北师大版初一数学上册7. 有理数的乘法(一)
- 格式:doc
- 大小:72.00 KB
- 文档页数:9
7 有理数的乘法第1课时有理数的乘法法则1.让学生在了解乘法意义的基础上,掌握有理数乘法法则.2.会进行有理数的乘法运算,会求一个有理数的倒数.3.经历探索有理数乘法法则的过程,发展学生观察、归纳、猜想、验证的能力.4.结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳能力.【教学重点】有理数乘法的运算.【教学难点】有理数乘法中的符号法则.一、情境导入,初步认识教材第49页上方的图及相关内容.【教学说明】通过水位的升高和下降这个学生比较熟悉的例子,让学生初步感受有理数的乘法.二、思考探究,获取新知1.有理数的乘法的计算法则问题1你能写出下列结果吗?(-3)×4=-12,(-3)×3= ,(-3)×2= ,(-3)×1= ,(-3)×0= .(-3)×(-1)= ,(-3)×(-2)= ,(-3)×(-3)= ,(-3)×(-4)= .【教学说明】学生通过观察、分析、计算,与同伴交流,归纳有理数乘法计算法则.【归纳结论】两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,积仍为0.2.运用有理数乘法法则进行计算问题2计算:(1)(-4)×5;(2)(-5)×(-7);(3)(-38) ×(-83) ;(4)(-3)×(-13) .【教学说明】通过计算,学生进一步掌握有理数乘法的计算法则.【归纳结论】有理数相乘,先确定积的符号,再确定积的绝对值.3.倒数的定义问题3 问题2中(3),(4)的结果是多少?你发现了什么?由此能得到什么结论?【教学说明】由问题2中(3),(4)两个式子引导学生观察、分析,概括倒数的定义.【归纳结论】如果两个有理数的乘积为1,那么称其中的一个数是另一个的倒数,也称这两个有理数互为倒数.(求一个数的倒数可以把这个数的分子与分母交换位置,而符号不变.)注意:0没有倒数.4.多个有理数相乘的符号法则问题4计算:(1)(-4)×5×(-0.25);(2)(-35) ×(-56) ×(-2).【教学说明】学生通过计算、观察、分析,与同伴交流,归纳多个有理数相乘的符号法则.问:(1)几个有理数相乘,因数都不为0时,积的符号怎样确定?(2)有一个因数为0时,积是多少?【归纳结论】几个不为0的有理数的相乘,而负因数的个数为奇数时,积为负;负因数的个数为偶数时,积为正;如果有一个因数为0,则积为0.三、运用新知,深化理解1.计算(-2)×3的结果是()A.-6B.6C.-5D.52.|-5|的倒数是()A.-5B.-1 5C.5D.1 53.绝对值不大于4的所有负整数的积是.4.若|a|=1,|b|=4,且ab<0,则a+b= .5.写出下列各数的倒数:1,-2,114,-0.3.6.计算.(1)(-8)×214;(2)45×(-256) ×(-710) ;(3)23×(-54);(4)(-2413)×(-167)×0×43;(5)54×(-1.2)×(-19) ;(6)(-37) ×(-12) ×(-815) .7.若a、b互为相反数,c、d互为倒数,求a2b+-23cd的值.8.若a、b是有理数,定义新运算⊗:a⊗b=2ab+1,例如(-3)⊗4=2×(-3)×4+1=-23.试计算:(1)3 ⊗(-5);(2)[2 ⊗(-3)]⊗(-6).【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数乘法的掌握情况,为后一节的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.A 2.D 3.24 4.±35.这些数的倒数分别是1,-12,45,-103.6.(1)-42(3)73(3)-56(4)0(5)16(6)-4357.因为a、b互为相反数,所以a+b=0,又c、d互为倒数,所以cd=1,所以原式=02-23×1=-.238.(1)3⊗(-5)=2×3×(-5)+1=-30+1=-29(2)[2⊗(-3)]⊗(-6)=[2×2×(-3)+1]⊗(-6)=(-11)⊗(-6)=2×(-11)×(-6)+1=133.四、师生互动,课堂小结1.师生共同回顾有理数乘法的计算法则.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对倒数概念的理解,熟练掌握有理数乘法法则.【板书设计】1.布置作业:从教材“习题2.10”中选取.2.完成练习册中本课时的相应作业.有理数乘法与有理数加法运算步骤类似,即第一步确定积的符号;第二步确定积的绝对值.应强化训练,使学生熟练掌握有理数的乘法运算,提升运算能力.第2课时有理数乘法的运算律1.掌握有理数乘法的运算律,并利用运算律简化乘法运算.2.经历探索有理数乘法运算律的过程,发展学生观察、归纳、猜测、验证等能力.3.结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳、概括及运算能力.【教学重点】乘法的运算律.【教学难点】利用运算律简化乘法运算.一、情境导入,初步认识在有理数运算中,加法的交换律、结合律仍然成立.