高三数学一轮基础巩固 第9章 第4节 直线与圆、圆与圆的位置关系(含解析)北师大版
- 格式:doc
- 大小:180.51 KB
- 文档页数:8
2018版高考数学一轮复习第九章解析几何9.4 直线与圆、圆与圆的位置关系理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第九章解析几何9.4 直线与圆、圆与圆的位置关系理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第九章解析几何9.4 直线与圆、圆与圆的位置关系理的全部内容。
第九章解析几何 9。
4 直线与圆、圆与圆的位置关系理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:错误!错误!2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r错误!(r1>0),圆O2:(x-a2)2+(y-b2)2=r错误!(r2〉0)。
方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两圆方程组成方程组的解的情况外离d>r1+r2无解外切d=r1+r2一组实数解相交|r1-r2|<d〈r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d<|r1-r2|(r1≠r2)无解【知识拓展】1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2。
(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2。
(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2。
第四节 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)二、常用结论考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( )A .相交B .相切C .相离D .不确定考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0(2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D. 2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系[典例] 已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[变透练清]1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[课时跟踪检测]1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( )A .±5B .±5C .3D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6B .-π3或π3C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24C .±2D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________.9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0.(1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上.(1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.。
第4节 直线与圆、圆与圆的位置关系最新考纲 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.知 识 梳 理1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.方法位置关系几何法 代数法 相交 d <r Δ>0 相切 d =r Δ=0 相离d >rΔ<02.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:位置关系 相离 外切 相交 内切 内含 几何特征 d >R +rd =R +rR -r <d <R +r d =R -rd <R -r代数特征 无实数解 一组实数解两组实数解一组实数解 无实数解公切线条数4321[微点提醒]圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( )解析 (1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含. 答案 (1)× (2)× (3)× (4)√2.(必修2P132A5改编)直线l :3x -y -6=0与圆x 2+y 2-2x -4y =0相交于A ,B 两点,则|AB |=________.解析 由x 2+y 2-2x -4y =0得(x -1)2+(y -2)2=5,所以该圆的圆心坐标为(1,2),半径r = 5.又圆心(1,2)到直线3x -y -6=0的距离为d =|3-2-6|9+1=102,由⎝ ⎛⎭⎪⎫|AB |22=r 2-d 2,得|AB |2=10,即|AB |=10. 答案103.(必修2P133A9改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线方程x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以,所求弦长为2 2. 答案 2 24.(2019·大连双基测试)已知直线y =mx 与圆x 2+y 2-4x +2=0相切,则m 值为( )A.±3B.±33 C.±32 D.