宜昌市2006届高三年级第二次调研试题文科数
- 格式:doc
- 大小:547.00 KB
- 文档页数:9
第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。
2006年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量=(4,2),向量=(x,3),且∥,则x=()A.9 B.6 C.5 D.32.(5分)已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A.∅B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}3.(5分)函数y=sin2x•cos2x的最小正周期是()A.2πB.4πC.D.4.(5分)如果函数y=f(x)的图象与函数y′=3﹣2x的图象关于坐标原点对称,则y=f(x)的表达式为()A.y=2x﹣3 B.y=2x+3 C.y=﹣2x+3 D.y=﹣2x﹣35.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.126.(5分)已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.4007.(5分)如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A.2:1 B.3:1 C.3:2 D.4:38.(5分)已知函数f(x)=lnx+1(x>0),则f(x)的反函数为()A.y=e x+1(x∈R)B.y=e x﹣1(x∈R)C.y=e x+1(x>1)D.y=e x﹣1(x>1)9.(5分)已知双曲线=1(a>0,b>0)的一条渐近线方程为y=x,则双曲线的离心率为()A.B.C.D.10.(5分)若f(sinx)=2﹣cos2x,则f(cosx)等于()A.2﹣sin2x B.2+sin2x C.2﹣cos2x D.2+cos2x11.(5分)过点(﹣1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0 B.3x﹣y+3=0 C.x+y+1=0 D.x﹣y+1=012.(5分)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()A.150种B.180种C.200种D.280种二、填空题(共4小题,每小题4分,满分16分)13.(4分)在的展开式中常数项为(用数字作答).14.(4分)圆O1是以R为半径的球O的小圆,若圆心O1到球心O的距离与球半径面积S1和球O的表面积S的比为S1:S=2:9,则圆心O1到球心O的距离与球半径的比OO1:R=.15.(4分)过点的直线l将圆(x﹣2)2+y2=8分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.16.(4分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.三、解答题(共6小题,满分74分)17.(12分)在△ABC中,∠B=45°,AC=,cosC=,(1)求BC的长;(2)若点D是AB的中点,求中线CD的长度.18.(12分)设等比数列{a n}的前n项和为S n,S4=1,S8=17,求通项公式a n.19.(12分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.20.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(I)证明:ED为异面直线BB1与AC1的公垂线;(II)设,求二面角A 1﹣AD﹣C1的大小.21.(14分)设a∈R,二次函数f(x)=ax2﹣2x﹣2a.若f(x)>0的解集为A,B={x|1<x<3},A∩B≠∅,求实数a的取值范围.22.(12分)已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.2006年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量=(4,2),向量=(x,3),且∥,则x=()A.9 B.6 C.5 D.3【分析】本题考查向量共线的充要条件,坐标形式的充要条件容易代错字母的位置,只要细心,这是一道送分的题目,但一些考试中会考到.【解答】解:∥,∴4×3﹣2x=0,∴x=6,故选:B.【点评】向量平行、垂直是经常考到的问题,掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.2.(5分)已知集合M={x|x<3},N={x|log2x>1},则M∩N=()A.∅B.{x|0<x<3}C.{x|1<x<3}D.{x|2<x<3}【分析】解出集合N,结合数轴求交集.【解答】解:N={x|log2x>1}={x|x>2},用数轴表示可得答案D故选:D.【点评】考查知识点有对数函数的单调性,集合的交集,本题比较容易3.(5分)函数y=sin2x•cos2x的最小正周期是()A.2πB.4πC.D.【分析】将函数化简为:y=Asin(ωx+φ)的形式即可得到答案.【解答】解:所以最小正周期为,故选:D.【点评】考查知识点有二倍角公式,最小正周期公式本题比较容易4.(5分)如果函数y=f(x)的图象与函数y′=3﹣2x的图象关于坐标原点对称,则y=f(x)的表达式为()A.y=2x﹣3 B.y=2x+3 C.y=﹣2x+3 D.y=﹣2x﹣3【分析】先假设函数f(x)上的点(x,y),∵(x,y)关于原点对称的点为(﹣x,﹣y)在函数y′=3﹣2x上代入即可得到答案.【解答】解:设(x,y)为函数f(x)上的点,∵(x,y)关于原点对称的点为(﹣x,﹣y)在函数y′=3﹣2x上∴以﹣y,﹣x代替函数y'=3﹣2x中的y′,x,得y=f(x)的表达式为y=﹣2x﹣3故选:D.【点评】本题主要考查根据函数对称性求函数解析式的问题.根据求谁设谁的原则,先假设函数f(x)上的点,根据对称性找关系式即可得到答案.5.(5分)已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.B.6 C.D.12【分析】由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长.【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选:C.【点评】本题主要考查数形结合的思想和椭圆的基本性质,难度中等6.(5分)已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.400【分析】由第二项和第四项的值可以求出首项和公差,写出等差数列前n项和公式,代入n=10得出结果.【解答】解:d=,a1=3,∴S10==210,故选:B.【点评】若已知等差数列的两项,则等差数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.7.(5分)如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A.2:1 B.3:1 C.3:2 D.4:3【分析】设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.【解答】解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt△BAB'中有AB'=,同理可得AB与平面β所成的角为,所以,因此在Rt△AA'B'中A'B'=,所以AB:A'B'=,故选:A.【点评】本题主要考查直线与平面所成的角以及线面的垂直关系,要用到勾股定理及直角三角形中的边角关系.有一定的难度8.(5分)已知函数f(x)=lnx+1(x>0),则f(x)的反函数为()A.y=e x+1(x∈R)B.y=e x﹣1(x∈R)C.y=e x+1(x>1)D.y=e x﹣1(x>1)【分析】本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域;将y=lnx+1看做方程解出x,然后由原函数的值域确定反函数的定义域即可.