那么乘法的交换律、结合律以及乘法对加法的分配律还成立吗?【教学说明】学生已经知道加法的交换律、结合律在有理数运算中仍然成立,很容易猜想乘法的交换律、结合律、分配律也会成立,激发学生探求新知识的欲望.二、思考探究,获取新知1.有理数乘法的运算律问题1计算下列各题,并比较它们的结果.【教学说明】学生通过观察、分析、计算,与同伴交流,归纳有理数乘法的运算律.【归纳结论】乘法交换律:两个有理数相乘、交换因数的位置,积相等,即ab=ba.乘法结合律:三个有理数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积相等,即(ab)c=a(bc).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.注意:同加法的运算律一样,这里的a、b、c表示任意三个有理数.2.运算乘法的运算律进行计算问题2计算:【教学说明】学生通过计算、交流,进一步掌握乘法的运算律.问题3 计算:【教学说明】学生通过计算,与同伴进行交流,熟练地运用乘法的运算律.【归纳结论】运用乘法的交换律和结合律时,一般把①互为倒数的因数,②便于约分的因数,③积为正或末尾产生0的因数先结合起来相乘;运用乘法分配律时,不仅要注意把乘积形式a(b+c)转化为ab+ac,也要注意有时候逆用(即把ab+ac转化为a(b+c))会使运算简便.另外把一个数拆成两个数,再运用分配律也是一种非常重要的方法.注意:在计算时要注意符号问题.3.其他一些简算技巧问题4观察下列各式:用你发现的规律计算:【教学说明】学生通过观察、分析、思考找出规律,再进行计算,进一步掌握一些简算技巧.【归纳结论】有时利用发现的规律也能使运算简便.三、运用新知,深化理解1.5×(-6)=(-6)×5运用的是乘法的律,[(-3)×2]×(-5)=-3×[2×(-5)]运用的是乘法的律.2.计算(-4)×(-91)×(-25)可用乘法的律和律转化成(-91)×[(-4)×(-25)],结果是.4.计算:5.已知:1+2+3+4+…+33=17×33.计算:1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数乘法运算律的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.交换,结合2.交换,结合,-91005.原式=1+2+3+…+33-3-6-9-…-96-99=17×33-3(1+2+3+…+33)=17×33-3×17×33=17×33×(1-3)=17×33×(-2)=-1122四、师生互动,课堂小结1.师生共同回顾有理数乘法的运算律.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数乘法运算律的理解与运用.【板书设计】1.布置作业:从教材“习题2.11”中选取.2.完成练习册中本课时的相应作业.本节课从学生感受乘法的运算律对于有理数仍然成立,到运用乘法的运算律进行计算,提高了学生的运算能力,对于有疑问的学生还需加强指导.。
北师大版初中数学教材目录(一)七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形回顾与思考复习题第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用回顾与思考复习题第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律回顾与思考复习题第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计回顾与思考复习题第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄回顾与思考复习题第六章生活中的数据1.100万有多大2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择回顾与思考复习题第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大回顾与思考复习题课题学习制成一个尽可能大的无盖长方体七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整流器式的除法回顾与思考复习题第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角回顾与思考复习题第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图回顾与思考复习题课题学习制作“人口图”第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率回顾与思考第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件回顾与思考复习题第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化回顾与思考复习题第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸回顾与思考复习题总复习。
