直线与圆的位置关系学案
- 格式:doc
- 大小:202.50 KB
- 文档页数:2
一、学习目标:1、直线与圆的位置关系,圆的切线方程和弦长问题.2、能用直线与圆的位置关系解决简单的实际问题.二、课前导学:知识梳理:1、直线与圆的位置关系直线l:Ax+By+C=0与圆(x-a)2+(y-b)2=r2(r>0)的位置关系:(1)几何方法:圆心(a,b)到直线Ax+By+C=0的距离d=d<r⇔直线与圆相交;d=r⇔直线与圆相切;d>r⇔直线与圆相离..(2)代数方法:由消元得到的一元二次方程的判别式为Δ,则Δ>0⇔直线与圆相交;Δ=0⇔直线与圆相切;Δ<0⇔直线与圆相离.2.圆的切线(1)求过圆上的一点(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,再由垂直关系知切线斜率为-,由点斜式方程可求得切线方程.如果k=0或k不存在,则可直接得切线方程为x=x0或y=y0.(2)求过圆外一点(x0,y0)的圆的切线方程:①几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k.(2)求过圆外一点(x0,y0)的圆的切线方程:①几何方法:设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0.由圆心到直线的距离等于半径,可求得k.②代数方法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到一个关于x的一元二次方程,由Δ=0,可求得k.经过圆上一点的圆的切线有且仅有一条;经过圆外一点P(x0,y0)的圆的切线有两条,因此用点斜式或斜截式直线方程求切线时,若有两解,则所求两条切线方程可得,若仅有一解,则另一条必为x=x0.(3)从圆外一点P(x1,y1)引到圆x2+y2+Dx+Ey+F=0的切线,则点P到切点的切线长d=x21+y21+Dx1+Ey1+F.三、合作探究:探究一 求圆的切线方程过点作圆的切线,首先要判断点的位置,来确定是一条切线还是两条切线.例1 过点A (4,-3)作圆C :(x -3)2+(y -1)2=1的切线,求此切线的方程.【思路点拨】 可用待定系数法求解,但千万不要忽视斜率不存在的情况.即15x +8y -36=0.(2)若切线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4,综上,所求切线方程为15x +8y -36=0或x =4.【名师点评】 此题易丢掉斜率不存在的切线,注意补救.探究二 利用直线与圆的位置关系求圆方程圆所满足的条件是利用直线和圆的位置关系给出的,挖掘其位置关系,找出圆的条件.【解】 ∵(4-3)2+(-3-1)2=17>1, ∴点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k ,则切线方程为y +3=k (x -4).因为圆心C (3,1)到切线的距离等于半径1,所以|3k -1-3-4k |k 2+1=1,解得k =-158. 所以切线方程为y +3=-158(x -4),例2【名师点评】 (1)明确圆心的位置及圆的半径与两平行线间的距离之间的关系是解决本题的关键.(2)要注意应用切线的如下性质:①过切点且垂直于切线的直线必过圆心;②过圆心且垂直于切线的直线必过切点.探究三 圆的弦长及应用例3 已知直线:230l x y +-=与圆22:60C x y x y m ++-+=相交于,P Q 两点,O 为坐标原点,D 为线段PQ 的中点。
4.2.1直线与圆的位置关系基础梳理直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系及判断如下表所示:练习1:直线x+y=0与圆x2+y2=1的位置关系是相交.练习2:(1)直线x+y=0与圆x2+y2=2联立求解知其解为(1,-1)或(-1,1),故直线与圆的位置关系为相交.(2)直线x+y=2与圆x2+y2=2联立求解知其解为(1,1).故直线与圆的位置关系为相切.►思考应用如何求直线被圆所截得的弦长?解析:①应用圆中直角三角形:半径r,圆心到直线的距离d,弦长l具有的关系:r 2=d 2+⎝ ⎛⎭⎪⎫l 22. ②利用弦长公式:设直线l :y =kx +b ,与圆两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l =1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2].自测自评1.直线y =x +1与圆x 2+y 2=1的位置关系是(B )A .相切B .相交但直线不过圆心C .直线过圆心D .相离解析:圆心(0,0)到直线的距离为|1|12+12=12<1,且(0,0)不在直线y =x +1上,故选B .2.下列说法中正确的是(D )A .若直线与圆有两个交点,则直线与圆相切B .与半径垂直的直线与圆相切C .过半径外端的直线与圆相切D .过圆心且与切线垂直的直线过切点解析:A 为相交,B 、C 中的直线有无数条.3.直线y =x -1上的点到圆x 2+y 2+4x -2y +4=0的最近距离为(C )A .2 2B .2-1C .22-1D .14.已知直线x =a(a>0)和圆(x -1)2+y 2=4相切,那么a 的值是(C )A .5B .4C .3D .2解析:∵|a -1|=2,又a>0,∴a =3.5.经过点M(2,1)作圆x 2+y 2=5的切线,则切线方程为(C )A .2x +y -5=0B .2x +y +5=0C .2x +y -5=0D .2x +y +5=0解析:设过点M 的圆的切线上任一点的坐标为(x ,y),∵点M(2,1)在圆x 2+y 2=5上,∴y -1x -2·1-02-0=-1,即2x +y -5=0.题型一 判断直线与圆的位置关系题型二 圆的切线方程题型三 直线与圆相交的问题题型四 直线与圆有关最值问题基础达标1.若PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),则直线PQ 的方程是(B )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =0解析:结合圆的几何性质知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0. 2.已知点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最大值是(D )A .6B .8C .3- 2D .3+ 2解析:直线AB 的方程是x -2 +y 2=1,∣AB ∣=22,则当△ABC 面积最大时,边AB 上的高即点C 到直线AB 的距离d 取最大值.