card=100+100=200.关闭Word文档返回原板块。