成考专升本高数公式大全
- 格式:docx
- 大小:36.80 KB
- 文档页数:2
高数专升本公式汇总高等数学(一)公式汇总1. 二次函数的顶点坐标二次函数 y = ax^2 + bx + c 的顶点坐标为 (-b/2a, f(-b/2a))2. 二次方程根的求解公式二次方程 ax^2 + bx + c = 0 的解为 x = (-b±√(b^2-4ac)) / (2a)3. 三角函数的和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinBtan(A±B) = (tanA±tanB) / (1∓tanAtanB)4. 牛顿-莱布尼茨公式(导数与积分的关系)如果函数 f(x) 在区间[a, b] 上连续,则该函数在该区间上的积分可以表示为:∫[a, b] f(x)dx = F(b) - F(a),其中 F(x) 是 f(x) 的一个原函数。
5. 反函数导数的计算如果 y = f(x) 是可导函数且f'(x) ≠ 0,则它的反函数 x = f^(-1)(y) 在 y = f(x) 处可导,并且导数满足:(f^(-1))'(y) = 1 / f'(x),其中 x 是 y = f(x) 的解。
6. 复数运算公式设 z1 = a + bi,z2 = c + di 是两个复数,则它们的和差、乘积、商满足以下公式:(1) z1 + z2 = (a + c) + (b + d)i(2) z1 - z2 = (a - c) + (b - d)i(3) z1 * z2 = (ac - bd) + (ad + bc)i(4) z1 / z2 = (ac + bd) / (c^2 + d^2) + (bc - ad) / (c^2 + d^2)i7. 泰勒展开公式如果函数 f(x) 在点 x = a 处连续且具有任意阶导数,则它在该点的泰勒展开式为:f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^2 / 2! + ... + f^n(a)(x - a)^n / n! + o(x^n)8. 函数的极限定义如果对于任意给定的正数ε,存在正数δ,使得当 0 < |x - a| < δ 时,有 |f(x) - L| < ε 成立,则称函数 f(x) 在点 x = a 处极限为L,记作:lim(x->a) f(x) = L9. 整式的因式分解公式若 f(x) 是一个整式,并且存在整式 g(x)、h(x) 满足 f(x) = g(x) * h(x),则称 h(x) 是 f(x) 的因式,反之称 g(x) 是 f(x) 的因式。
成人高考数学万能公式一、函数部分。
1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)。
- 当b = 0时,y=kx是正比例函数。
2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 对称轴方程x =-(b)/(2a)。
- 二次函数的求根公式x=frac{-b±√(b^2)-4ac}{2a}(当y = 0时,求方程ax^2+bx + c = 0的根)。
3. 反比例函数y=(k)/(x)(k≠0)- k = xy(x≠0,y≠0),即图象上任意一点的横纵坐标之积等于k。
二、三角函数部分。
1. 同角三角函数的基本关系。
- sin^2α+cos^2α = 1。
- tanα=(sinα)/(cosα)。
2. 两角和与差的三角函数公式。
- sin(A± B)=sin Acos B±cos Asin B。
- cos(A± B)=cos Acos Bmpsin Asin B。
- tan(A± B)=(tan A±tan B)/(1mptan Atan B)。
3. 二倍角公式。
- sin2α = 2sinαcosα。
- cos2α=cos^2α-sin^2α = 2cos^2α - 1=1 - 2sin^2α。
- tan2α=(2tanα)/(1-tan^2)α。
三、数列部分。
1. 等差数列。
- 通项公式a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
- 前n项和公式S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
2. 等比数列。
- 通项公式a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠1)。
- 前n项和公式S_n=frac{a_1(1 - q^n)}{1 - q}。
成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。
高等数学专升本公式集合以下是高等数学专升本常用公式集合:1.导数公式:1)反函数求导:如果y=f(x) (x在某区间上连续、可导),f'(x)≠0,且存在f'(x)的逆函数,则y=f^(-1)(x)在对应的区间上可导,且有(f^(-1))'(x) = 1 / f'(f^(-1)(x));2)乘积法则:(uv)' = u'v + uv';3)商法则:(u/v)' = (u'v - uv') / v^2;4)链式法则:(F(g(x)))' = F'(g(x)) * g'(x),其中F(u)是u的原函数。
2.积分公式:1)基本积分公式:∫x^n dx = x^(n+1) / (n+1) + C (这里C是常数);2)分部积分法:∫u dv = uv - ∫v du;3)替换法:设x=g(t),则dx=g'(t) dt,将dx替换为g'(t) dt 来进行积分。
3.泰勒级数公式:1)常用泰勒级数展开:- e^x = 1 + x + x^2 / 2! + x^3 / 3! + ...;- sin x = x - x^3 / 3! + x^5 / 5! - ...;- cos x = 1 - x^2 / 2! + x^4 / 4! - ...;- ln(1+x) = x - x^2 / 2 + x^3 / 3 - ...。
4.极限公式:1)常用极限:- lim(x→0) (sin x / x) = 1;- lim(x→∞) (1 + 1/x)^x = e;- lim(x→a) (f(x))^g(x) = lim(x→a) e^(g(x) * ln(f(x)))。
5.级数公式:1)常用级数:-等比数列求和:∑(n=0)^(∞) ar^n = a / (1-r),其中|r|<1;-幂级数求和:∑(n=0)^(∞) a(n)x^n,其中a(n)是常数。
成人高考专升本数学公式汇编数学是成人高考专升本考试中的一门重要科目,掌握数学公式和定理是提高解题效率的关键。