又圆心M (1,0),半径r =1,点M 到直线的距离为322,由圆的几何性质得d 的最大值是322+1,所以△ABC 面积的最大值是12×22·⎝ ⎛⎭⎪⎫322+1=3+ 2. 3.圆x 2+y 2-4x =0在点P (1,3)处的切线方程是(D)A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=0 解析:圆心为C (2,0),则直线CP 的斜率为3-01-2=-3,又切线与直线CP 垂直,故切线斜率为33,由点斜式得切线方程:y -3=33(x -1)即x -3y +2=0.4.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为(A )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=05.已知圆C 的方程为:x 2+y 2=4.(1)求过点P (1,2)且与圆C 相切的直线l 的方程;(2)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若|AB |=23,求直线l 的方程.解析:(1)显然直线l 的斜率存在,设切线方程为y -2=k (x -1), 则由|2-k |k 2+1=2得k 1=0,k 2=-43, 故所求的切线方程为y =2或4x +3y -10=0.(2)当直线l 垂直于x 轴时,此时直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),这两点的距离为23,满足题意;当直线l 不垂直于x 轴时,设其方程为y -2=k (x -1),即kx -y -k +2=0,设圆心到此直线的距离为d ,则23=24-d 2,∴d =1,∴1=|-k +2|k 2+1,∴k =34, 此时直线方程为3x -4y +5=0,综上所述,所求直线方程为3x -4y +5=0或x =1. 巩固提升6. 圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(A )A .(x -2)2+(y -1)2=1B .(x +1)2+(y -2)2=1C .(x +2)2+(y -1)2=1D .(x -1)2+(y +2)2=17.若实数x ,y 满足(x -2)2+y 2=3,那么y x 的最大值为(D) A.12 B.33 C.32D. 3 解析:方程(x -2)2+y 2=3的曲线是以A (2,0)为圆心,以3为半径的圆,实数x ,y 是圆上的点P (x ,y )的坐标,而y x是直线OP 的斜率,由下图可知当点P 在第一象限且OP 为圆的切线时,k 最大.由⎩⎪⎨⎪⎧(x -2)2+y 2=3,y x =k ,得(1+k 2)x 2+1-4x =0, Δ=12-4k 2=0,有k =±3.∴k 最大即y x最大为 3.故选D. 8.直线y =x +b 与曲线y =1-x 2有两个公共点,则b 的取值范围是________.解析:曲线为x 2+y 2=1(y ≥0),表示单位圆的上半圆,由数形结合法,知1≤b < 2.答案:1≤b < 29.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R).(1)求证:直线l 恒过定点;(2)判断直线l 与圆C 的位置关系;(3)当m =0时,求直线l 被圆C 截得的弦长.解析:(1)直线l 的方程可化为(2x +y -7)m +x +y -4=0.∵m ∈R ,∴⎩⎨⎧2x +y -7=0,x +y -4=0,解得⎩⎨⎧x =3,y =1.∴直线l 恒过定点A (3,1).(2)圆心C (1,2),|AC |=(3-1)2+(1-2)2=5<5,∴点A 在圆C 内.从而直线l 与圆C 相交(无论m 为何实数).(3)当m =0时,直线l 的方程为x +y -4=0,圆心C (1,2)到它的距离为d =|1+2-4|12+12=12. ∴此时直线l 被圆C 截得的弦长为2r 2-d 2=225-12=7 2.1.判断直线与圆的位置关系主要有以下两种方法.(1)判断直线l 与圆C 的方程组成的方程组的解.有两解时,相交;有一解时,相切;无解时,相离;(2)判断圆心到直线的距离d 与圆的半径r 的大小关系:当d <r 时,相交;当d =r 时,相切;当d >r 时,相离.2.设切线方程时,若设点斜式一定要注意斜率不存在的情况.3.直线与特殊圆相切,切线的求法.(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x +y 0y =r 2;(2)若点(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上,则切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2;(3)斜率为k且与圆x2+y2=r2相切的切线方程为:y=kx±r1+k2;斜率为k且与圆(x-a)2+(y-b)2=r2相切的切线方程的求法,可以设切线为y =kx+m,然后变成一般式kx-y+m=0,利用圆心到切线的距离等于半径列出方程求m.。
《直线与圆的位置关系》教学设计一、教学内容解析《直线与圆的位置关系》是圆与方程这一章的重要内容,它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用坐标法进一步研究直线与圆的位置关系,体会数形结合思想,初步形成代数法解决几何问题的能力,并逐渐内化为学生的习惯和基本素质,为以后学习直线与圆锥曲线的知识打下基础.本节课内容共一个课时.教学过程中,让学生利用已有的知识,自主探索用坐标法去研究直线与圆的位置关系的方法,体验有关的数学思想,培养学生“用数学”以及合作学习的意识.二、教学目标设置由于本节课在初中已有涉及,教师准备“学案”先让学生提前思考,归纳出直线与圆的三种位置关系以及代数与几何的两种判定方法.通过学生的观察、分析、概括,促使学生把解析几何中用方程研究曲线的思想与初中已掌握的圆的几何性质相结合,从而把传授知识和培养能力融为一体,完成本节课的教学目标.三、学生学情分析在经历直线、圆的方程学习后,学生已经具备了一定的用方程研究几何对象的能力,因此,我在教学中通过提供的丰富的数学学习环境,创设便于观察和思考的情境,给他们提供自主探究的空间,使学生经历完整的数学学习过程,引导学生在已有数学认知结构的基础上,通过积极主动的思维而将新知识内化到自己的认知结构中去.