±1解析由x2+y2-4x+2=0得圆的标准方程为(x-2)2+y2=2,所以该圆的圆心坐标为(2,0),半径r=2,又直线y=mx与圆x2+y2-4x+2=0相切,则圆心到直线的距离d=|2m|m2+1=2,解得m=±1.答案 D5.(2019·西安八校联考)若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l斜率的取值范围为()A.(-3,3)B.[-3,3]C.(-33,33) D.⎣⎢⎡⎦⎥⎤-33,33解析数形结合可知,直线l的斜率存在,设直线l的方程为y=k(x-3),则圆心(1,0)与直线y=k(x-3)的距离应小于等于半径1,即|2k|1+k2≤1,解得-33≤k≤33.答案 D6.(2019·太原模拟)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11解析圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9.答案 C考点一直线与圆的位置关系【例1】(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切 B.相交C.相离D.不确定(2)(2019·湖南六校联考)已知⊙O:x2+y2=1,点A(0,-2),B(a,2),从点A观察点B,要使视线不被⊙O 挡住,则实数a 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-∞,-433)∪(433,+∞)C.(-∞,-233)∪(233,+∞)D.(-433,433)解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b2=1a 2+b2<1,故直线与圆O 相交.(2)易知点B 在直线y =2上,过点A (0,-2)作圆的切线. 设切线的斜率为k ,则切线方程为y =kx -2, 即kx -y -2=0. 由d =|0-0-2|1+k2=1,得k =±3.∴切线方程为y =±3x -2,和直线y =2的交点坐标分别为(-433,2),(433,2).故要使视线不被⊙O 挡住,则实数a 的取值范围是(-∞,-433)∪(433,+∞). 答案 (1)B (2)B规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.【训练1】 (1)“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件(2)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A.相离 B.相切C.相交D.以上都有可能解析(1)若直线y=x+4与圆(x-a)2+(y-3)2=8相切,则有|a-3+4|2=22,即|a+1|=4,所以a=3或-5.但当a=3时,直线y=x+4与圆(x-a)2+(y-3)2=8一定相切,故“a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的充分不必要条件.(2)直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x2+y2-2x+4y=0内,直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交.答案(1)A(2)C考点二圆的切线、弦长问题多维探究角度1圆的弦长问题【例2-1】(2018·全国Ⅰ卷)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析由题意知圆的方程为x2+(y+1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y=x+1的距离d=|1+1|2=2,所以|AB|=222-(2)2=2 2.答案2 2角度2圆的切线问题【例2-2】过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14解析圆(x-1)2+y2=1的圆心为C(1,0),半径为1,以|PC|=(1-1)2+(-2-0)2=2为直径的圆的方程为(x-1)2+(y+1)2=1,将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-12.答案 B角度3与弦长有关的最值和范围问题【例2-3】(2018·全国Ⅲ卷)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[2,32]D.[22,32]解析圆心(2,0)到直线的距离d=|2+0+2|2=22,所以点P到直线的距离d1∈[2,32].根据直线的方程可知A,B两点的坐标分别为(-2,0),(0,-2),所以|AB|=22,所以△ABP的面积S=12|AB|d1=2d1.因为d1∈[2,32],所以S∈[2,6],即△ABP面积的取值范围是[2,6].答案 A规律方法 1.弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.2.过圆外一点(x0,y0)的圆的切线方程的求法:当斜率存在时,设为k,则切线方程为y-y0=k(x -x0),即kx-y+y0-kx0=0,由圆心到直线的距离等于半径,即可得出切线方程;当斜率不存在时,要加以验证.【训练2】(1)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线x-ay+1=0平行,则a=________.(2)(2019·合肥测试)过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为________.解析(1)因为点P在圆(x-1)2+y2=5上,所以过点P(2,2)与圆(x-1)2+y2=5相切的切线方程为(2-1)(x-1)+2y=5,即x+2y-6=0,由直线x+2y-6=0与直线x-ay+1=0平行,得-a =2,a=-2.(2)设P(3,1),圆心C(2,2),则|PC|=2,半径r=2.由题意知最短的弦过P(3,1)且与PC垂直,所以最短弦长为222-(2)2=2 2.