【解答】解:由y=lnx+1解得x=e y﹣1,即:y=e x﹣1∵x>0,∴y∈R所以函数f(x)=lnx+1(x>0)反函数为y=e x﹣1(x∈R)故选:B.【点评】由于是基本题目,解题思路清晰,求解过程简捷,所以容易解答;解答时注意函数f(x)=lnx+1(x>0)值域的确定,这里利用对数函数的值域推得.9.(5分)已知双曲线=1(a>0,b>0)的一条渐近线方程为y=x,则双曲线的离心率为()A.B.C.D.【分析】由题意设出双曲线的方程,得到它的一条渐近线方程y=x即y=x,由此可得b:a=4:3,结合双曲线的平方关系可得c与a的比值,求出该双曲线的离心率.【解答】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选:A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.10.(5分)若f(sinx)=2﹣cos2x,则f(cosx)等于()A.2﹣sin2x B.2+sin2x C.2﹣cos2x D.2+cos2x【分析】本题考查的知识点是函数解析式的求法,根据已知中f(sinx)=2﹣cos2x,结合倍角公式对解析式进行凑配,不难得到函数f(x)的解析式,然后将cosx 代入,并化简即可得到答案.【解答】解:∵f(sinx)=2﹣(1﹣2sin2x)=1+2sin2x,∴f(x)=1+2x2,(﹣1≤x≤1)∴f(cosx)=1+2cos2x=2+cos2x.故选:D.【点评】求解析式的几种常见方法:①代入法:即已知f(x),g(x),求f(g (x))用代入法,只需将g(x)替换f(x)中的x即得;②换元法:已知f(g (x)),g(x),求f(x)用换元法,令g(x)=t,解得x=g﹣1(t),然后代入f (g(x))中即得f(t),从而求得f(x).当f(g(x))的表达式较简单时,可用“配凑法”;③待定系数法:当函数f(x)类型确定时,可用待定系数法.④方程组法:方程组法求解析式的实质是用了对称的思想.一般来说,当自变量互为相反数、互为倒数或是函数具有奇偶性时,均可用此法.在解关于f(x)的方程时,可作恰当的变量代换,列出f(x)的方程组,求得f(x).11.(5分)过点(﹣1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0 B.3x﹣y+3=0 C.x+y+1=0 D.x﹣y+1=0【分析】这类题首先判断某点是否在曲线上,(1)若在,直接利用导数的几何意义,求函数在此点处的斜率,利用点斜式求出直线方程(2)若不在,应首先利用曲线与切线的关系求出切点坐标,进而求出切线方程.此题属于第二种.【解答】解:y'=2x+1,设切点坐标为(x0,y0),则切线的斜率为2x0+1,且y0=x02+x0+1于是切线方程为y﹣x02﹣x0﹣1=(2x0+1)(x﹣x0),因为点(﹣1,0)在切线上,可解得x0=0或﹣2,当x0=0时,y0=1;x0=﹣2时,y0=3,这时可以得到两条直线方程,验正D正确.故选:D.【点评】函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)12.(5分)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()A.150种B.180种C.200种D.280种【分析】根据题意,分析可得人数分配上有两种方式即1,2,2与1,1,3;分别计算两种情况下的情况数目,相加可得答案.【解答】解:人数分配上有两种方式即1,2,2与1,1,3若是1,1,3,则有=60种,若是1,2,2,则有=90种所以共有150种,故选:A.【点评】本题考查组合的运用,难点在于分组的情况的确定.二、填空题(共4小题,每小题4分,满分16分)13.(4分)在的展开式中常数项为45(用数字作答).【分析】利用二项式的通项公式(让次数为0,求出r)就可求出答案.【解答】解:要求常数项,即40﹣5r=0,可得r=8代入通项公式可得T r=C108=C102=45+1故答案为:45.【点评】二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(4分)圆O1是以R为半径的球O的小圆,若圆心O1到球心O的距离与球半径面积S1和球O的表面积S的比为S1:S=2:9,则圆心O1到球心O的距离与球半径的比OO1:R=1:3.【分析】利用两个圆的面积之比,推出半径比,结合圆心O1到球心O的距离与球半径、圆心O1的半径满足勾股定理,即可求出结果.【解答】解:设圆O1的半径为r,则S1=πr2,S=4πR2,由S1:S=2:9得r:R=:3又r2+OO12=R2,可得OO1:R=1:3故答案为:1:3【点评】本题考查球的表面积,球的截面知识,考查计算能力,是基础题.15.(4分)过点的直线l将圆(x﹣2)2+y2=8分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.【分析】由劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.【解答】解:由题意,点P(1,)在圆(x﹣2)2+y2=8的内部,圆心为C(2,0),要使得劣弧所对的圆心角最小,只能是直线l⊥CP,所以k=﹣=,故答案为.【点评】垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所在的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小.16.(4分)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出25人.【分析】直方图中小矩形的面积表示频率,先计算出[2500,3000)内的频率,再计算所需抽取人数即可.【解答】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人故答案为:25【点评】本题主要考查直方图和分层抽样,难度不大.三、解答题(共6小题,满分74分)17.(12分)在△ABC中,∠B=45°,AC=,cosC=,(1)求BC的长;(2)若点D是AB的中点,求中线CD的长度.【分析】(1)先由cosC求得sinC,进而根据sinA=sin(180°﹣45°﹣C)求得sinA,再由正弦定理知求得BC.(2)先由正弦定理知求得AB,进而可得BD,再在△ACD中由余弦定理求得CD.【解答】解:(1)由由正弦定理知(2)由余弦定理知=【点评】本题主要考查正弦定理和余弦定理在解三角形中的应用.属基础题.18.(12分)设等比数列{a n}的前n项和为S n,S4=1,S8=17,求通项公式a n.【分析】设出数列的公比,由题意知公比不为0,根据题目所给的两个前几项的和,列出方程求出公比有两个值,对于这两种情况分别写出数列的通项公式.【解答】解:设{a n}的公比为q,由S4=1,S8=17知q≠1,∴得①②由①和②式整理得解得q4=16所以q=2或q=﹣2将q=2代入①式得,∴将q=﹣2代入①式得,∴,综上所述或【点评】本题是一个等比数列的基本量的运算,这种问题是数列中最容易出的一种小型题目,多出在选择和填空中,是考查数列的基础知识的一道送分的题目,只要解题认真就可以得分.19.(12分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.【分析】(1)由取出的第一、二、三箱中分别有0件、1件、2件二等品可知变量ξ的取值,结合变量对应的事件做出这四个事件发生的概率,写出分布列和期望.(2)由上一问做出的分布列可以知道,P(ξ=2)=,P(ξ=3)=,这两个事件是互斥的,根据互斥事件的概率公式得到结果.【解答】解(1)由题意知抽检的6件产品中二等品的件数ξ=0,1,2,3==,∴ξ的分布列为∴ξ的数学期望E(ξ)=(2)∵P(ξ=2)=,P(ξ=3)=,这两个事件是互斥的∴P(ξ≥2)=【点评】本题主要考查分布列的求法以及利用分布列求期望和概率,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大.20.