同时为他们施展创造才华搭建一个合理的平台,使他们感知学习数学的快乐.高中数学教学的重要目标之一是提高学生的数学思维能力,通过不同形式的探究活动,让学生亲身经历知识的发生和发展过程,从中领悟解决问题的思想方法,不断提高分析和解决问题的能力,使数学学习变成一种愉快的探究活动,从中体验成功的喜悦,不断增强探究知识的欲望和热情,养成一种良好的思维品质和习惯.根据本节课的教学内容和我所教学生的实际,本节课的教学目标确定为以下三个方面:知识与技能目标:(1)理解直线与圆三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.过程与方法目标:(1)通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.情感、态度与价值观目标:通过对本节课知识的探究活动,加深学生对坐标法解决几何问题的认识,从而领悟其中所蕴涵的数学思想,体验探索中成功的喜悦,激发学习热情,养成良好的学习习惯和品质,培养学生的创新意识和科学精神.四、教学策略分析本节课以问题为载体,学生活动为主线,让学生利用已有的知识,自主探究,培养学生主动学习的习惯.通过建立数学模型、数形结合,提高学生分析问题和解决问题的能力,进一步培养学生的数学素质;通过对直线与圆的位置关系判断方法的探究,进一步提高学生的思维能力和归纳能力.在教学方法的选择上,采用教师组织引导,学生自主探究、动手实践、小组合作交流的学习方式,力求体现教师的设计者、组织者、引导者、合作者的作用,突出学生的主体地位.五、课前准备:直线与圆的位置关系学案(附后)例如图,已知直线直线与圆已知过点,求直线的方程.(课件)六、教学评价设计新课程强调学习过程的评价,因此,在对学生学习结果评价的同时,更应高度重视学生学习过程中的参与度、自信心、合作意识、独立思考的能力及学习的兴趣等.根据本节课的特点,我从以下几个方面进行教学评价:通过问题情境,激发学生的学习兴趣,使学生找到要学的与以学知识之间的联系;问题串的设置可让学生主动参与到学习中来;在判断方法的形成与应用的探究中,师生的相互沟通调动学生的积极性,培养团队精神;知识的生成和问题的解决,培养学生独立思考的能力,激发学生的创新思维;通过练习检测学生对知识的掌握情况;根据学生在课堂小结中的表现和课后作业情况,查缺补漏,以便调控教学.。
第10课时直线和圆的位置关系1.理解直线与圆的位置关系的种类.2.利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离.3.会用方程思想(判别式法)或点到直线的距离来判断直线与圆的位置关系.一艘船在沿直线返回港口的途中,接到台风预报:台风中心位于船正西70千米处,受影响的X围是半径为30千米的圆形区域.已知港口位于台风中心正北40千米处,如果这艘船不改变航线,那么它是否会受到台风影响?这个问题可归结为直线和圆是否有公共点的问题,也是我们这节课研究的对象.问题1:直线与圆的位置关系有三种:、、.判断直线与圆的位置关系有两种方法:(1)代数法:联立直线方程与圆的方程消去x或y整理成一元二次方程后,计算判别式Δ,当判别式Δ<0时,直线和圆;当判别式Δ=0时,直线和圆 ;当判别式Δ>0时,直线和圆.(2)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇒,d=r⇒,d>r⇒.问题2:过一定点是否都存在圆的切线?如果存在,如何求圆的切线方程?(1)若点在圆内,此时直线和圆相交,不存在圆的切线.(2)若点在圆上,则过该点的切线只有,切线方程求法如下:①直接法,先求该点与圆心的连线的直线的斜率,再利用垂直关系求出切线斜率,最后用点斜式求出切线方程.②设元法,先设出切线方程(注意斜率不存在时的讨论),再利用圆心到切线的距离等于半径,求出所设参数.③公式法,设A(x0,y0)是圆(x-a)2+(y-b)2=r2上的一点,则过点A的切线方程为:(x-a)(x0-a)+(y-b)·(y0-b)=r2,特别地,当圆心在原点时,即:A(x0,y0)是圆x2+y2=r2上一点,则过点A的切线方程为:.(3)若点在圆外,则过该点的切线有,切线方程求法如下:首先分析斜率不存在是否满足条件,再分析斜率存在时:设斜率为k,写出切线方程,利用圆心到切线的距离等于半径求出斜率,从而求出切线方程.问题3:计算直线被圆截得的弦长的常用方法(1)几何法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数法:运用韦达定理及两点距离公式有|AB|= .问题4:用直线与圆的知识解决实际问题的步骤(1)仔细审题,理解题意;(2)引入,建立;(3)用直线与圆的知识解决已建立的数学模型;(4)用结果解释.1.直线3x+4y=5与圆x2+y2=16的位置关系是( ).2.自点A(-1,4)作圆(x-2)2+(y-3)2=1的切线,则切线长为().A. B.3 C.3.若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,则k的取值X围是.4.过原点作圆x2+y2-2x-2y+1=0的切线,求切线方程.圆的切线方程已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程.求圆的弦长求直线x-y+2=0被圆x2+y2=4截得的弦长.利用圆的方程求最值已知实数x,y满足(x-2)2+y2=4,求3x2+4y2的最值.求过点P(4,5)的圆(x-2)2+y2=4的切线方程.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.当直线l与圆C相交于A,B两点,且AB=2时,求直线l的方程.已知点P(x,y)在圆x2+(y-1)2=1上运动,则的最大值为;最小值为.1.直线y=x+1与圆x2+y2=1的位置关系是().2.圆C:x2+y2-4x=0在点P(1,)处的切线方程为().A.x+y-2=0B.x+y-4=0C.x-y+4=0D.x-y+2=03.直线x-y+m=0与圆x2+y2-2x-2=0相切,则实数m等于.4.已知圆x2+y2=8内一点P(-1,2),过点P的直线l的倾斜角为135°,直线l交圆于A、B两点,求AB的长.(2012年·卷) 直线y=x被圆x2+(y-2)2=4截得的弦长为.考题变式(我来改编):第10课时直线和圆的位置关系知识体系梳理问题1:相交相切相离(1)相离相切相交(2)相交相切相离问题2:(2)一条③x0x+y0y=r2(3)两条问题3:(2)·|x A-x B|=问题4:(2)数学符号数学模型(4)实际问题基础学习交流1.A∵d==1<4,∴直线与圆的位置关系是相交.2.B因为过圆外一点作圆的切线,两条切线长相等,故切线长为=3,或2-(-1)=3.3.