答案 (1)-2 (2)2 2 考点三 圆与圆的位置关系【例3】 (2019·郑州调研)已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m -11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0.故两圆的公共弦的长为2(11)2-(|4+3×3-23|42+32)2=27.规律方法 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.【训练3】 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切B.相交C.外切D.相离(2)(2019·安阳模拟)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过点P (a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,14 B.⎝ ⎛⎦⎥⎤0,14 C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎦⎥⎤-∞,14 解析 (1)由题意得圆M 的标准方程为x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,圆M ,圆N 的圆心距|MN |=2小于两圆半径之和1+2,两圆半径之差1,故两圆相交.(2)将圆C 1与圆C 2的方程相减得公共弦所在直线的方程为kx +(k -2)y -4=0,即k (x +y )-(2y +4)=0,由⎩⎪⎨⎪⎧2y +4=0,x +y =0得⎩⎪⎨⎪⎧x =2,y =-2,即P (2,-2),因此2m +2n -2=0,∴m +n =1,则mn ≤⎝⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,∴mn 的取值范围是⎝ ⎛⎦⎥⎤-∞,14.答案 (1)B (2)D[思维升华]1.解决直线与圆的位置关系的问题,要熟练运用数形结合的思想,既要充分运用平面几何中有关圆的性质,又要结合待定系数法运用直线方程中的基本度量关系,养成勤画图的良好习惯.2.求两圆的公共弦所在的直线方程,只需把两个圆的方程相减即可.而在求两圆的公共弦长时,则应注意数形结合思想方法的灵活运用. [易错防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求直线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.基础巩固题组 (建议用时:40分钟)一、选择题1.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0解析∵过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x-1)2+y2=r2上,∵圆心与切点连线的斜率k=1-03-1=12,∴切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.答案 B2.(2019·佛山调研)已知圆O1的方程为x2+y2=1,圆O2的方程为(x+a)2+y2=4,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A.{1,-1,3,-3}B.{5,-5,3,-3}C.{1,-1}D.{3,-3}解析由题意得两圆的圆心距d=|a|=2+1=3或d=|a|=2-1=1,解得a=3或a=-3或a=1或a=-1,所以a的所有取值构成的集合是{1,-1,3,-3}.答案 A3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个解析圆的方程化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线距离d=|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.答案 C4.(2019·湖南十四校二联)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A.6或- 6B.5或- 5C. 6D. 5解析因为直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,所以O到直线AB的距离为1,由点到直线的距离公式可得|a|=12+(-2)2 1,所以a=±5.答案 B5.(2019·武汉二模)直线l:kx-y+k+1=0与圆x2+y2=8交于A,B两点,且|AB|=42,过点A,B分别作l的垂线与y轴交于点M,N,是|MN|等于()A.2 2B.4C.4 2D.8解析|AB|=42为圆的直径,所以直线AB过圆心(0,0),所以k=-1,则直线l的方程为y=-x,所以两条垂线的斜率均为1,倾斜角45°,结合图象易知|MN|=2×2×22=8.答案 D二、填空题6.若A为圆C1:x2+y2=1上的动点,B为圆C2:(x-3)2+(y+4)2=4上的动点,则线段AB长度的最大值是________.解析圆C1:x2+y2=1的圆心为C1(0,0),半径r1=1,圆C2:(x-3)2+(y+4)2=4的圆心为C2(3,-4),半径r2=2,∴|C1C2|=5.又A为圆C1上的动点,B为圆C2上的动点,∴线段AB长度的最大值是|C1C2|+r1+r2=5+1+2=8.答案87.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为________________.解析由题意知圆心C(-1,0),其到已知圆圆心(2,3)的距离d=32,由两圆相外切可得R+22=d=32,即圆C的半径R=2,故圆C的标准方程为(x+1)2+y2=2.答案(x+1)2+y2=28.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.