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(I)证明:ED为异面直线BB1与AC1的公垂线;(II)设,求二面角A 1﹣AD﹣C1的大小.【分析】(Ⅰ)设O为AC中点,连接EO,BO,欲证ED为异面直线AC1与BB1的公垂线,只需证明ED与直线AC1与BB1都垂直且相交,根据线面垂直的性质可知ED⊥CC1,而ED⊥BB1,即可证得;(Ⅱ)连接A1E,作EF⊥AD,垂足为F,连接A1F,根据二面角的平面角定义可知∠A1FE为二面角A1﹣AD﹣C1的平面角,在三角形A1FE中求出此角即可.【解答】解:(Ⅰ)设O为AC中点,连接EO,BO,则EO C1C,又C1C B1B,所以EO DB,EOBD为平行四边形,ED∥OB.(2分)∵AB=BC,∴BO⊥AC,又平面ABC⊥平面ACC1A1,BOÌ面ABC,故BO⊥平面ACC1A1,∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1,∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.(6分)(Ⅱ)连接A1E,由AA1=AC=AB可知,A1ACC1为正方形,∴A1E⊥AC1,又由ED⊥平面ACC1A1和EDÌ平面ADC1知平面ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连接A1F,则A1F⊥AD,∠A1FE为二面角A1﹣AD﹣C1的平面角.不妨设AA1=2,则AC=2,AB=,ED=OB=1,EF==,tan∠A1FE=,∴∠A1FE=60°.所以二面角A1﹣AD﹣C1为60°.(12分)【点评】本题主要考查了异面直线公垂线的证明,二面角的度量,以及空间想象能力和推理能力,属于基础题.21.(14分)设a∈R,二次函数f(x)=ax2﹣2x﹣2a.若f(x)>0的解集为A,B={x|1<x<3},A∩B≠∅,求实数a的取值范围.【分析】解:注意到△=4+8a2>0,则函数有两个零点,由a的正负,确定不等式解集的形式.结合着数轴分类讨论.【解答】解:由题意可知二次函数a≠0,令f(x)=0解得其两根为由此可知x1<0,x2>0(i)当a>0时,A={x|x<x1}∪{x|x>x2},则A∩B≠ϕ的充要条件是x2<3,即解得(ii)当a<0时,A={x|x1<x<x2}A∩B≠ϕ的充要条件是x2>1,即解得a<﹣2综上,使A∩B≠ϕ成立的a的取值范围为【点评】在对集合的相关问题进行求解时,分类讨论时经常考查到的思想方法,另外对于一元二次不等式的解法也是一个基本的知识点,要熟练掌握.22.(12分)已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且.过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.【分析】(1)设A(x1,y1),B(x2,y2),M(x o,y o),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得x1+x2和x1x2,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得•的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据x1+x2的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△ABM面积.最后根据均值不等式求得S的范围,得到最小值.【解答】解:(1)设A(x1,y1),B(x2,y2),M(x o,y o),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0.x1+x2=4k,x1x2=﹣4于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,x o==2k,y o==﹣1,即M(,﹣1)从而,=(,﹣2),(x2﹣x1,y2﹣y1)•=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.这就说明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|====.因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=()2.于是S=|AB||FM|=()3,由≥2知S≥4,且当λ=1时,S取得最小值4.【点评】本题主要考查了抛物线的应用.抛物线与直线的关系和抛物线的性质等都是近几年高考的热点,故应重点掌握.。
高三期中模拟试题 文科数学(满分150分,时间120分钟)一、选择题:本大题共12小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项的代号涂在答题卡上或填在答题纸相应空格里.1.设集合2{|0},{|||2},M x x x N x x =-<=<则A .M N φ=B .M N N =C .M N M =D .M N =R2.已知向量,m n 的夹角为6π,且|||2,==m n 在△ABC 中,,3,AB AC =+=-m n m n D为BC 边的中点,则||AD等于A .1B .2C .3D .4 3.设曲线2cos sin x y x -=在点(,2)2π处的切线与直线10x ay ++=垂直,则a 等于 A .2 B .-2 C .-1 D .1 4.不等式21log 1x x-≥的解集为 A .(,1]-∞- B .[1,)-+∞ C .[-1,0) D .(,1)(0,)-∞-+∞5.函数()sin f x x x =-的零点个数为A .1B .2C .3D .无数个 6.函数log (||1)(1)a y x a =+>的大致图像是7.已知函数1x y a -=(0a >,且1a ≠)的图象恒过定点A ,若点A 在一次函数y mx n=+的图象上,其中,0m n >,则11m n+的最小值为 A .1 B.2 D .4 8.函数()y f x =的导函数图象如图所示,则下面判断正确的是A .在(-3,1)上()f x 是增函数B .在1x =处()f x 有极大值C .在2x =处()f x 取极大值D .在(1,3)上()f x 为减函数9.已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c 且1,45,2ABC a B S ∆=∠=︒=,则b 等于A..3 C .5 D10.若函数()f x 满足:“对于区间(1,2)上的任意实数12122121,(),|()()|||x x x x f x f x x x ≠-<-恒成立”,则称()f x 为完美函数.在下列四个函数中,完美函数是A .1()f x x= B .()||f x x = C .()23f x x =- D .2()f x x =11.若0,0a b >>且4a b +=,则下列不等式恒成立的是A .112ab >B .111a b +≤ C2≥ D .22118a b ≤+12.函数()sin()f x A x b ωϕ=++的图象如下,则(0)(1)(2011)S f f f =+++ 等于A .0B .503C .1006D .2012二、填空题:本大题共4小题,每小题4分,满分16分.把答案填在答题纸相应题目的横线上.13.已知,,a b c 分别是△ABC 的三个内角,,A B C 所对的边,若1,2,a b A C B ==+=则sin C =____________14.已知||2,||4==a b ,且(+a b )与a 垂直,则a 与b 的夹角是______________15.若20.30.30.3,2,log 2a b c ===,则,,a b c 由大到小的关系是______________16.设01a <≤,函数2(),()ln a f x x g x x x x =+=-,若对任意的12,[1,]x x e ∈,都有12()()f x g x ≥成立,则实数a 的取值范围为__________三、解答题:本大题共6小题,满分74分,解答时要求写出必要的文字说明或推演步骤.17.