(0,)依题意有<1,解得0<k<,∴k的取值X围是(0,).4.解:已知圆的标准方程为(x-1)2+(y-1)2=1,所以圆与坐标轴相切,所以切线方程为x=0或y=0.重点难点探究探究一: 【解析】(法一)当点M不在坐标轴上时,设切线的斜率为k,半径OM的斜率为k1,∵圆的切线垂直于过切点的半径,∴k=-.∵k1=,∴k=-.∴经过点M的切线方程是y-y0=-(x-x0),整理得x0x+y0y=+.又∵点M(x0,y0)在圆上,∴+=r2.∴所求的切线方程是x0x+y0y=r2.当点M在坐标轴上时,可以验证上面的方程同样适用.(法二)设P(x,y)为所求切线上的任意一点,当P与M不重合时,△OPM为直角三角形,OP为斜边,∴OP2=OM2+MP2,即x2+y2=++(x-x0)2+(y-y0)2,整理得x0x+y0y=r2.可以验证,当P与M重合时同样适合上式,故所求的切线方程是x0x+y0y=r2.(法三)设P(x,y)为所求切线上的任意一点(M与P不重合),当点M不在坐标轴上时,由OM⊥MP得k OM· k MP=-1,即·=-1,整理得x0x+y0y=r2.可以验证,当点M在坐标轴上时,同样适合上式;当P与M重合时亦适合上式.故所求的切线方程是x0x+y0y=r2.【小结】(1)求圆的切线方程一般有三种方法:①设切线斜率,利用判别式,但过程冗长,计算复杂,易出错,通常不采用此法,但该法却是判断直线和曲线相切的通法,以后会经常用到;②设切线斜率,利用圆心到直线的距离等于半径;③设切点,利用过圆心和切点的直线与切线垂直.前两种方法要验证斜率是否存在.(2)过圆外一点可作圆的两条切线.探究二:【解析】(法一)直线x-y+2=0和圆x2+y2=4的公共点坐标就是方程组的解.根据x-y+2=0得y=x+2,代入x2+y2=4得x2+x=0,解得或∴公共点坐标为(-,1)和(0,2),直线x-y+2=0被圆x2+y2=4截得的弦长为=2.(法二)如图,设直线x-y+2=0与圆x2+y2=4交于A,B两点,弦AB的中点为M,则OM⊥AB(O为坐标原点),所以OM==,所以AB=2AM=2=2=2.【小结】在本题的两种方法中,前一种方法是代数法,后一种方法是几何法.在处理与直线和圆相交形成的弦的有关问题时,我们经常用到如下解法:(1)设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代入圆的方程后寻求坐标与弦的关系,然后加以求解;(2)涉及圆的弦长问题时,为了简化运算,常利用垂径定理或半弦长、弦心距及半径构成的直角三角形进行运算.探究三:【解析】由(x-2)2+y2=4得y2=4x-x2,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64,故3x2+4y2在x=8时有最大值64,没有最小值.[问题]在圆的方程中变量x的取值X围是R吗?[结论]将x=8代入圆方程(x-2)2+y2=4,得y2=-32,矛盾,所以上述解法是错误的.因为y2=4-(x-2)2≥0,所以x的取值X围不是R.于是,正确解答如下:由(x-2)2+y2=4得y2=4x-x2≥0,得0≤x≤4,所以3x2+4y2=3x2+4(4x-x2)=-x2+16x=-(x-8)2+64(0≤x≤4),所以当x=y=0时,3x2+4y2取得最小值0;当x=4,y=0时,3x2+4y2取得最大值48.【小结】确定圆的一般方程x2+y2+Dx+Ey+F=0中的变量的取值X围的方法:先配方,再根据平方项非负来确定.圆的方程中变量的X围一般是以隐含条件的形式出现在试题中,因此在解题时注意挖掘出这个隐含条件.思维拓展应用应用一:把点P(4,5)代入(x-2)2+y2=4,得(4-2)2+52=29>4,即点P在圆(x-2)2+y2=4外.设切线斜率为k,则切线方程为y-5=k(x-4),即kx-y+5-4k=0,又圆心坐标为(2,0),r=2,由圆心到切线的距离等于半径,得=2,解得k=.将k代入所设方程得此时切线方程为21x-20y+16=0.当直线的斜率不存在时,还有一条切线是x=4.因此切线方程为x=4或21x-20y+16=0.应用二:将圆C的方程x2+y2-8y+12=0配方后得到标准方程x2+(y-4)2=4,则此圆的圆心为C(0,4),半径为2.(法一)过圆心C作CD⊥AB交AB于点D,则根据题意和圆的性质,得即:+2=4.解得a=-7或a=-1.即直线l的方程为7x-y+14=0或x-y+2=0.(法二)联立方程组消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.Δ=-16(4a+3)>0,即a<-,设此方程的两根分别为x1,x2,由韦达定理知x1+x2=-,x1x2=.由AB=2=,可求出a=-7或a=-1,所以直线l的方程是7x-y+14=0或x-y+2=0.应用三:-因为表示的几何意义是圆上的动点与(2,1)连线的斜率,所以设=k,即kx-y+1-2k=0,当直线与圆相切时,斜率k取最大值或最小值,此时=1,解得k=±.所以的最大值为 ,最小值为-.基础智能检测1.B因为圆心(0,0)到直线x-y+1=0的距离d=<1,故直线与圆相交,又(0,0)不在直线上,所以直线不过圆心.2.D因为点P在圆C上,k PC=-,所以切线的斜率为,所以切线方程为y-=(x-1),即x-y+2=0.3.-3或由题设知圆心坐标为(1,0),因为直线与圆相切,所以d==r=,解得m=或-3.4.解:k AB=-1,直线AB的方程为y-2=-(x+1),即x+y-1=0.故圆心(0,0)到AB的距离d==,从而弦长|AB|=2 =.全新视角拓展2本题考查直线和圆的位置关系以及简单的平面几何知识.(法一)几何法:圆心到直线的距离为d==,圆的半径r=2,所以弦长为l=2×=2=2;(法二)代数法:联立直线和圆的方程消去y可得x2-2x=0,所以直线和圆的两个交点坐标分别为(2,2),(0,0),弦长为=2.。