解析由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,则圆心C(2,1)满足直线方程x+ay-1=0,所以2+a-1=0,解得a=-1,所以A点坐标为(-4,-1).从而|AC|2=36+4=40.又r=2,所以|AB|2=40-4=36.即|AB|=6.答案 6三、解答题9.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.(1)求圆C的方程;(2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.解(1)设圆心的坐标为C(a,-2a),则(a-2)2+(-2a+1)2=|a-2a-1|2.化简,得a2-2a+1=0,解得a=1.所以C点坐标为(1,-2),半径r=|AC|=(1-2)2+(-2+1)2= 2.故圆C的方程为(x-1)2+(y+2)2=2.(2)①当直线l的斜率不存在时,直线l的方程为x=0,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为y=kx,由题意得|k+2|1+k2=1,解得k=-34,则直线l的方程为y=-3 4x.综上所述,直线l的方程为x=0或3x+4y=0.10.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k 的取值范围;(2)若OM →·ON→=12,其中O 为坐标原点,求|MN |. 解 (1)易知圆心坐标为(2,3),半径r =1,由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12, 解得k =1,所以l 的方程为y =x +1.故圆心C 在l 上,所以|MN |=2.能力提升题组(建议用时:20分钟)11.(2019·湖北四地七校联考)若圆O 1:x 2+y 2=5与圆O 2:(x +m )2+y 2=20相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是( )A.3B.4C.2 3D.8解析 连接O 1A ,O 2A ,由于⊙O 1与⊙O 2在点A 处的切线互相垂直,因此O 1A ⊥O 2A ,所以|O 1O 2|2=|O 1A |2+|O 2A |2,即m 2=5+20=25,设AB 交x 轴于点C .在Rt △O 1AO 2中,sin ∠AO 2O 1=55,∴在Rt △ACO 2中,|AC |=|AO 2|·sin ∠AO 2O 1=25×55=2,∴|AB |=2|AC |=4.答案 B12.(2018·合肥模拟)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A.3x +4y -12=0或4x -3y +9=0B.3x +4y -12=0或x =0C.4x -3y +9=0或x =0D.3x -4y +12=0或4x +3y +9=0解析 当直线l 的斜率不存在时,直线l 的方程为x =0,联立得方程组⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0,解得⎩⎪⎨⎪⎧x =0,y =1-3或⎩⎪⎨⎪⎧x =0,y =1+3,∴|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,∵圆x 2+y 2-2x -2y -2=0即(x -1)2+(y -1)2=4,∴圆心为C (1,1),圆的半径r=2,易知圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,∵d 2+⎝ ⎛⎭⎪⎫|AB |22=r 2, ∴(k +2)2k 2+1+3=4,解得k =-34,∴直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.答案 B13.(2019·福州模拟)直线ax +by +c =0与圆C :x 2-2x +y 2+4y =0相交于A ,B 两点,且|AB →|=15,则CA →·CB→=________. 解析 圆C :x 2-2x +y 2+4y =0可化为(x -1)2+(y +2)2=5,如图,过C 作CD ⊥AB 于D ,AB =2AD =2AC ·cos ∠CAD ,∴15=2×5×cos ∠CAD ,∴∠CAD =30°,∴∠ACB =120°,则CA →·CB →=5×5×cos 120°=-52.答案 -5214.已知⊙H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,且截x 轴所得线段的长为2.(1)求⊙H 的方程;(2)若存在过点P (a ,0)的直线与⊙H 相交于M ,N 两点,且|PM |=|MN |,求实数a 的取值范围. 解 (1)设⊙H 的方程为(x -m )2+(y -n )2=r 2(r >0),因为⊙H 被直线x -y -1=0,x +y -3=0分成面积相等的四部分,所以圆心H (m ,n )一定是两互相垂直的直线x -y -1=0,x +y -3=0的交点,易得交点坐标为(2,1),所以m =2,n =1.又⊙H 截x 轴所得线段的长为2,所以r 2=12+n 2=2.所以⊙H 的方程为(x -2)2+(y -1)2=2.(2)设N (x 0,y 0),由题意易知点M 是PN 的中点,所以M ⎝ ⎛⎭⎪⎫x 0+a 2,y 02. 因为M ,N 两点均在⊙H 上,所以(x 0-2)2+(y 0-1)2=2,①⎝ ⎛⎭⎪⎫x 0+a 2-22+⎝ ⎛⎭⎪⎫y 02-12=2, 即(x 0+a -4)2+(y 0-2)2=8,②设⊙I :(x +a -4)2+(y -2)2=8,由①②知⊙H 与⊙I :(x +a -4)2+(y -2)2=8有公共点,从而22-2≤|HI |≤22+2, 即2≤(a -2)2+(1-2)2≤32,整理可得2≤a 2-4a +5≤18,解得2-17≤a≤1或3≤a≤2+17,所以实数a的取值范围是[2-17,1]∪[3,2+17].。