(本题满分12分)已知点(,)P x y 在由不等式组301010x y x y x +-≤⎧⎪--≤⎨⎪-≥⎩确定的平面区域内,O 为坐标原点,(1,2)A -,试求OP OA ⋅的最大值.18.(本题满分12分)已知函数()sin(2)sin(2)cos266f x x x x a ππ=++--+(,a R a ∈为常数).(1)求函数()f x 的单调增区间; (2)若函数()f x 的图像向左平移(0)m m >个单位后,得到函数()g x 的图像关于y 轴对称,求实数m 的最小值.19.(本题满分12分)已知(cos ,sin ),(cos ,sin )ααββ==a b ,其中0αβπ<<<. (1)求证:+a b 与-a b 互相垂直;(2)若k +a b 与(0)k k -≠a b 的长度相等,求βα-. 20.(本题满分12分) 奇函数()()1()m g x f x g x -=+的定义域为R ,其中()y g x =为指数函数且过点(2,9).(1)求函数()y f x =的解析式;(2)若对任意的[0,5]t ∈,不等式22(2)(225)0f t t k f t t +++-+->恒成立,求实数k 的取值范围.21.(本题满分12分)在一条笔直的工艺流水线上有三个工作台,将工艺流水线用如图所示的数轴表示,各工作台的坐标分别为1,23,x x x ,每个工作台上有若干名工人.现要在1x 与3x 之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.(1)若每个工作台上只有一名工人,试确定供应站的位置;(2)设三个工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.22.(本题满分14分)已知函数2()ln(1)().f x x ax a x a =---∈R (1)求函数()f x 的单调区间;(2)试判断是否存在实数(1)a a ≥,使()y f x =的图像与直线1y =+无公共点(其中自然对数的底数e 为无理数且e =2.71828…).高三期中模拟试题 文科数学 参考答案一、BADCA BDCCA DD二、13.1 14.23π 15.b a c >> 161a ≤18.解:(1)()sin(2)sin(2)cos266f x x x x a ππ=++--+2cos22sin(2).6x x a x a π=-+=-+…………………………………3分当222()262k x k k πππππ-≤-≤+∈Z ,即()63k x k k ππππ-≤≤+∈Z 时,函数()f x 单调递增,故所求区间为[,]().63k k k ππππ-+∈Z …………………………6分(2)函数()f x 的图像向左平移(0)m m >个单位后得()2sin[2()]6g x x m a π=+-+,要使()g x 的图像关于y 轴对称,只需2()62m k K Z πππ-=+∈…………………………9分即()23k m k Z ππ=+∈,所以m 的最小值为3π.………………………………12分 19.解:(1)22()()+⋅-=-a b a b a b 222222||||(cos sin )(cos sin )ααββ=-=+-+a b =1-1=0∴+a b 与-a b 互相垂直.……………………………………5分(2)+(cos cos ,sin sin ),k k k αβαβ=++a b -(cos cos ,sin sin ),k k k αβαβ=--ab |+||k k ∴=-=a b a b22|+|||,2cos()12cos()1,k k k k k k βαβα=-∴+-+=--+a b a b ……………9分2cos()2cos(),k k βαβα-=--0k ≠ ,故cos()0βα-=,又0,0,αβπβαπ<<<∴<-<.2πβα∴-=………………………12分20.解:(1)设()(0,1),x g x a a a =>≠则29,3a a =∴=或3a =-(舍),3()3,().13x xxm g x f x -∴==+……………………2分 又()f x 为奇函数,33()(),1313x xx x m m f x f x ----∴-=-∴=-++, 整理得(31)31x xm +=+ 1m ∴=13().13x xf x -∴=+ …………………………6分 (2)22.3ln3()0,()(13)x x f x y f x -'=<∴=+ 在R 上单调递减.……………………7分要使对任意的22[0,5],(2)(225)0t f t t k f t t ∈+++-+->恒成立, 即对任意的22[0,5],(2)(225)t f t t k f t t ∈++>--+-恒成立.()f x 为奇函数,22(2)(225)f t t k f t t ∴++>-+恒成立,…………………………9分又()y f x = 在R 上单调递减,222225t t k t t ∴++<-+当[0,5]t ∈时恒成立,2245(2)1k t t t ∴<-+=-+当[0,5]t ∈时恒成立,而当[0,5]t ∈时,21(2)110t ≤-+≤, 1.k ∴<………………………………12分21.解:设供应站坐标为x ,各工作台上的所有工人到供应站的距离之和为().d x(1)由题设知,13x x x ≤≤,所以123312()()||()||.d x x x x x x x x x x x =-+-+-=-+-………3分 故当2x x =时,()d x 取最小值,此时供应站的位置为2.x x =……………5分 (2)由题设知,13x x x ≤≤,所以各工作台上的所有工人到供应站的距离之和为132()2()3()||.d x x x x x x x =-+-+-……………………………………8分 ∴3211232123232,,()32,.x x x x x x x d x x x x x x x -++-≤<⎧=⎨--≤≤⎩…………………………10分 因此,函数()d x 在区间(12,x x )上是减函数,在区间[23,x x ]上是常数.故供应站位置位于区间[23,x x ]上任意一点时,均能使函数()d x 取得最小值,且最小值为32132.x x x --………………12分22.解:(1)函数2()ln(1)()f x x ax a x a =---∈R 的定义域是(1,).+∞………1分22()2()211a x x a f x x a x x +-'=--=--,…………………3分 ①若0a ≤,则22()221,()021a x x a f x x +-+'≤=>-在(1,)+∞上恒成立, 0a ∴≤时,()f x 的增区间为(1,)+∞…………………………5分②若0a >,则212a +>,故当2(1,]2a x +∈时,22()2()01a x x f x x +-'=≤-; 当时2[,)2a x +∈+∞时,22()2()01a x x f x x +-'=≥-,…………………………7分 0a ∴>时,()f x 的减区间为2(1,],()2a f x +的增区间为2[,).2a ++∞…………………8分(2)1a ≥时,由(1)可知,()f x 在(1,)+∞上的最小值为22()1ln .242a a af a +=-+-…………………10分设22()()1ln ([1,)),242a a a g a f a a +==-+-∈+∞则113()ln 1(1)ln 1ln 20,22222a a g a g ''=---≤=---=-+<2()1ln 42a ag a a ∴=-+-在[1,)+∞上单调递减,max 3()(1)ln 24g a g ∴==+,……………………………12分max 314()1ln 21ln 0,44eg a --+-->∴存在实数(1)a a ≥使()f x的最小值大于1+故存在实数(1)a a ≥,使()y f x =的图像与直线1y =+无公共点.……………14分。
2006年高考试题及答案
2006年高考试题及答案如下:
1. 语文试题:
题目:下面句子中使用了完全排比的一组是?