2.7.1有理数的乘法教案一、教学目标:知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;培养学生的运算能力。
过程与方法:在探索有理数乘法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力;培养学生数形结合和分类的思想方法,形象地理解有理数乘法,会进行运算。
情感态度价值观:使学生感受生活中处处有数学,体验数学的价值,激发学生探究数学的兴趣。
二、教学重难点:教学重点:有理数乘法的运算。
教学难点:有理数乘法中的符号法则。
三、教学方法:分层次教学,讲授、练习相结合,小组合作学习。
四、教学过程:(一)课前研究:自学教材p49-51,探索出有理数的乘法法则;小结本节课知识点。
创设情境议一议(-3)×4=-12 (-3)×3=_____;(-3)×2=_____;(-3)×1=_____;(-3)×0=_____.当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:(-3)×(-1)=______;(-3)×(-2)=______;(-3)×(-3)=______;(-3)×(-4)=______.正数乘正数积为______数。
负数乘正数积为______数。
正数乘负数积为______数。
负数乘负数积为_____数。
结论:这样有理数乘法怎么乘呢?(二)课中展示:例题解析计算 (1)()5)10(-⨯- (2)41158⨯- (3) 06⨯-(4)⎪⎭⎫⎝⎛-⨯-313(5)⎪⎭⎫⎝⎛-⨯⨯-3102.1)34(分析:两个有理数相乘时,先确定积的符号,再把绝对值相乘,带分数相乘时,要先把带分数化成假分数,分数与小数相乘时,要统一成分数或小数。
在第(4)题的基础上,给出倒数的概念:如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为相反数。
北师大版七年级上册有理数的乘法(一)教学设计一、学习目标:1、通过自主学习理解乘法的实际意义;学会有理数乘法运算的方法与技巧。
2、通过观察、思考、归纳、猜想、验证等过程,探索有理数的乘法法则。
3、培养学生的语言表达能力,以及与他人沟通,增强学习数学的自信心。
二、教学重难点:重点:应用有理数的乘法法则正确的进行有理数乘法计算;难点:有理数的乘法法则中符号变化的理解及积的符号的确定;三、教学过程设计:一)创设问题情境,引入新课1、同学们!还记得上我们学校上星期成功兴办的体育节吗(出示幻灯图片)在开幕式上,每个班级都接受了检阅,展示了一中的风彩!如果每班平均有30人接受检阅,全校共有40个班级,那么共有多少学生接受了检阅呢(教师根据学生回答显示算式)如果我将这个算式中一个因数改变符号,让学生猜一猜结果。
(教师在将这两个算式板书在黑板上)刚才同学说的得数对不对呢,其理由又是什么呢?这就是我们今天所要一起探索学习的:有理数的乘法(教师板书)二)提出问题出示自学指导:1、阅读教材P60 ,分析提出的问题,弄清题意,明确已知是什么,所求是什么,讨论思考如何解答?2、小组探索交流:你是如何得出两个有理数相乘的法则的?并用你自己的语言归纳法则3 、组内小组成员互相出题目,验证你的结论。
4、自学例题,总结两个有理数相乘的步骤、方法与技巧。
理解倒数的概念,并与相反数与绝对值知识作以区别。
三)解决问题1、通过自学,汇报学习效果&z=&tn=baiduimagedetail&word=%D3%D0%C0%ED%CA%FD%B3%CB%B7%A8%CB%AE%BF%E2%C9%CF%C 9%FD%CF%C2%BD%B5%CD%BC%C6%AC&in=4663&cl=2&lm=-1&pn=9&rn=1&di=365&ln=1988&fr=&fm =hao123&fmq=_R&ic=&s=&se=&sme=0&tab=&width=&height=&face=&is=&istype=#pn0&-1&di &objURLhttp%3A%2F%&fromURLhttp%3A%2F%&W264&H168(1)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法.解答:3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)注意:在以上活动中可得到“甲水库的水位总变化量是上升12厘米,乙水库的水位总变化量是下降12厘米.”对于这个算法和结论学生是没有疑义的,但对活动(2)中得到“乙水库水位每天下降3厘米,记作-3厘米,4天后水位变化总量为(-3)+(-3)+(-3)+(-3)=(-3)×4=—12厘米,”的意义是“水位上升-12厘米”会产生疑义,教师应不失时机地复习负数的有关知识,解释“水位上升-12厘米”与“水位下降12厘米”是等价的。
第二章有理数及其运算7. 有理数的乘法(一)城固朝阳初级中学王永涛【知识脉络】本章内容主要涉及有理数的运算,是初等数学的重要基础,在实际生活中的应用十分广泛。
本节有理数的乘法,从小处说,它既是有理数加法运算的延伸,也是学生后续学习有理数除法与乘方运算等有理数运算的基础。
