薛定谔方程能量估计
- 格式:docx
- 大小:36.76 KB
- 文档页数:2
•设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。
由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。
定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。
薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。
扩展资料
薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。
力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。
这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。
关于薛定谔方程一. 定义及重要性薛定谔方程(Schrdinger equation )是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验.是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验.二. 表达式三. 定态方程()()222V r E r m ηψψ+⎡⎤-∇=⎢⎥⎣⎦所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。
其中,E 是粒子本身的能量;v(x ,y ,z )是描述势场的函数,假设不随时间变化。
2222222z y x ∂∂∂∂∂∂++=∇可化为d 0)(222=-+ψψv E h m dx薛定谔方程的解法一. 初值解法;欧拉法,龙格库塔法二. 边值解法;差分法,打靶法,有限元法龙格库塔法(对欧拉法的完善)给定初值问题).()()((3)),(),()( ,,(2))(),( 3112122111021h O t y t y hk y h t f k y t f k k c k c h y y y c c a y b t a y t f dt dyi i i i i i i i =-⎪⎪⎩⎪⎪⎨⎧++==++==⎪⎩⎪⎨⎧=≤≤=++的局部截断误差使以下数值解法的值及确定常数ββαβα.))(,(,,(3) )()(2)()( ,))(,())(,())(,()( ))(,()( )()(2)()()( )( 3213211处的函数值分别表示相应函数在点其中得代入上式将处展成幂级数在首先将i i y t y t i i y t i i i i i i t y t f f f h O ff f h hf t y t y t y t f t y t f t y t f t y t y t f t y h O t y h t y h t y t y t t y '++++=+'=''='+''+'+=+++.)(21 1 ,,021,01 ),()()())(21()1()( ,)( 3221212213113222111的计算公式局部截断误差为可得到但只有两个方程,因此方程组有三个未知数,满足条件即常数当且仅当要使局部截断误差得下假设在局部截断误差的前提h O c c c c c c c c h O y t y h O ff f c h f c c h y t y t y y i i y t i i i i ==+=-=-+=-++-+-+-=-=++++ββββ有限元方法有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
量⼦物理第⼆章薛定谔⽅程第2章薛定谔⽅程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了⼀个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有⼀个波动⽅程。
⼏个⽉后,薛定谔果然提出了⼀个波⽅程,这就是后来在量⼦⼒学中著名的薛定谔⽅程。
·薛定谔⽅程是量⼦⼒学的动⼒学⽅程,象⽜顿⽅程⼀样,不能从更基本的⽅程推导出来;它是否正确,只能由实验检验。
§1 薛定谔⽅程的建⽴(⼀种⽅法)⼀、薛定谔⽅程 1.⼀维薛定谔⽅程 · ⼀维⾃由运动粒⼦⽆势场,不受⼒,动量不变。