A. 这孩子大气、懂礼貌、学习好。
B. 她才好了几天,病又复发了。
C. 他说话说一半、拖一半。
D. 这家人和睦、相亲相爱。
答案:D. 这家人和睦、相亲相爱。
2. 数学试题:
题目:已知函数y=f(x)满足当x>0时,f(x)=2x+1;当x≤0时,f(x)=ax^2+bx+c,则a、b、c的值分别为:
A. a=0, b=1, c=0
B. a=0, b=2, c=1
C. a=1, b=0, c=1
D. a=1, b=2, c=1
答案:B. a=0, b=2, c=1
3. 英语试题:
题目:My friend Tony is going to take _______ in a singing contest tomorrow.
A. place
B. part
C. position
D. portion
答案:B. part
4. 物理试题:
题目:下列运动学图象中,完全正确的是
A. S—t图象下凸
B. S—t图象上凸
C. V—t图象上凸
D. V—t图象下凸
答案:C. V—t图象上凸
5. 化学试题:
题目:硝酸银试液在阳光照射下变黑,是由于:
A. 光还原了银离子
B. 光氧化了银
C. 硝酸在光下分解
D. 光加速了银溶液的腐蚀
答案:A. 光还原了银离子
请注意,以上所示的题目及答案仅为示范,实际2006年高考试题及答案请以相关权威机构发布的正式版本为准。
2006年普通高等学校招生全国统一考试(湖北卷)语文参考答案一、(15分,每小题3分)1.D 2.B 3.A 4.C 5.B二、(12分,每小题3分)6.C 7.D 8.D 9.B三、(9分,每小题3分)10.C 11.A 12.C四、(24分)13.(10分)(1)在朝廷当官,不知道有战场上的危急;依仗有俸禄的收入,不懂得有耕作的劳苦。
(4分)(2)有了小的过失,又不忍督责鞭笞,他们之所以享有清雅的名声,是因为(朝廷)掩饰他们的过错。
(4分)(3)吃饭是老百姓最大的事,老百姓没有吃的就无法生存了。
三天不吃粮食,父亲和儿子就不能保全。
(2分)14.(8分)(1)上一首用“水悠悠”象征离别的惆怅和友情的悠长;下一首借“宫前水”的不断流淌来抒发对人生、历史以及社会的感慨。
(2)这首诗将友情、世情等浓缩为“古今情”,融入由“绿暗”、“红稀”、“暮云”、“宫前水”等意象组成的一幅感伤画面之中,形成了融情于景的艺术特色。
15.(6分)(1)变形记(2)沈从文(3)①誓拔五岳掩赤城②空中闻天鸡③水光接天④凌万顷之茫然五、(18分)16.(4分)①期盼回家和回家后亲切温馨的感受。
②生命(动物与动物、人与动物)之间和谐相处或亲密交流的感受。
17.(4分)①羊群带回了阿尔卑斯山的生机。
②羊群归家给人们与动物带来了喜悦与欢欣。
18.(4分)①表现狗的忠诚(或忠于职守)。
②从动物之间的亲密关系写道动物与家园的亲密关系,最后以狗作代表写道动物与人的关系,使文章的内涵逐步深化。
③最后写狗与同伴谈论山里的事情,与文章开头形成呼应。
19.(6分)①白描(或细节描写)。
描写羊群归家后的欢乐时写到了大孔雀、母鸡、老公羊、羊羔等,作者都只抓住描写对象的主要细部特征简笔勾勒,使羊群归家的群像得以简洁而传神的表现。
②拟人化的描写。
本文把羊、狗、鸡等都人格化了,如写羊儿回家后,大孔雀高兴地用惊人的号筒般的鸣叫迎接羊儿的归来,母鸡们兴奋地谈着耍玩一整夜。
2012届高三年级第二次月考数学试题(文科)(考试范围:集合与简易逻辑、不等式(含绝对值不等式)、函数、导数、三角函数及解三角形、数列、平面向量、立体几何、直线和圆)本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷l 至2页,第Ⅱ卷3至5页,共150分。
考试时间120分钟。
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和座位号填写在答题卡上。
2.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:球的表面积、体积公式24S πR =,343V πR =,其中R 为球的半径.第Ⅰ卷 (选择题60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合}21|{},|{<<=<=x x B a x x A 且R =B C A R ,则实数a 的取值范围是( ) A .1≤aB .1<aC .2≥aD .2>a2.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23- D .2-3.设平面向量(1,2),(1,)a b m ==-,若//a b ,则实数m 的值为( )A .1-B .2-C .1D .24.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是( )A .①②B .①③C .③④D .②④5.已知x ,y 满足条件5003x y x y x -+≥⎧⎪≥⎨⎪≤⎩,+,,则z=13y x -+的最大值 ( )A .3B .76 C .13D .-236.现有四个函数:①x x y sin ⋅= ②x x y cos ⋅= ③x x y cos ⋅= ④x x y 2⋅=的图象(部分)如下,则按照从左到右图像对应的函数序号安排正确的一组是 ( ) A .①④③② B .④①②③ C .①④②③. D .③④②①7.已知f (x )=(3)4,1log ,1a x a x x x a--≥⎧⎨⎩ 是(-∞,+∞)上的增函数,那么a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .( 35,3) D .(1,3)8.已知三条不重合的直线m 、n 、l 与两个不重合的平面α、β,有下列命题:[ ] ①若m ∥n ,n ⊂α,则m ∥α;②若l ⊥α,m ⊥β且l ∥m ,则α∥β;③若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;④若α⊥β,α∩β=m ,n ⊂β,n ⊥m ,则n ⊥α.其中正确的命题个数是 ( ) A .1 B .2 C .3 D .49.