从大处说,它是整个初中学段乃至更高学段最基本的运算之一,是今后学习实数运算、代数式的运算、解方程以及函数知识等等的基础。
本节内容分为两个课时,第一课时在实际背景和计算中探索出有理数乘法法则,学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况。
第二课时在运算中归纳出乘法运算律在有理数的范围内仍然适用。
【教学要求】有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。
因此确定“积”的符号是本节课应重点解决的问题。
课标中指出:“要让学生经历数学知识的形成和应用过程”。
在小学里正数与正数相乘、正数与0相乘的运算,经过多年的实践,已经深入学生骨髓,变得天经地义,因为他们可以毫不费劲的从生活实例中得到圆满解释。
引入负数后就不同了,“负数与正数相乘”还能用有理数的加法来解释,而且也能在现实生活中找到相关背景,如连续降温等,但“正数与负数相乘”、“负数与负数相乘”、“负数与0相乘”等运算,很难在现实生活中找到合理的解释。
如果直接将有理数的乘法法则告诉学生,经过大量的练习,学生也能熟练地掌握运算技巧。
但由于没有经历知识的发生发展过程,必然会导致知其然不知其所以然,数学知识链会出现缺口。
因此,法则的探索过程是本节的重要一环,不可忽视。
在探究法则的过程中,让学生多动手、多动脑,尽可能达到在亲身探究中法则自然流淌而出,让学生触摸到知识的源头。
【学情分析】知识技能方面:在学习本节课之前,学生已经学习了有理数的加减法运算法则,对符号问题也有了一定的认识。
同时,初一的学生也具有一定的观察、归纳、猜想、验证能力。
因此,学生对本节课内容具有深厚的知识基础。
乘法的交换律、结合律、分配律在小学已经学习过,在有理数部分仍旧适用,其中的教学关键仍然是符号问题。
活动经验方面:七年级学生已经具备了初步探究问题的能力,但归纳概括能力不强,对于表象化的东西理解不深入。
乘法法则的提炼经历了将实际问题数学化的过程,需要学生一定的归纳概括能力。
同时,借助图形帮助学生确定乘积的符号,可以让学生尽早领悟数形结合思想方法。
【教学重难点】教学重点:应用有理数的乘法法则正确的进行有理数乘法计算。
教学难点:有理数乘法运算中符号确定的理解。
-、学情分析学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律,在本章的前面几节课中又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。
学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识,另外在加法法则的学习过程中曾经遇到的问题和经历过的挫折,这对有理数的乘法法则的学习也是值得借鉴的宝贵经验。
二、教学目标1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;2、会进行有理数的乘法运算。
三、教学方法在教学中采用诱思探究式教学法并采用多媒体等现代教学手段。
以学生为中心,使其在“生动活泼、民主开放、自主探索、合作交流、动手实践”的氛围中愉快地学习,让学生从“学会”到“会学”,使学生真正成为学习的主人.四、教学过程一:创设情境活动1:1、计算:①、(—3)+(—3)②、(—3)+(—3)+(—3)③、(—3)+(—3)+(—3)+(—3)④、(—3)+(—3)+(—3)+(—3)+(—3)2、猜想下列各式的值(—3)×2;(—3)×3;(—3)×4;(—3)×5,3、两个有理数相乘有几种情况?活动意图:通过创设情境,回顾复习以前的相关知识,以便形成知识迁移,出示负数与正数相乘的乘法引出新课。
以给学生造成“心求通而未能得,口预言而未能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到新的探索活动中就过来。
教学要求与效果:在以上活动1中学生通过加法运算和乘法的意义很快猜想出负数乘以正数的结果,对于有理数相乘有几种情况学生也很容易的得出,但对负数乘以负数心中存有疑惑,为下一个环节留下悬念。
二:探究新知活动2:如图,一只蜗牛沿直线L爬行:它现在位置恰在L上的点0.0 2 4 x(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟后它在什么位置?(+2)×(+3)=+6(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟后它在什么位置?(-2)×(+3)=-6(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分钟前它在什么位置?(+2)×(-3)=-6(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分钟前它在什么位置?(-2)×(-3)=+6思考:一个数同0相乘,如何解释?活动3:(1)那么下列一组算式的结果应该如何计算?请同学们思考:(-3)×3=_____;(-3)×2=_____;(-3)×1=_____;(-3)×0=_____.(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:(-3)×(-1)=______;(-3)×(-2)=______;(-3)×(-3)=______;(-3)×(-4)=______.活动4:正数乘正数积为______数。