直线与圆的位置关系【学习目标】1.直线与圆的三种位置关系代数法:由⎩⎪⎨⎪⎧Ax +By +C =0,x -a2+y -b2=r2消元得到一元二次方程的判别式Δ【小试牛刀】1.若直线与圆有公共点,则直线与圆相交.( )2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.( )3.若圆心到直线的距离大于半径,则直线与圆的方程联立消元后得到的一元二次方程无解.( )4.过半径外端的直线与圆相切.( )【经典例题】题型一直线与圆的位置关系 直线与圆位置关系判断的三种方法(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线: (1)有两个公共点; (2)只有一个公共点; (3)没有公共点.[跟踪训练]1已知直线l :x -2y +5=0与圆C :(x -7)2+(y -1)2=36,判断直线l 与圆C 的位置关系.题型二圆的切线方程 (1)点在圆上时求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心连线的斜率k ,再由垂直关系得切线的斜率为-1k,由点斜式可得切线方程.如果斜率为零或不存在,则由图形可直接得切线方程y =y 0或x =x 0. (2)点在圆外时①几何法:设切线方程为y -y 0=k (x -x 0).由圆心到直线的距离等于半径,可求得k ,也就得切线方程. ②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程联立,消去y 后得到关于x 的一元二次方程,由Δ=0求出k ,可得切线方程.提醒:切线的斜率不存在的情况,不要漏解.例2 (1)求过圆x 2+y 2-2x -4y =0上一点P (3,3)的切线方程。
2.5直线与圆的位置关系第1课时【学习目标】1.经历探索直线与圆的位置关系的过程;2.理解直线与圆的三种位置关系——相交、相切、相离;3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系.【学习重点】用“圆心到直线的距离与圆半径之间的数量关系”描述“直线与圆的位置关系”的方法.【学习难点】直线和圆相切:“直线和圆有唯一公共点”的含义.【自主先学】活动一:1.回忆:(1)点和圆有哪几种位置关系?(2)怎样判定点和圆的位置关系?(数量关系——位置关系)2.通过观察三幅太阳升起的照片,你猜想直线和圆的位置关系有哪几种?活动二:操作交流:在纸上画一个圆,上下移动直尺.把直尺看作直线,在移动的过程中观察直线与圆的位置关系发生了怎样的变化?活动三:探究直线与圆的位置关系的数量特征直线与圆的位置关系能否像点与圆的位置关系一样,也可以用数量关系来刻画它们的三种位置关系呢?【交流展示】例1 在△ABC 中,∠A =45°,AC =4,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么? (1)r =2;(2)r =(3)r =3.例2 已知:如图示,∠AOB =300,M 为OB 上一点,以M 为圆心,5cm 长为半径作圆,若M 在OB 上运动,问:①当OM 满足 时,⊙M 与OA 相离? ②当OM 满足 时,⊙M 与OA 相切? ③当OM 满足 时,⊙M 与OA 相交? 【拓展延伸】在平面直角坐标系中有一点A (-3,-4),以点A 为圆心,r 长为半径时,思考:随着r 的变化,⊙A 与坐标轴交点的变化情况.【检测反馈】1.已知⊙O 的直径为10cm ,点O 到直线l 的距离为d : (1)若直线l 与⊙O 相切,则d =____;(2)若d =4cm ,则直线l 与⊙O 有_____个公共点; (3)若d =6cm ,则直线l 与⊙O 的位置关系是________.2.在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径的圆与AB 有怎样的位置关系?为什么?(1)r =2cm ;(2)r =2.4cm ;(3)r =3cm . 【小结反思】本节课我学到的知识点有:MBO A·2.5 直线与圆的位置关系第2课时【学习目标】1.探索切线判定,能判定一条直线是否为圆的切线; 2.理解“圆的切线垂直于过切点的半径”的性质;3.通过探索切线的判定和性质的过程,培养学生的逆向思维能力,渗透反证法思想. 【学习重点】直线与圆相切的判定方法与圆的切线的性质的应用. 【学习难点】对用“反证法”推理切线性质的理解. 【自主先学】 活动一:1.已知圆的半径等于5厘米,圆心到直线l 的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l 和圆分别有几个公共点? 分别说出直线l 与圆的位置关系. 2.你有哪些方法可以判定直线与圆相切? 活动二:1.过圆上一点画一条圆的切线,并与你的同学交流你的想法.2.请你将上面发现的结论进行归纳总结. 3.请你总结一下:切线的判定有哪些方法?活动三1.如图,直线l 与⊙O 相切于点A ,OA 是过切点的半径,直线l 与半径OA 是否一定垂直?你能说明理由吗?2.请你将上面发现的结论进行归纳总结. 【交流展示】例1 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠CAD =∠ABC .判断直线AD 与⊙O 的位置O AlOA关系,并说明理由.例2如图,AB是⊙O的直径,弦AD平分∠ABC,过点D的切线交AC于点E,DE与AC有怎样的位置关系?为什么?从中你有什么启发?【拓展延伸】1.如果AB不是直径,其余条件不变,上面的结论还成立吗?2.如图:在△ABC中AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB 的延长线于E,垂足为F.求证:直线DE是⊙O的切线.【检测反馈】1.如图,O 是∠ABC 的平分线上的一点,OD ⊥BC 于D ,以O 为圆心、OD 为半径的圆与AB 相切吗?为什么?2.如图,AB 是⊙O 的直径,∠ABC =45°,AB =AC .判断直线AC 与⊙O 的位置关系,并说明理由.【小结反思】本节课我学到的知识点有: 2.5 直线与圆的位置关系第3课时【学习目标】1.会过圆上一点画圆的切线; 2.会作三角形的内切圆; 3.理解三角形内切圆的有关概念;DO CBAB AC4.通过探究作三角形的内切圆的过程,归纳内心的性质,进一步提高学生的归纳和作图的能力.【学习重点】掌握三角形内切圆的画法、理解三角形内切圆的有关概念.【学习难点】作已知三角形的内切圆.【自主先学】活动一:1.如图是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下来的圆的面积尽可能大?2.你发现这个圆有什么特征?活动二:1.三角形内切圆的定义:与的圆叫做三角形的内切圆,这个三角形叫做圆的三角形.2.说出右图的内切圆和外切三角形.活动三:1.作三角形的内切圆:已知:△ABC.求作:⊙O,使它与△ABC的3边都相切.作法:①作∠ABC、∠ACB的平分线BM和CN,交点为I.②过点I作ID⊥BC,垂足为D.③以I为圆心,ID为半径作⊙I,⊙I就是所求的圆.2.