下面是一些常用的数学公式的汇编,供参考:一、代数公式:1.分配律:对于任意实数a、b、c,有如下公式:a*(b+c)=a*b+a*c(a+b)*c=a*c+b*c2.平方差公式:a^2-b^2=(a+b)*(a-b)3.二次方程的解法公式:对于一般形式的二次方程 ax^2 + bx + c = 0,其解为:x1,2 = (-b ± √(b^2 - 4ac)) / 2a4.一元一次方程的解法:对于形如 ax + b = 0 的一元一次方程,其解为:x=-b/a二、几何公式:1.三角形的面积公式:对于已知三角形的三边长a、b、c,可利用海伦公式计算三角形的面积S:S=√(p*(p-a)*(p-b)*(p-c))其中,p=(a+b+c)/22.圆的面积和周长公式:对于已知圆的半径r,可计算圆的面积和周长:S=π*r^2C=2π*r3.直角三角形的勾股定理:对于直角三角形,其边长分别为a、b、c(a和b为直角边,c为斜边),满足以下关系:c^2=a^2+b^24.正弦定理和余弦定理:对于任意三角形的三个内角A、B、C及对应的三边a、b、c,满足以下关系:a/sinA = b/sinB = c/sinC (正弦定理)a^2 = b^2 + c^2 - 2bc*cosA (余弦定理)三、概率与统计公式:1.排列公式:P(n,m)=n!/(n-m)!2.组合公式:C(n,m)=n!/(m!*(n-m)!)3.二项式定理:对于任意实数a、b和非负整数n,有如下展开式:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 除了以上列举的一些常用公式外,还有很多其他的数学公式可以根据具体题型和知识点进行查找和应用。
在备考过程中,可以根据教材和习题册提供的公式,进行适当的总结和归纳,建立自己的公式汇编,以提高解题的速度和准确性。
专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。
专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。
下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。
专升本高等数学公式大全以下是一些高等数学常用的公式:1. 导数与微分公式:- 基本导数公式:(常数函数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(a^x)' = a^xlna,(ln x)' = 1/x,(sin x)' = cos x,(cos x)' = -sin x,(tan x)' = sec^2 x,(cot x)' = -csc^2 x,(sec x)' = sec x tan x,(csc x)' = -csc x cot x- 乘积法则:(uv)' = u'v + uv'- 商法则:(u/v)' = (u'v - uv')/v^2- 链式法则:如果y = f(u)和u = g(x),则dy/dx = dy/du * du/dx2. 微分中值定理:- 拉格朗日中值定理:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个c∈(a, b),使得f'(c) = (f(b) - f(a))/(b - a)- 柯西中值定理:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,且g'(x) ≠ 0,则存在一个c∈(a, b),使得[f'(c)/g'(c)] = [f(b) - f(a)]/[g(b) - g(a)]3. 积分公式:- 基本积分公式:∫k dx = kx + C,∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1),∫(1/x) dx = ln|x| + C,∫e^x dx = e^x + C,∫a^x dx = (a^x)/lna + C,∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫t an x dx = -ln|cos x| + C,∫cot x dx = ln|sin x| + C,∫sec x dx = ln|sec x + tan x| + C,∫csc x dx = ln|csc x - cot x|+ C- 线性性质:∫[a*f(x) + b*g(x)] dx = a∫f(x) dx + b∫g(x) dx- 分部积分法:∫u dv = uv - ∫v du4. 泰勒公式:- 一阶泰勒公式:f(x)≈f(a) + f'(a)(x - a)- 麦克劳林公式:f(x)≈f(a) + f'(a)(x - a) + f''(a)(x - a)^2/2! + ... + f^n(a)(x - a)^n/n!以上仅是一些高等数学中的基本公式,实际应用中还有更多公式与定理。
专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。
- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。
2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。
- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。
3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。
- 余弦定理:$c^2=a^2+b^2-2abcosC$。
- 正弦二倍角公式:$sin2x=2sinxcosx$。
- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。
4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。
- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。
- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。
5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。