【走向高考】2016届高三数学一轮基础巩固 第9章 第4节 直线与圆、圆与圆的位置关系 北师大版一、选择题1.已知直线l 1与圆x 2+y 2+2y =0相切,且与直线l 2:3x +4y -6=0平行,则直线l 1的方程是( )A .3x +4y -1=0B .3x +4y +1=0或3x +4y -9=0C .3x +4y +9=0D .3x +4y -1=0或3x +4y +9=0 [答案] D[解析] 设直线l 1的方程为3x +4y +m =0. ∵直线l 1与圆x 2+y 2+2y =0相切, ∴|-4+m |32+42=1. ∴|m -4|=5.∴m =-1或m =9.∴直线l 1的方程为3x +4y -1=0或3x +4y +9=0.2.(文)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离[答案] B[解析] 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5< 6.且2×1+(-2)-5≠0,因此该直线与圆相交但不过圆心.(理)对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A .相离 B .相切C .相交但直线不过圆心D .相交且直线过圆心 [答案] C[解析] 本题考查直线与圆的位置关系,点到直线的距离公式. 圆心C (0,0)到直线kx -y +1=0的距离d =11+k2≤1< 2.所以直线与圆相交,故选C .3.在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .3 3B .2 3C . 3D .1【答案】 B【解析】 本题考查了直线与圆位置关系处理方法,弦长等知识,如图所示.设AB 的中点为D ,则OD ⊥AB ,由点到直线距离公式得|OD |=|-5|32+42=1.∴AD 2=OA 2-OD 2=4-1=3,∴|AD |=3, ∴弦长|AB |=2 3.4.(2014·湖南高考)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( ) A .21 B .19 C .9 D .-11[答案] C[解析] 本题考查了两圆的位置关系.由条件知C 1:x 2+y 2=1,C 2:(x -3)2+(y -4)2=25-m ,圆心与半径分别为(0,0),(3,4),r 1=1,r 2=25-m ,由两圆外切的性质知,5=1+25-m ,∴m =9.5.过圆x 2+y 2=4外一点P (4,2),作圆的两条切线PA 、PB ,切点分别为A 、B ,则△PAB 的外接圆的方程为( )A .(x -4)2+(y -2)2=1 B .x 2+(y -2)2=4 C .(x +2)2+(y +1)2=5 D .(x -2)2+(y -1)2=5[答案] D[解析] 作图知P 、A 、B 、O 四点在以PO 为直径的圆上,故圆心为(2,1),半径为r =5,圆的方程为(x -2)2+(y -1)2=5.6.在直线y =2x +1上有一点P ,过点P 且垂直于直线4x +3y -3=0的直线与圆x 2+y 2-2x =0有公共点,则点P 的横坐标取值范围是( )A .(-∞,-1)∪(1,+∞)B .(-1,1)C .[-125,-25]D .(-125,-25)[答案] C[解析] 过点P 且垂直于直线4x +3y -3=0的直线的斜率是k =34,设点P (x 0,2x 0+1),其方程是y -2x 0-1=34(x -x 0),由圆心(1,0)到直线的距离小于或等于1可解得.二、填空题7.直线y =x 被圆x 2+(y -2)2=4截得弦长为________. [答案] 2 2[解析] 本题考查直线与圆的知识,画出示意图,构造直角三角形求解. 由C (0,2)及直线y =x 知,CE =22=2,而CO =2,则OE =22-2=2, ∴弦长为2 2.8.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________. [答案] 2 2[解析] 本题考查了直线与圆的位置关系、弦长最值问题、转化与化归思想. 点(3,1)在圆内,要使弦长最短,须圆心C (2,2)与点N (3,1)所在直线与弦垂直,此时|CN |=2,则弦长为24-2=2 2.9.(文)(2014·山东高考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.[答案] (x -2)2+(y -1)2=4[解析] 本题考查圆的标准方程的求法,结合图形.∵圆心在x -2y =0上,设圆心(2b ,b ),由圆与y 轴相切, ∴r =2|b |又截x 轴弦长23,圆心到x 轴距离d =|b | ∴在Rt △CAB 中,r 2=4b 2=b 2+(3)2,∴b 2=1 又圆C 与y 轴正半轴相切. 故b >0,∴b =1.∴方程为(x -2)2+(y -1)2=4.(理)(2014·湖北高考)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.[答案] 2[解析] 本题考查直线与圆的位置关系.依题意,圆心O (0,0)到两直线l 1:y =x +a ,l 2:y =x +b 的距离相等,且每段弧长等于圆周的14,即|a |2=|b |2=1×sin45°=22,得|a |=|b |=1.故a 2+b 2=2.三、解答题10.已知圆C :x 2+y 2+2x -4y +3=0.(1)若不过原点的直线l 与圆C 相切,且在x 轴,y 轴上的截距相等,求直线l 的方程; (2)从圆C 外一点P (x ,y )向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求点P 的轨迹方程.[解析] (1)由圆C :x 2+y 2+2x -4y +3=0, 得圆心坐标C (-1,2),半径r =2, ∵切线在两坐标轴上的截距相等且不为零. 设直线l 的方程为x +y =a , ∵直线l 与圆C 相切, ∴|-1+2-a |2=2, ∴a =-1或a =3.