八年级上册数学人教版 集体备课 14.1.3 积的乘方
- 格式:doc
- 大小:143.00 KB
- 文档页数:3
第十四章整式的乘法与因式分解14.1 整式的乘法14.1.3 积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。
学生:直尺、计算器。
六、教学过程(一)导入新课若已知一个正方体的棱长为2×103 cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。
积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n= a m+n( m,n都是正整数).幂的乘方法则:底数不变,指数相乘. (a m)n= a mn (m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103) 3 km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab) (乘方的意义)=(aa) ·(bb) (乘法交换律、结合律)=a2b2 (同底数幂相乘的法则)同理:(ab)3=(ab)·(ab) ·(ab) (乘方的意义)=(aaa) ·(bbb) (乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n =?(出示课件9)学生猜想:(ab)n =a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算: (出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式= 23a3= 8a3;(2)原式= (–5)3b3 = –125b3;(3)原式= x2(y2)2 =x2y4;(4)原式= (–2)4(x3)4 =16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2 计算: (出示课件14)(1) –4xy2·(xy2)2·(–2x2)3;(2) (–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式= –4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12) =[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022 × 54044=(0.2)4044× 54044=(0.2 ×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022 × (25)2022=(0.04× 25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是( )A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是( )A. x•x2=x2B. (xy)2=xy2C. (x2)3=x6D. x2+x2=x43. 计算:(1) 82024×0.1252023= ________;(2) (-3)2023×(-1)2022 ________;3(3) (0.04)2023×[(–5)2023]2=________.4. 判断:(1)(ab2)3=ab6 ( ) (2) (3xy)3=9x3y3( ) (3) (–2a2)2=–4a4( ) (4) –(–ab2)2=a2b4( ) 5.计算:(1) (ab)8 ; (2) (2m)3; (3) (–xy)5;(4) (5ab2)3; (5) (2×102)2; (6) (–3×103)3.6. 计算:(1) 2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3) · (–xy) ;(3)(–2x3)3·(x2)2.7. 如果(a n•b m•b)3=a9b15,求m, n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5. 解:(1)原式=a8b8;(2)原式= 23·m3=8m3;(3)原式=(–x)5·y5= –x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4 ×104;(6)原式=(–3)3×(103)3= –27 ×109= –2.7 ×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7= 2x9–27x9+25x9 = 0;(2)解:原式=9x2y4 +4x2y4=13x2y4;(3)解:原式= –8x9·x4 =–8x13.7. 解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a 3n•b 3m•b3=a9b15 ,∴a 3n•b 3m+3=a9b15,∴3n=9 ,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘. 注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。
14.1.3积的乘方-人教版八年级数学上册教案
一、教学目标
1.理解积的乘方的概念;
2.掌握积的乘方的计算方法;
3.能够运用积的乘方解决实际问题。
二、教学重难点
1.确定积的乘方的概念;