负数乘正数积为______数。
正数乘负数积为______数。
负数乘负数积为_____数。
乘积的绝对值等于各乘数绝对值的___________归纳:有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.活动意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化。
在本环节中,给与学生充分的合作交流、自主探索的时间和空间。
通过设置活动2并用课件向学生演示蜗牛在直线上的运动过程,激发学生的学习兴趣。
而且设置了四个问题:第一个问题,可以看成是与以前学过的乘法一样,学生容易理解。
第二个问题中,结合有理数加法时的讲法,向右为正,向左为负,很容易得出负数与正数相乘结果。
第三个问题是关键,在这个问题中,对于时间规定了现在前为负,有了这个规定,就可以得出正数与负数相乘的结果。
通过设置活动3以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。
通过设置活动4,引导学生用数学语言准确地描述以上实例的运算结果,培养学生从特殊归纳一般的意识,提高学生整合知识的能力,以填空形式引导学生对照实例自主完成,进一步引导学生观察积的符号的特点,师生共同归纳出有理数的乘法法则。
教学要求与效果:(1)在以上活动2中可得到“蜗牛一直以每分2cm 的速度向右爬行,3分钟后它在什么位置”对于这个算法和结论学生是没有疑义的,但对活动2中得到“蜗牛一直以每分2cm 的速度向左爬行,记作-2cm,3分钟后蜗牛所在的位置为(-2)+(-2)+(-2)=(-2)×3=-6 cm”的意义是“蜗牛在-6cm位置”会产生疑义,教师应不失时机地复习负数的有关知识,解释“蜗牛在右边-6cm位置”与“蜗牛在左边6cm位置”是等价的。
(2)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论.但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,教师绝不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则.(3)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律.三:法则分析活动5 :填空1.(—5)×(—3)同号相乘(—5)×(—3)=+()______得正5×3=15把绝对值相乘2.(—7)×4__________(—7)×4=—()___________7×4=28__________(—7)×4=__________归纳:有理数相乘,先确定积的_____ ,再确定积的 _____________.活动意图:通过设置活动5让学生去探索,从新的角度去认识乘法,并用课件向学生展示问题,引导学生理解法则的实质。
在本环节留给学生充分探索交流的时间和空间,对学生可能出现的疑问给予帮助,让学生经过自主探索、合作交流从深层次理解法则,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
对学生及时进行鼓励,充分肯定学生的探究成果,且关注学生的情感体验。
教学要求与效果:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。
(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算,所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。
(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算.另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。
四:例题例1 计算(1)(-3)×9 (2)(-!/2)×2 (3)(-!/3)×(-3)(4)(-2/3)×(-3/2)注意:乘积是1的两个数互为倒数.一个数同+1相乘,得原数,一个数同-1相乘,得原数的相反数。
例2 用正负数表示气温的变化量,上升为正,下降为负。
登山队攀登一座山峰,每登高1km 气温的变化量为-60C,攀登3km后,气温有什么变化?问题:实际生活中,还存在其他类似的例子吗,说出来和大家一起分享吧!思考:用“>”“<”“=”号填空。
(1)如果a>0,b>0,那么a·b____0.(2)如果a>0b<0,那么a·b____0.(3)如果a<0,b<0 , 那么a·b____0 .(4)如果a=0, b≠0,那么a·b____0(例3.计算⑴(-4)×5×(-0.25);⑵(-3÷5)×(-5÷6)×(-2);结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正.只要有一个数为零,积就为零。