∴所求直线l 的方程为x +y +1=0或x +y -3=0. (2)∵切线PM 与半径CM 垂直,设P (x ,y ), 又∵|PM |2=|PC |2-|CM |2,|PM |=|PO |, ∴(x +1)2+(y -2)2-2=x 2+y 2, ∴2x -4y +3=0,∴所求点P 的轨迹方程为2x -4y +3=0.一、选择题1.设A 为圆(x +1)2+y 2=4上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25 B .(x +1)2+y 2=5 C .x 2+(y +1)2=25 D .(x -1)2+y 2=5[答案] B[解析] 圆心C (-1,0),在Rt △ACP 中,CP =CA 2+AP 2=4+1= 5.设P (x ,y ),则|CP |=5,所以(x +1)2+y 2=5,选B .2.(2014·福建高考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件[答案] A[解析] 圆心O (0,0)到直线l :kx -y +1=0的距离d =11+k2,弦长为|AB |=21-d 2=2|k |1+k2,∴S △OAB =12×|AB |·d =|k |k 2+1=12,∴k =±1,因此当“k =1”时,“S △OAB =12”,故充分性成立.“S △OAB =12”时,k 也有可能为-1,∴必要性不成立,故选A . 二、填空题3.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于________.[答案]254[解析] 本题考查直线和圆的位置关系、点到直线的距离公式以及运算能力. 由题意知切线的斜率存在,设为k ,切线方程为y -2=k (x -1),即kx -y +2-k =0, 由点到直线的距离公式,得|2-k |k 2+1=5,解得k =-12,∴切线方程为-12x -y +52=0,令x =0,y =52,令y =0,x =5,∴三角形面积为S =12×52×5=254.4.圆心在直线x +y =0上,且过圆x 2+y 2-2x +10y -24=0与圆x 2+y 2+2x +2y -8=0的交点的圆的方程为________.[答案] x 2+y 2+6x -6y +8=0[解析] 设圆的方程为x 2+y 2-2x +10y -24+λ(x 2+y 2+2x +2y -8)=0, 即x 2+y 2+λ-λ+1x ++λλ+1y -λ+λ+1=0(λ≠-1),圆心⎝⎛⎭⎪⎫1-λλ+1,-5+λλ+1,∴1-λλ+1-5+λλ+1=0,解得λ=-2.故所求圆的方程为x 2+y 2-2x +10y -24-2(x 2+y 2+2x +2y -8)=0, 即x 2+y 2+6x -6y +8=0. 三、解答题5.已知点P (0,5)及圆C x 2+y 2+4x -12y +24=0.(1)若直线l 过P 且被圆C 截得的线段长为43,求l 的方程; (2)求过P 点的圆C 的弦的中点的轨迹方程. [分析] (1)根据弦长求法,求直线方程中的参数; (2)由垂直关系找等量关系.[解析] (1)解法1:x 2+y 2-4x -12y +24=0可化为(x +2)2+(y-6)2=42,∴圆C 的圆心为C (-2,6),半径为4,如图所示,AB =43,D 是AB 的中点,CD ⊥AB ,AD =23,AC =4,在Rt △ACD 中,可得CD =2.当直线l 斜率存在时,设所求直线的斜率为k ,则直线的方程为y -5=kx ,即kx -y +5=0.由点C 到直线AB 的距离公式: |-2k -6+5|k 2+-2=2,得k =34. k =34时,直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0. ∴所求直线的方程为3x -4y +20=0或x =0.解法2:当直线l 斜率存在时,设所求直线的斜率为k ,则直线的方程为y -5=kx ,即y=kx +5,联立直线与圆的方程⎩⎪⎨⎪⎧y =kx +5,x 2+y 2+4x -12y +24=0,消去y ,得(1+k 2)x 2+(4-2k )x -11=0,①设方程①的两根为x 1,x 2,由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=2k -41+k2,x 1x 2=-111+k2, ②由弦长公式得1+k 2|x 1-x 2| =+k2x 1+x 22-4x 1x 2]=43,将②式代入,解得k =34,此时直线方程为3x -4y +20=0.又k 不存在时也满足题意,此时直线方程为x =0. ∴所求直线的方程为x =0或3x -4y +20=0. (2)设过P 点的圆C 的弦的中点为D (x ,y ), 则CD ⊥PD ,即CD →·PD →=0, (x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.6.(2015·徐州月考)已知数列{a n },圆C 1:x 2+y 2-2a n x +2a n +1y -1=0和圆C 2:x 2+y 2+2x +2y -2=0,若圆C 1与圆C 2交于A ,B 两点且这两点平分圆C 2的周长.(1)求证:数列{a n }是等差数列;(2)若a 1=-3,则当圆C 1的半径最小时,求出圆C 1的方程.[解析] (1)证明:由已知,圆C 1的圆心坐标为(a n ,-a n +1),半径为r 1=a 2n +a 2n +1+1, 圆C 2的圆心坐标为(-1,-1),半径为r 2=2.又圆C 1与圆C 2交于A ,B 两点且这两点平分圆C 2的周长,∴|C 1C 2|2+r 22=r 21, ∴(a n +1)2+(-a n +1+1)2+4=a 2n +a 2n +1+1, ∴a n +1-a n =52,∴数列{a n }是等差数列. (2)∵a 1=-3,∴a n =52n -112,则r 1=a 2n +a 2n +1+1=12n-2+n-2+4=1250n2-170n+161.∵n∈N*,∴当n=2时,r1可取得最小值,此时,圆C1的方程是:x2+y2+x+4y-1=0.。