三角形 叫做三角形的内心. 3.请你思考一下:内心有哪些性质?①三角形的内心是 的交点; ②三角形的内心到 的距离相等; ③三角形的内心一定在三角形的 . 【交流展示】例1 如图,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F ,∠B =60°, ∠C =70°,求∠EDF 的度数.例2 已知:点I 是△ABC 的内心,AI 的延长线交外接圆于D .则DB 与DI 相等吗?为什么?【拓展延伸】例1中∠A 与∠EDF 有什么关系? 【检测反馈】1.下列说法中,正确的是( )A .垂直于半径的直线一定是这个圆的切线;B .圆有且只有一个外切三角形;C .三角形有且只有一个内切圆;• • ODF E ••CB AD.三角形的内心到三角形的3个顶点的距离相等.2.如图,⊙I切△ABC的边分别为D、E、F,∠B=80°,∠C=60°,M是⌒DEF上的动点(与D、E 不重合),∠DMF的大小一定吗?若一定,求出∠DMF的大小;若不一定,请说明理由.【小结反思】本节课我学到的知识点有:2.5直线与圆的位置关系第4课时【学习目标】1.了解切线长的概念;2.经历探索切线长性质的过程,并运用这个性质解决问题.【学习重点】掌握切线长的性质.【学习难点】运用切线长的性质解决问题.【自主先学】活动一经过平面上一个已知点,作已知圆的切线会有怎样的情形?画图分析1.点在圆内;2.点在圆上;3.点在圆外.活动二:1.在经过圆外一点的切线上,这一点和 之间的线段的 叫做这点到圆的切线长. 2.说说切线与切线长的区别与联系. 活动三操作探究:1.如图,若从⊙O 外的一点引两条切线P A 、PB ,切点分别是A 、B ,连接OA 、OB 、O P ,你能发现什么结论?并证明你所发现的结论.2.性质:从圆外一点引圆的两条切线,它们的 相等,这点和 的 连线平分 的夹角. 【交流展示】例1 如图,在以点O 为圆心的两个同心圆中,大圆的弦AB 、AC 分别与小圆相切于点D 、E .AB 与AC 相等吗?为什么?例2 如图,P A 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF 也是⊙O 的切线,切点为C,交P A 、PB 于点E 、F .①已知P A =12cm ,求△PEF 的周长; ②已知∠P =40°,求∠EOF 的度数.FEOPC BA【拓展延伸】1.例1中如果AB 、AC 是任意两条与小圆相切的弦,那么AB 与AC 相等吗?2.如图,△ABC 中,∠C =90º ,且AC =6,BC =8,它的内切圆O 分别与边AB 、BC 、CA 相切于点D 、E 、F ,求⊙O 的半径r .【检测反馈】1.如图,AB 、AC 、BD 是⊙O 的切线,切点分别为P 、C 、D .如果AB =5,AC =3.则BD 的长为 . 2.如图,P 是⊙O 外一点,PO 交⊙O 于点C ,PC =OC ,P A 、PB 是⊙O 的切线,切点分别为A 、B .如果⊙O 的半径为5,则切线长为 ,两条切线的夹角为 °.3.如图,如图AB 是⊙O 的直径,C 为圆上任意一点,过C 的切线分别与过A 、B 两点的切线交于P 、Q ,则∠POQ 的度数为__ __°;若AP =2,BQ =5,则⊙O 的半径为 .F E O DC A。
2.5.1 直线与圆的位置关系学案(含解析)第二章直线和圆的方程2.5.1 直线与圆的位置关系学案学习目标1.能根据给定直线、圆的方程,判断直线与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题和实际问题.3.逐步理解用代数方法处理几何问题的基本思想和方法.知识汇总1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.在平面直角坐标系中,要判断直线与圆的位置关系,可以联立它们的方程,通过判定方程组的解的个数,得出直线与圆的公共点的个数,进而判断直线与圆的位置关系.若相交,可以由方程组解得两交点坐标,利用两点间的距离公式求得弦长.习题检测1.对任意的实数k,直线与圆的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心2.若直线l与圆相切于点,则直线l的方程为( )A. B.C. D.3.若直线与圆没有公共点,则实数m的取值范围是( )A. B.或C.或D.4.若直线被圆所截得的弦长为,则实数a的值为( )A.0或4B.0或3C.或6D.或5.一束光线从点射出,经x轴反射后与圆相切,则反射光线所在直线的斜率为( )A.或B.或C.或D.或6.(多选)已知圆,则( ).A.圆M可能过原点B.圆心M在直线上C.圆M与直线相切D.圆M被直线所戴得的弦长为7.过点且与圆相切的直线的方程为__________________.8.如图所示是一座圆拱桥,当水面在如图所示的位置时,拱桥顶部离水面2m,水面宽12m,若水面下降1m,则水面的宽为_______________m.9.已知圆,直线.(1)求证:不论m取什么实数,直线l与圆恒有两个不同的交点;(2)若直线l被圆C截得的弦长最小,求此时l的方程.10.已知点,直线及圆.(1)求过点M的圆的切线方程;(2)若直线与圆相切,求a的值;(3)若直线与圆相交于A,B两点,且弦AB的长为,求a的值.答案以及解析1.答案:C解析:直线恒过定点,由定点在圆内,知直线与圆一定相交.又直线不过圆心,所以位置关系是相交但直线不过圆心,故选C.2.答案:D解析:由题意,得点P在圆上,且点P与圆心的连线的斜率是,则切线l的斜率是,则切线方程为,即为.故选D.3.答案:B解析:圆的圆心为,半径为2,由题意得,圆心到直线的距离,或.故选B.4.答案:A解析:由圆的方程,可知圆心坐标为,半径.又直线被圆截得的弦长为,所以圆心到直线的距离.又,所以,解得或.故选A.5.答案:C解析:圆的方程可化为,易知关于x轴对称的点为,如图所示,易知反射光线所在直线的斜率存在,设为k,其方程为,即,依题意得,圆心到反射光线所在直线的距离,化简得,解得或.故选C.6.答案:ABD解析:圆,圆心为,半径为1,若圆M过原点,则,解得或,故A 正确;因为,所以圆心M在直线上,故B正确;圆心到直线的距离,故圆M与直线相离,故C错误;圆心到直线的距离,所以圆M被直线截得的弦长,故D正确.故选ABD.7.答案:或解析:易知点在圆外,当切线的斜率存在时,设国的切线方程为,由圆心到切线的距离等于半径,得,所以切线方程为.当切线的斜率不存在时,切线方程为.综上,所求直线的方程为或.8.答案:解析:如图,建立平面直角坐标系,设初始水面在AB处,则由已知得,设圆C的半径长为,则,故圆C 的方程为,将代入,得,所以圆C的方程为.① 当水面下降1m到时,设.将代入①式,得,所以水面下降1m后,水面宽为m.9.解析:(1)将直线l的方程改写成,因为,所以,解得,,可知直线l恒过定点,因为圆心,半径,易得,因此点A必在圆C内,故直线l与圆恒有两个不同的交点.(2)由图形位置关系可知,当弦长最小时,必有,因为,则,从而,得,故直线l的方程为.10.解析:(1)由题意得,圆心,半径.当直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当直线的斜率存在时,设方程为,即.由题意知圆心到直线的距离,解得,方程为.故过点M的圆的切线方程为或.(2)由题意得,圆心到直线的距离为,解得或.(3)圆心到直线的距离为,,解得.2。