三棱锥P-ABC 的三条侧棱PA 、PB 、PC 两两互相垂直,且长度分别为3、4、5,则三棱锥P-ABC 外接球的表面积是 ( )A. B. C .50πD .200π10.若点P在曲线上移动,经过点P 的切线的倾斜角为,x则角的取值范围是( )A .B .C .D .11.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )A .4B .5C .1D .12.不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( )A .(,1][4,)-∞-+∞B .(,2][5,)-∞-+∞C .[1,2]D .(,1][2,)-∞+∞第Ⅱ卷(非选择题90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知数列1-,1a ,2a ,4-成等差数列,1-,1b ,2b ,3b ,4-成等比数列,则212b a a -的值为14.若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相离,则m 的取值范围是 .15.在四边形ABCD 中,AB =DC =(1,1),11B A B C B A B C B D+=,则四边形ABCD 的面积是16.下面四个命题:①函数sin ||y x =的最小正周期为π;②在△ABC 中,若0>⋅,则△ABC 一定是钝角三角形; ③函数2log (2)(01)a y x a a =+->≠且的图象必经过点(3,2);④cos sin y x x =-的图象向左平移4π个单位,所得图象关于y 轴对称; ⑤若命题“2,0x R x x a ∃∈++<”是假命题,则实数a 的取值范围为1[,)4+∞;其中所有正确命题的序号是 。
湖北省高中名校联盟2025届高三第二次联合测评语文试卷命题单位:湖北省武昌实验中学语文备课组审题单位:圆创教育教研中心宜昌市第一中学本试卷共8页,23题。
满分150分。
考试用时150分钟。
考试时间:2024年11月7日上午9:00-11:30★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡-并上交。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:当我们在这里谈论生态文学的时候,首先要清楚地认识到,生态文学同传统的文学有很大区别,更是与传统文学中那种几乎是以人为中心而展开的有一定局限性的文学表达有着质地的不同。
中国很早就有“天人合一”的哲学思想,也有像《山海经》这样涉及自然的神话记录、有像《徐霞客游记》这样有关山川河流人文风物的考察记等,但都与如今的生态文学伦理主张和目标有很大的区别。
生态文学,应当是出于人类的认识感受,在全球视野下仔细认真地探求地球生命如何相互依存、共生并长的途径,实现共同长远和谐发展目标的新的未来的文学。
这种生态文学,是关乎地球平衡运行和地球物种整体命运的文学。
只有在这样的视野下,方能够感受到她的魅力和瑰丽的身姿。
诚然,中国现今的生态文学现状,似乎还更多处于呼唤人们树立与自然共生、收敛一己物质欲望、切实保护生态环境的阶段,偏向于现场直观传输,还缺乏更加深远精湛的思考表达。
在我看来,生态文学应当是人类在哲学认识论上的修正改变,是人类跳出自身中心藩篱,主动调整已有成法,融合大自然法则的新的伦理建设和行动出发。
湖北省高中名校联盟2024届高三第二次联合测评语文试卷一、现代文阅读( 35 分)(一)现代文阅读I (本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:近日,中国“普洱景迈山古茶林文化景观”项目在联合国教科文组织第45届世界遗产委员会会议上通过审议,列入《世界遗产名录》。
这是中国第57项世界遗产,填补了世界三大非酒精饮品(茶、咖啡、可可)中没有“茶”主题世界文化遗产的空白。
“普洱景迈山古茶林文化景观”是当前全球唯一的“茶”主题世界遗产,包括5片完整的古茶林,集中连片面积达1.8万亩。
古茶林中有9个传统村落,居民5000余人。
当地先民历经千年保护与发展创造了林茶共生、人地和谐的古茶林文化景观。
“普洱景迈山古茶林文化景观”的申遗成功,也将云南古茶园成功带入大众视野。
云南是世界茶树发源地,自古以来就有种茶、制茶的传统,拥有当今世界上绝无仅有的连片古茶园。
在唐代以前,云南南部各民族便在森林中栽种茶树,形成古老的森林茶园,这种在生产生活实践中共同创造的生态智慧,具有数百年乃至上千年的悠久历史,堪称人与自然和谐共生的典范。
作为“云南普洱古茶园与茶文化系统”重要组成部分的景迈山,地处云南省普洱市澜沧拉祜族自治县,是著名的普洱茶产地。
景迈古茶园至今保存有规模较大的古茶林,茶园里古木参天,数百岁的古茶树依然郁郁葱葱。
在景迈山世居的布朗族、傣族、拉祜族、哈尼族、汉族等兄弟民族,在成百上千年的时间里载培、管理大叶茶树,探索出了合理利用森林生态系统的林下种植技术,呈现出“远看是森林,近看是茶园”的独特景观。
几乎不使用任何化肥和农药,靠枯枝落叶的自然分解提供养分,各民族对古茶园恰到好处的管理和维护,使古茶园不仅拥有森林的外观,也澎湃着森林的脉搏。
民族生态学研究显示,景迈山古茶园中的植物物种数是现代集约化新茶园的4倍之多,生物多样性指数也远高于现代单作茶园。
一座座古茶园是一个个可持续的生态系统,以布朗族和傣族为主的景迈山各族群众因地制宜利用土地、布局村落,既保护了生物多样性,又为各民族带来稳定可观的经济收入,体现了他们合理利用自然资源的共通智慧。
2006年普通高等学校招生全国统一考试语文(湖北卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至8页,共8页。
全卷共150分。
考试用时150分钟。
第Ⅰ卷(选择题共36分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题纸上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3.考试结束后,监考人员将本试题卷和答题卡一并收回。