· ⼀维⾃由运动粒⼦的波函数(前已讲)由此有· 再利⽤可得此即ψ ? x = ( )P ψi h2ψ ? x 2 P 2h 2= -( ) ψ P 22m E = ? t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ?x 22⼀维⾃由运动粒⼦(⽆势场)的薛定谔⽅程·推⼴到若粒⼦在势场U (x , t ) 中运动由有⼀维薛定谔⽅程式中ψ =ψ (x , t )是粒⼦在势场U = U (x , t ) 中运动的波函数·和经典关系相⽐较,只要把P 22mE = +U (x , t ) P 22m E = +U (x , t )再作⽤到波函数ψ(x, t)上,即可得到上述⽅程。
2.三维薛定谔⽅程式由⼀维⽅程推⼴可得三维薛定谔⽅程式·拉普拉斯算符·当 U (r , t ) = 0时,⽅程的解,即三维⾃由运动粒⼦的波函数· 波函数的叠加原理薛定谔⽅程是ψ的线性微分⽅程;若ψ1、ψ2是⽅程的解,则 c 1ψ1 + c 2ψ2也是⽅程的解。
(c 1 、c 2是常数)★ E.Schrodinger & P.A.M.Dirac荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)2 x 2 2y 22≡ + + ?2z 2⼆、定态薛定谔⽅程 1.⼀维定态薛定谔⽅程若粒⼦在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔⽅程式可⽤分离变量法求解。
理解薛定谔方程——堪称最伟大的公式之一之前的文章讨论过物质的二象性,即粒子的行为像波,而波的行为像粒子。
为了解释这一点,我们引入了波函数,它描述的不是粒子的实际位置,而是在给定点上找到粒子的概率。
此外,当我们将波函数视为描述“概率场”的状态时,我们会发现该场的时间相关行为表现出类似于波动的行为。
假设粒子与外界的相互作用由势能函数V(r)表示,而V(r)只取决于粒子的位置。
我们不讨论V取决于于时间或其他变量的情况。
然后上述所描述的“概率场”是波函数ψ,满足一个偏微分方程称为薛定谔方程:在这个方程中,r意味着位置(x, y, z),是普朗克折减常数,E是总能量,是拉普拉斯算符:如果你了解偏微分方程。
这些解表示所谓的“稳态”。
现在让我们简短地讨论线性代数。
我们可以用称为哈密顿量的微分算子表示薛定方程的左侧:很容易证明这个算子是线性的。
因此,薛定谔方程是一个特征值方程,这告诉我们,能量E特征值对应的特征向量ψ:当电势不依赖于时间时,我们说我们是在“时间无关的情况下”工作。
然而,这并不意味着解不依赖于时间。
时间在解决方案中以相位因子exp(-iωt)的形式出现。
此外,任何的线性组合的特征函数ψ也将解薛定谔方程的一般形式的解决方案是:a是服从归一化条件的复数:如果波函数是一个以上本征函数ψ的线性组合,那么我们说该系统处于与总和中出现的本征函数相对应的状态的叠加中。
如果对系统进行测量,我们将发现它处于状态k的概率为|a|,质点的波动函数为ψ。
概率和变量当我们在经典物理学中指定一个系统的状态时,我们是在声明它的动力学变量的精确值,也就是像位置和动量这样的物理量。
在量子物理学中,情况并非如此。
相反,在量子物理中指定一个系统的状态意味着指定动态变量取某些值的概率。
另一个不同点是,与经典物理不同,在量子物理中,我们需要处理离散和连续的变量,因此需要处理离散和连续的概率分布。
离散的概率分布形式为:们用过狄拉克符号。
符号| n被称为“状态向量”,它们代表与离散变量的第n个值相对应的系统状态。
薛定谔方程能量估计
薛定谔方程是量子力学中最为基础的方程,用于描述微观粒子的运动
状态。
在薛定谔方程中,粒子的运动状态可以用波函数来表示,而波
函数的变化是由该粒子的能量和势能所决定的。
因此,对于一个具体
的量子系统,如果能够求出其波函数,就可以通过薛定谔方程计算出
其能量。
薛定谔方程最基本的形式为:
iħ ∂ψ/∂t = Hψ
其中,ħ为约化普朗克常数,t为时间,ψ为波函数,H为哈密顿算符。
哈密顿算符描述了系统的总能量,包括动能和势能。
因此,通过求解
薛定谔方程,我们可以得到一个量子系统的能量。
对于简单的量子系统,比如一个自由粒子或者一个粒子受到一个恒定
的势场作用,可以通过解析方法求解薛定谔方程,得到该系统的波函
数和能量。
但是对于复杂的系统,比如一个氢原子或者一个分子,往
往无法通过解析方法求解薛定谔方程。
此时,可以使用数值方法来近
似求解。
其中最常用的方法是量子力学中的变分法。
变分法通过将波函数的形式进行变分,使得能量的期望值最小化。
这样得到的波函数就是系统的基态波函数,相应的能量也就是系统的基态能量。
这种方法的精度已经能够满足大多数实验结果的要求,并且被广泛应用于材料科学、化学及生物物理学等领域。
总之,薛定谔方程是理解量子力学及其应用的核心概念之一。
通过求解薛定谔方程,可以得到量子系统的波函数和能量,从而揭示了微观世界的规律和奥秘。