人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。
课题:5.5直线与圆的位置关系(1)班级姓名备课组长【学习目标】1.经历探索直线与圆位置关系的过程。
2.理解直线与圆的三种位置关系——相交、相切、相离。
3.能利用圆心到直线的距离d与圆的半径r之间的数量关系判别直线与圆的位置关系. 【课前预习】1.点与圆的位置关系是、、。
2. 如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10, CD是斜边AB上的中线,以AC为直径作⊙O,设线段C D的中点为P,则点P与⊙O的位置关系是()。
A、点P在⊙O内B、点P在⊙O上C、点P在⊙O外D、无法确定3.操作与思考:(1)在纸上画一个圆;(2)上、下平移直尺,观察直线与圆的位置关系发生了怎样的变化?并画出不同位置的图形。
【学习过程】1.演示《海上日出》图片,感受直线与圆的位置关系。
2.通过交点判断直线与圆的位置关系3. 通过数量关系判断直线与圆的位置关系NM AB C 例1:在Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么?(1) r=2cm ; (2) r=2.4cm ; (3) r=3cm .例2 :已知点A 的坐标为(-3,-4),⊙A 的半径为3 ,则⊙A 与x 轴的位置关系是_____, ⊙A 与y 轴的位置关系是_____。
【当堂检测】1. 判断正误 1)与圆有公共点的直线是圆的切线2)过圆外一点画一条直线,则直线与圆相离3)过圆内一点画一条直线,则直线与圆相交2. 已知⊙O的半径为4,点A 在直线L 上,点A 到⊙O 的圆心O 的距离为4,则L 与⊙O 的公共点的个数是3. 已知Rt △ABC 的斜边AB=13,AC=5,以C 为圆心作圆,当半径r= 时, 直线AB 与⊙C 相切.4. 已知圆的半径等于5厘米,圆心到直线l 的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l 和圆分别有几个公共点?分别说出直线l 与圆的位置关系。
4.4直线和圆的位置关系(一)【课前预案】【温故知新】1、问题:点与圆有哪几种位置关系?2、点到圆心的距离为d,圆的半径为r,则:点在圆外:;点在圆上:;点在圆内:。
数形结合:位置关系﹤=﹥数量关系3、作出点A到直线l的距离。
·A4、连结直线外一点与直线所有点的线段中,最短的是__ ____。
5、直线与圆会有哪些位置关系?【学习目标】1、经历探索直线和圆位置关系的过程,使学生理解直线与圆有相交、相切、相离三种位置关系,掌握其判定方法和性质;2、通过对直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力;3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系,培养学生的辩证唯物主义观点.【学习重点】直线和圆的位置关系的判定方法和性质.【学习难点】直线和圆的三种位置关系的研究及运用.【课中探究案】Al(2) 自主学习:直线和圆的位置关系.(1)直线和圆有 公共点,这时直线和圆 ,这条直线叫做圆的 ,这两个公共点叫做 .(2)直线和圆 公共点,这时直线和圆 ,这条直线叫做圆的 ,这个点叫做 .(3)直线和圆没有公共点,这时直线和圆 .合作探究:“直线和圆的位置关系”能否像“点和圆的位置关系”一样从数量关系上判断呢?归纳:直线和圆的位置关系(用圆心o 到直线l 的距离d 与圆的半径r 的关系来区分)①直线和圆相交: ②直线和圆相切: ③直线和圆相离:小试牛刀:1、已知圆的直径为13cm ,设直线和圆心的距离为d : 1)若d=6cm ,则直线与圆 , 直线与圆有____个公共点. 2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点. 3)若d= 7 cm ,则直线与圆______, 直线与圆有____个公共点.2、直线L 和⊙O 有公共点,则直线L 与⊙O ( ). A 、相离;B 、相切;C 、相交;D 、相切或相交。
例1:在Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,O dlr lr dO ldrO (1)lO(3)r 为半径的圆与AB 有怎样的位置关系?为什么? (1)r=2cm ; (2)r=2.4cm (3)r=3cm .跟踪练习:已知等腰直角三角形的直角边长为2cm,以直角顶点为圆心,以r 为半径画圆。
整合提升知识网络典例精讲直线与圆的位置关系是初等几何的核心,通过本章学习进一步熟悉并应用分类思想、运动变化思想和猜想与证明的数学思想方法。
本讲有四类问题,一是与圆有关角的计算与证明,二是圆内接四边形性质与判定,三是切线的性质与判定,四是与圆有关线段的计算与证明.【例1】如图2—1,EB、EC是⊙O的两条切线,B、C是切点,A、D 是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的度数是______________。
图2—1思路分析:要求∠A,可转化为求∠BCD。
由已知∠DCF的度数,想到先求∠ECB的度数,从而注意到题目所给的EB、EC为切线,将∠ECB 与∠E的度数联系起来.解法一:∵EB、EC是⊙O的切线,∴EC=EB.又∠E=46°,∴∠ECB=246180︒-︒=67°。
∵∠DCF=32°,∴∠BCD=180°—67°-32°=81°。
∵∠A+∠BCD=180°,∴∠A=180°—81°=99°.温馨提示本解法借助切线长定理和圆内接四边形的有关性质,此题还可借助于弦切角定理来求。
解法二:连结AC,∵EB、EC是⊙O切线,图2—2∴EB=EC。