一、(15分,每小题3分)1.下列词语中加点的字,读音全都不相同的一组是A.晨.曦妊娠.赈.灾海市蜃.楼振.奋人心B.凋.谢惆.怅碉.堡风流倜.傥稠.人广众C.飞镖.漂.白剽.窃膘.肥体壮虚无缥.缈D.湍.急瑞.雪喘.息不揣.冒昧惴.惴不安2.下列各组词语中,没有错字的一组是A.杂糅黯然失色不径而走既往不咎B.熟稔戛然而止偃旗息鼓待价而沽C.糟践不落窠臼沤心沥血变本加厉D.荣膺为虎作伥豆蔻年华直接了当3.下列各句中,加点成语使用不恰当的一句是A.在学校举行的元旦文艺晚会上,我们班的女生自编自演了一个话剧,两位同学将剧中人物演得绘声绘色....,博得了观众的热流掌声。
B.随着两个儿子的出世,家庭状况更是捉襟见肘....,她不得不去打工赚钱贴补家用,可她一个没有文化的农村妇女,挣的钱少得可怜。
C.他搜集了许多经济学方面的图书来看,仿佛走进了令人应接不暇....的名胜区,每跨一步总要点头叫绝,赞叹地说“平生初见”。
D.这些人垂头丧气,连眼皮也不敢抬,个个噤若寒蝉....,都挤到角落去找遮掩的坐位,正襟危坐,就像待审的犯人。
4.下列各句中,没有语病的一句是A.对调整工资、发放奖金、提高职工的福利待遇等问题,文章从理论上和政策上作了详细的规定和深刻的说明,具有很强的指导意义和可操作法。
B.艾滋病有性传播、血液传播、母婴传播等三大传播途径,我们需要采取紧急行动制止它的传播,否则不采取紧急行动,将会迅速蔓延,给人类健康带来巨大的威胁。
宜昌市2006届高三年级第二次调研试题文科数学试卷考试时间:2006年3月8日下午14:30—16:30一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的4个选项中,只有一项是符合题目要求的) 1.已知全集I ={x │x =m 1,m ∈N*},A ={x │x =n 21,n ∈ N*},B={x │x =n 41,n ∈ N*},那么(A )A B =φ (B )A C I B =φ (C )A B C I =φ (D )A C I B C I =φ2、的是,则:条件:条件q p x q x p ⌝⌝-<>2,1( )(A )充分但不必要条件 (B )必要但不充分条件 (C )充分且必要条件 (D )既不充分也不必要条件3、设,cos ,325m =<<θπθπ则2sin θ=(A )-21m+ (B )-21m - (C )21m +(D )21m -4、函数y=2x +1(-1≤x <0)的反函数是(A )y=1+log 2x (x >0) (B )y=-1+log 2x (x >0)(C )y=1+log 2x (1≤x <2) (D )y=-1+log 2x(1≤x <2) 5、已知nxx )213(32-的展开式中含有常数项,则正整数n 的可能值是(A )3 (B )4 (C )5(D )66、在坐标平面上,不等式组⎩⎨⎧+≤-≥11||2x y x y 所表示的平面区域的面积为(A )22 (B )38(C )322(D )2 7、已知在等差数列{n a }中,,4,1201-==d a 若)2(≥≤n a S n n ,则n 的最小值为(A )60 (B )62 (C )70 (D )72 8、把函数)32cos(π+=x y 的图象沿向量a 平移后得到函数32cos +=x y 的图象,则向量a是(A ))3,3(--π(B ))3,6(π(C ))3,12(π (D ))3,6(-π9、给出下列四个命题:①若直线l ⊥平面α,l //平面β,则α⊥β;②各侧面都是正方形的棱柱一定是正棱柱;③一个二面角的两个半平面所在平面分别垂直于另一个二面角的两个半平面所在平面,则这两个二面角的平面角互为补角;④过空间任意一点一定可以作一个和两个异面直线都平行的平面。
其中正确的命题的个数有(A )1 (B )2 (C )3 (D )410、已知向量))(sin 2,cos 2(),1,1(),1,1(R c b a ∈=-==ααα,实数m ,n 满足 22)3(,n m n m +-=+则的最大值为(A )2 (B )3(C )4 (D )16EDA BC二、填空题tx (本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11、某校对全校男女学生共1600名进行健康调查,选用分层抽样法抽取一个容量为200的样本。
已知女生比男生少抽了10人,则该校的女生人数应是________人.12、如图1-15,在A B C ∆中,BC AC CBA CAB 、,30.=∠=∠边上的高分别为BD 、AE ,则以A 、B 为焦点,且过D 、E 的椭圆与双曲线的离心率的倒数和是____________. 13、给出下面四个命题:① 若,为非零向量,则222)(⋅=⋅; ② 若,为一平面内两个非零向量,则b a =+⊥的充要条件; ③ D 为ABC ∆所在平面内一点,且满足AB AD 2-=,则1:3:=∆∆ABC DBC S S ; ④ 在空间四边形ABCD 中,F E ,分别是DABC ,的中点,则)(21+=。
其中正确命题序号为__________. 14、设数列{}n a ,))(2(log 1++∈+=N n n a n n ,定义使k a a a a ⋅⋅⋅321(k n ≤,k )+∈N 为整数的k 为美好数,则在区间[]2006,1内的所有美好数之和S=________. 15、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得18分,答错得-18分;选乙题答对得6分,答错得-6分.若4位同学的总分为0,则这4位同学不同得分情况的种数是_________________________三、解答题(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16 、(本题满分12分)在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+和321+=b c ,求A ∠和B tan 的值 17、(本小题满分12分)口袋里装有红色和白色共36个不同的球,且红色球少于白色球.从袋子中取出2个球,若是同色的概率为21,求: (1) 袋中红色、白色球各是多少?·(2) 从袋中任取3个小球,至少有一个白色球的概率为多少?18、(本小题满分12分)已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且1,60AA AD DAB =︒=∠,F 为棱BB 1的中点,M 为线段AC 1的中点.(1)求证:直线MF//平面ABCD ; (2)求证:平面AFC 1⊥平面ACC 1A 1;(3)求平面AFC 1与平面ABCD 所成二面角的大小.19、(本小题满分12分)设函数.10,3231)(223<<+-+-=a b x a ax x x f (1)求函数)(x f 的单调区间、极值。