导数公式:专升本高等数学公式大全2(tgx) sec x (arcsin x)(ctgx) 2 csc x(secx) secx tgx (arccosx)(cscx) cscx ctgx(a x) a x I na(arctgx) (Iog a X) 1 (arcctgx)1 1a r 2 1 X2.1 X2 1 X2基本积分表:三角函数的有理式积分:tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx Ccscxdx In cscx ctgx Cdx 2 .2 sec xdx tgx C cos xdx 2・2 csc xdx ctgx C sin xsecx tgxdx secx Cdx ~2 2 a x 1 丄x arctg C a adx x2a2dx2 2a x 丄ln|x a2a |x a1 , a x In2a a xcscx ctgxdx cscx Cxa x dx CIn ashxdx chx Cchxdx shx C异—arcsin 仝C “ a2 x2 adx 2 2 ——2 2 "( x x a ) C.x a2 2nn sin xdx ncos xdx 0 0'、 2 a dx x 2 x 2 a2x2a2 dx x ..x2a22<a2 2x dx x ■ a2 2 xI n2a . / In(x2a2I ——In x2x2 a2)2a . x arcs in C2 2 a2usinx 2,cosx1 u 2一些初等函数: 双曲正弦:shx 双曲余弦:chx 双曲正切:thxtg2,dx2du V~u\两个重要极限:xxe e2 xxe e2 x x shx e e xxchx e esin x ’ lim 1 x 0x lim(1丄广 x xe 2.718281828459045…arshx ln(x x 2 1) archx In (x x 2 1)arthx 1|n1 x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sin coscos sin cos( )cos cossin sin、tg tgtg()1 tg tgctg()ctgctg 1ctgctg-和差角公式: sin sin sinsincos cos cos cos2sin cos — 2 2 2 cossin —222 cos cos —2 2 2 sin ------- s in ------2 2sin 2 2si n cos2 2cos2ctg2 ctg2 2ctgtg2 2tg 2•倍角公式:cos1 -半角公式: 1 1 2si n2 2cos ・2sin sin3 3si ncos3 4cos3tg33tg4sin33cos-3tg~2sin —21 cos21 coscos—21 cos21 cos sinsin 1 cosct g-1 cos sin1 cos sin 1 cos-正弦定理:,一sin A sin B 亠2Rsin C -余弦定理:b22abcosC-反三角函数性质: arcs inxarccosx arctgx arcctgx高阶导数公式一一莱布尼兹( Leibniz公式:(uv)(n)nCnU(nk 0k)v(k)u(n)v nu(n 1)v n(n 1)u2!(n 2)vn(n 1) (n kk!1) (n k)v(k)uv(n)中值定理与导数应用: 拉格朗日中值定理:柯西中值定理: f(b)f(b)f (a)f (a)F ()f ( )(b a))当F(x) x时,曲率:F(b) F(a)柯西中值定理就是拉格朗日中值定理。
成考专升本高数公式大全
高等数学是考研和专升本考试中必备的一门科目,掌握好高等数学的公式和定理对于高分通过考试非常重要。
下面是一些常用的高等数学公式和定理的汇总,供参考。
1.数列的常用公式:
-等差数列通项公式:$a_n=a_1+(n-1)d$
-等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)$
-等比数列通项公式:$a_n=a_1 \cdot q^{n-1}$
-等比数列前n项和公式:$S_n=\frac{a_1(q^n-1)}{q-1}$
2.三角函数的基本公式:
- 正弦函数的基本公式:$\sin(\alpha \pm \beta)=\sin \alpha \cdot \cos \beta \pm \cos \alpha \cdot \sin \beta$
- 余弦函数的基本公式:$\cos(\alpha \pm \beta)=\cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta$
- 正切函数的基本公式:$\tan(\alpha \pm \beta)=\frac{\tan
\alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}$
3.极限的常用公式:
- 求和的极限公式:$\lim_{n \to \infty}\sum_{k=1}^{n}a_k = \lim_{n \to \infty}(a_1+a_2+...+a_n) = \lim_{n \to \infty}S_n$
- 积分的定义公式:$\int_{a}^{b}f(x)dx = \lim_{\Delta x \to 0} \sum_{i=1}^{n}f(\xi_i)\Delta x_i$
4.微分的常用公式:
- 导数的定义公式:$f'(x)=\lim_{\Delta x \to
0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$
- 常见函数的导数公式:$(x^n)'=nx^{n-1}$,$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tan x)'=\sec^2 x$,$(e^x)'=e^x$,$(\ln
x)'=\frac{1}{x}$
- 导数的四则运算公式:$(u \pm v)'=u' \pm v'$,$(cu)'=cu'$,$(uv)'=u'v+uv'$,$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$
5.积分的常用公式:
- 基本积分公式:$\int{x^n}dx=\frac{1}{n+1}x^{n+1}+C$,
$\int{\frac{1}{x}}dx=\ln,x,+C$,$\int{e^x}dx=e^x+C$
- 三角函数的积分公式:$\int{\sin x}dx=-\cos x + C$,
$\int{\cos x}dx=\sin x+C$,$\int{\tan x}dx=\ln,\sec x,+C$ - 分部积分公式:$\int{uv}dx=uv-\int{u'v}dx$。