2.确定积的乘方的运算规则;
3.熟练掌握积的乘方的运算方法。
三、课前准备
1.教材《人教版八年级数学上册》;
2.教辅材料;
3.常规文具。
(黑板、粉笔等)
四、教学过程
(一)导入
1.引入积的概念,复习乘法运算;
2.向学生提问:1) 3×3×3×3的意义是什么? 2) 5×5×5×5×5的意义是什么?(二)讲授
1.讲解积的乘方的概念及其运算方法;
2.分析并解释积的乘方运算法则;
3.通过例题指导学生掌握积的乘方的运算方法。
(三)练习
1.完成课本上的练习题;
2.选做教辅材料上的练习题;
3.在教师的指导下,应用积的乘方解决实际问题。
(四)巩固
通过课堂练习、作业检查来巩固积的乘方的概念及其运算方法,并对学生的问题进行澄清和解答。
五、教学反思
本节课通过讲解积的乘方的概念及其运算方法,使学生掌握了积的乘方的基本概念和运算方法,能够应用积的乘方解决实际问题。
教学过程中重点讲解了积的乘方的运算规则,并且通过例题指导学生运用积的乘方解决问题,使学生能够在实际运用中理解积的乘方的概念。
在教学中,教师运用多种教学方式,例如导入、讲授、练习、巩固等环节,使学生在学习的过程中感受到积极向上的气氛,并且通过互动讨论等形式调动学生的思考能力,提高学生的学习效果。
人教版八年级上册14.1.3积的乘方教学设计一、教学背景本教学设计是针对人教版八年级数学教材第14章第1节“积的乘方”中的14.1.3节进行的设计,是该章节中的核心知识点。
学生在初学的时候可能会比较抵触,因此需要巧妙的设计,使学生能够理解和掌握这个知识点。
我们可以通过合理安排教学步骤、选择合适的教学方法、考虑学生的心理、增强学生的兴趣,来达到教学的目的。
二、教学目标1.知识目标了解积的乘方的概念,掌握积的乘方的运算法则及其性质。
2.能力目标通过类比、归纳等方法,培养学生的抽象思维能力和逻辑推理能力。
3.情感目标通过教学,激发学生学习数学的兴趣,提高学生的自信心和学习兴趣,增强学生对数学的喜爱。
三、教学重难点1.重点掌握积的乘方的运算法则及其性质,掌握乘方的基本计算方法。
2.难点让学生理解和掌握抽象的概念,使学生能够在实际问题中应用乘方的基本运算法则。
四、教学步骤1.导入(5分钟)教师通过提问的方式,引导学生回忆乘方的基本运算法则,并简单介绍一下积的乘方的概念。
2.讲解(20分钟)教师向学生详细讲解积的乘方的定义和运算法则,通过示例等方式让学生更好地理解和掌握概念。
3.练习(25分钟)教师出示一些例题,让学生通过计算获得对问题的认识和理解。
通过针对性的练习,加强学生对概念的掌握,巩固所学知识点。
4.归纳总结(10分钟)让学生在展示他们的解题方法后,归纳总结积的乘方的基本规律和性质,加深对概念的理解。
5.实际应用(15分钟)根据教师的引导,学生进行实际应用练习,解决实际问题,以便掌握积的乘方在实际问题中的应用。
6.小结与反思(5分钟)教师进行思考,总结今天的教学,让学生对所学知识点和教学方法进行总结,反馈意见和建议,以便在以后的教学中做出改进。
五、教学评价与反思教学评价是教学活动的重要组成部分,这样可以让我们了解学生的学习情况、教学效果和教学方法是否合理有效。
在教学中、教师可以对学生的计算能力、抽象思维能力等进行评价。
初中数学集体备课活页纸
学科初中数学主备人节次
第11 周
第 2 节课题14.1.3 积的乘方课时 1 课型新授课
教学目标1.要求学生理解并掌握积的乘方运算的推导过程及性质。
2.能够灵活运用积的乘方法则进行计算。
3.通过推导性质进一步训练学生的抽象思维能力,通过完成幂的三种运算性质的混合运算,培养学生综合运用知识的能力。
教学重点积的乘方的运算
教学难点积的乘方的推导过程的理解和灵活运用
课堂教学设计
教学环节教学过程二次备课
第一步:交流预习环节1:教师提问
问题:一个边长为a 的正方体铁盒,现将它的边长变为原来的b 倍,边长为多少?所得的铁盒的容积是多少?
环节2:师友释疑
=
答:所得的铁盒的容积是
第二步:互助探究环节1:师友探究
1.填空:运算过程用到哪些运算律?运算结果有什么规律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
(2)(ab)3= _________________=_________________=a()b()2.问题:根据乘方的意义和乘法的运算律,计算:
(n是正整数).
你能发现有何运算规律吗?
环节2:教师讲解
积的乘方:(n是正整数).
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.积的乘方逆运用:(n为正整数)
第三步:分层提高环节1 师友训练
例3 计算:
(4)
环节2 教师提升
计算:
当n 是正整数时,三个或三个以上因式的积的乘方,也具有这一性质吗?
第四步:总结归纳环节1:师友归纳
•这节课我学会(懂得)了……
•这节课我想对师傅(学友)说……
环节2:教师归纳
1.积的乘方运算法则:
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
(n为正整数)
2.逆运用可进行化简:(n为正整数)
第五步:师友反馈环节1:师友检测
1.计算(-x2y)2的结果是()
A.x4y2B.-x4y2 C.x2y2D.-x2y2
2.下列运算正确的是()
A. x·x2=x2
B. (xy)2=xy2
C.(x2)3=x6
D.x2+x2=x4
3.若x n=2,y n=5,则(xy)n=_____.
4计算:
(1)(2)
环节2:教师评价
一、本节课最佳师友是…
二、课后作业
必做:
选做:
板书设计教学后记。