(2)若当[]2,1++∈a a x 时,恒有a x f ≤')(,试确定a 的取值范围。
20、(本小题满分13分)已知)()(33221+∈+⋅⋅⋅⋅⋅⋅+++=N n x a x a x a x a x f n n ,满足2)1(n f =。
(1)、求数列{}n a 的通项公式,并指出数列为何数列: (2)3)21(45<<f 求证: (n>2,+∈N n )21、(本小题满分14分)如图,三条直线a 、b 、c 两两平行,直线a 、b 间的距离为p ,直线b 、c间的距离为2p,A 、B 为直线a 上两定点,且|AB |=2p ,MN 是在直线b 上滑动的长度为2p 的线段.(1)求△AMN 的外心C 的轨迹E ;(2)接上问,当△AMN 的外心C 在E 上什么位置时,d +|BC |最小,最小值是多少?(其中d 是外心C 到直线c 的距离).文科数学试卷参考答案一、选择题B A ADCBBBAD 二、填空题11、760 ;12、3;13、②③④;14、2026 15、44 三、解答题16、解法:由余弦定理212cos 222=-+=bc a c b A , (2分) 因此,︒=∠60A 在△ABC 中,∠C=180°-∠A -∠B=120°-∠B. (6分)由已知条件,应用正弦定理BB BC b c sin )120sin(sin sin 321-︒===+ (8分) ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B (10分)解得,2cot =B 从而.21tan =B (12分) 17、(1)令白色球为x 个,则依题意得223622363612x x C C C C -+=, (3分)所以227218350x x -+⨯=得x=15或x=21,又红色球少于白色球,所以x=21.所以红色球为15个,白色球为21个. ( 6分)(2)设从袋中任取3个小球,至少有一个白色球的事件为A ,均为红色球的事件为B ,则P (A )=1-P (B )=3153361C C - =191204 (12分)18、解法:(Ⅰ)延长C 1F 交CB 的延长线于点N ,连结AN.因为F 是BB 1的中点,所以F 为C 1N 的中点,B 为CN 的中点. 又M 是线段AC 1的中点,故MF//AN..,ABCD AN ABCD MF 平面平面又⊂⊄ .//ABCD MF 平面∴( 4分)(Ⅱ)证明:连BD ,由直四棱柱ABCD —A 1B 1C 1D 1可知:⊥A A 1平面ABCD,又∵BD ⊂平面ABCD ,.1BD A A ⊥∴四边形ABCD 为菱形,.BD AC ⊥∴ ,,,1111A ACC A A AC A A A AC 平面又⊂=⋂ .11A ACC BD 平面⊥∴在四边形DANB 中,DA ∥BN 且DA=BN ,所以四边形DANB 为平行四边形. 故NA ∥BD ,⊥∴NA 平面ACC 1A 1. 1AFC NA 平面又⊂平面平面⊥∴1AFC ACC 1A 1. (8分)(Ⅲ)由(Ⅱ)知BD ⊥ACC 1A 1,又AC 1⊂ ACC 1A 1, ∴BD ⊥AC 1,∵BD//NA ,∴AC 1⊥NA. 又由BD ⊥AC 可知NA ⊥AC ,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角.在Rt △C 1AC 中,31tan 11==CA C C AC C , 故∠C 1AC=30°.∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150° (12分) (说明:求对一个角即给满分)解法二:设AC ⋂BD=O ,因为M 、O 分别为C 1A 、CA 的中点,所以,MO//C 1C ,又由直四棱柱知C 1C ⊥平面ABCD ,所以,MO ⊥平面ABCD.在棱形ABCD 中,BD ⊥AC ,所以,OB 、OC 、OM 两两垂直.故可以O 为原点, OB 、OC 、OM 所在直线分别为x 轴、y 轴、z 轴如图建立空间直角坐标系,若设|OB|=1,则B (1,0,0),B 1(1,0,2),A (0,3-,0), C (0,3,0),C 1(0,3,2). (2分)(I )由F 、M 分别为B 1B 、C 1A 的中点可知: F (1,0,1),M (0,0,1),所以=(1,0,0)=. 又MF 与OB 不共线,所以,MF ∥OB.⊄MF 平面ABCD ,OB ⊂平面ABCD , MF ∴∥平面ABCD. (4分)(III )=(1,0,0)为平面ACC 1A 1的法向量.设),,(z y x 为平面AFC 1的一个法向量,则,⊥⊥由)0,0,1(),1,3,1(==, 得:⎩⎨⎧==++.0,03x z y x令,1=y 得3-=z ,此时,)3,1,0(-.由于0)0,0,1()3,1,0(=⋅-=⋅OB n ,所以,平面AFC 1⊥平面ACC 1A 1. (8分)(III ))1,0,0(=为平面ABCD 的法向量,设平面AFC 1与平面ABCD 所成二面角的大小为θ,则.23|213|||||,||,cos ||cos |=⨯-=><=n OM OM θ 所以θ=30°或150°.即平面AFC 1与平面ABCD 所成二面角的大小为30°或150° (12分)19、解:(1)2234)(a ax x x f -+-=' (1分)当0)(>'x f 时,得a x a 3<<;当0)(<'x f 时,得a x a x 3><或 (3分) 则)(x f 的单调递增区间为(a ,3a );)(x f 的单调递减区间为),(a -∞和),3(+∞a (4分)当x=a 时,)(x f 的极小值为b a +-334;当x=3a 时,)(x f 的极大值为b (6分) (2)由,)(a x f ≤'得a a ax x a ≤-+-≤-2234 (7分) ∴[]上为减函数。