∴∠ECB=246180︒-︒=67°.∵EF切⊙O于点C,∴∠BAC=∠ECB=67°,∠CAD=∠DCF=32°。
∴∠BAD=∠BAC+∠DAC=67°+32°=99°。
答案:99°【例2】如图2—3,D、E是△ABC的BC、AC两边上两点,且∠ADB=∠AEB.求证:∠CED=∠ABC。
图2-3思路分析:要证∠CED=∠ABC,容易想到圆内接四边形的性质。
而证A、B、D、E四点共圆,用圆内接四边形判定定理不易找到条件,我们采用分类讨论思想.证明:作△ABE的外接圆⊙O,则点D与⊙O有三种位置关系:①点D在圆外;②点D在圆内;③点D在圆上.(1)如果点D在圆外,设BD与⊙O交于点F,连结AF,则∠AFB=∠AEB,而∠AEB=∠ADB.∴∠AFB=∠ADB。
直线的位置关系教案范文(19篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!直线的位置关系教案范文(19篇)教学工作计划是为了规划教师在一定时间内的教学任务和目标,提供指导和帮助。
课题 :5.5直线与圆的位置关系(2)班级 姓名 备课组长【学习目标】1.复习切线的概念,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。
2.理解切线的性质并能熟练运用. 【课前预习】1、已知圆的半径等于5厘米,圆心到直线l 的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l 和圆分别有几个公共点?分别说出直线l 与圆的位置关系。
2、回忆切线的定义。
你有哪些方法可以判定直线与圆相切? 方法一: 方法二:3、如图, A 为⊙O 上一点,你能经过 点A 画出⊙O 的切线吗?【学习过程】 1.思考(1)在上述画图过程中,你画图的依据是什么?(2)根据上述画图,你认为直线l 具备什么条件就是⊙O 的切线了? 2.总结切线的判定定理:经过半径的 并且 的直线是圆的切线。
3.交流判定直线与圆相切的方法: 方法一: 方法二:方法三:判定定理——2个条件:① ② 4.切线性质的探索(1)如果已知直线与圆相切,那么能得到哪些结论? 性质一: 性质二:(2)如图,直线l 与⊙O 相切于点A ,直线l 与O A 是否一定垂直?为什么?切线的性质:圆的切线 。
(3)小结切线的性质:性质一:直线与圆有唯一公共点 性质二:数量关系——“d = r ”性质三:圆的切线垂直于经过切点的半径 。
••AO ••AO l••AOBBAO【例题教学】例1 如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠CAD=∠ABC 。
判断直线AD 与⊙O 的位置关系,并说明理由。
例2 如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,C 是⊙O 上一点,若∠APB=40°,求∠ACB 的度数。
【当堂检测】1.如图,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O 的半径为()㎝ 2.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D , 若∠C =18°,则∠CDA =________。
高一数学同步训练2直线和圆、圆与圆的位置关系1.已知圆2)2()1(:22=-+-y x C ,点)1,2(-P ,过点P 作圆C 的切线,切点为A 、B . ⑴求直线PA 、PB 的方程;⑵求过P 点圆C 的切线长;⑶求直线AB 的方程。
2.直线l 过点⎪⎭⎫ ⎝⎛--23,3P ,与圆2522=+y x 交于B A 、两点 ⑴若8||=AB ,求l 的方程。
⑵当||AB 最长和最短时,求l 的方程。
3.直线032:=-+y x l 与圆0622=+-++c y x y x 交于Q P 、两点,且以PQ 为直径的圆过原点,求c 的值。
4.求两圆0101022=--+y x y x 与0402622=-+++y x y x 的公共弦长。
5.求过直线042:=++y x l 和圆:C 014222=+-++y x y x 的交点且分别满足下列条件的圆的方程。
⑴过原点。
⑵面积最小。
6.已知圆()()1643:22=-+-y x C ,直线0:1=--k y kx l ⑴求证:直线1l 过定点A 。
⑵直线1l 与圆C 交于Q P 、两点,求k 的取值范围。
*⑶M 为PQ 的中点,1l 与042:2=++y x l 交于点N ,求证:||||AN AM ⋅为定值。
练习:1.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33- 2.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( )A .30B .45C .60D .903.已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为__________________4.直线l 与圆04222=+a y x y x -++ (a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .5.若圆224x y +=与圆22260x y ay ++-=(a>0)的公共弦的长为=a ______6.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是练习答案:C ;C ;22(1)18x y ++= ;x-y+1=0;1=a ;4。
ABC直线与圆的位置关系【学习目标】1、使学生掌握直线与圆的位置关系。
2、能用数量来判断直线与圆的位置关系。
【学案使用说明和学法指导】 课前完成【知识链接】【知识链接】1、阅读教材P48-P492、设⊙O 的半径为r ,A 点在圆内,B 点在圆上,C 点在圆外,那OA <r , OB =r , OC >r .反过来也成立,即若点A 在⊙O 内OAr =若点A 在⊙O 外3、点到直线的距离:从直线外一点到这条直线的的长度。
2、直线与圆的三种位置关系如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离,如图27.2.6(1)所示. 如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,如图)所示.此时这条直线叫做圆的切线,这个公共点叫做切点. 如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,如图27.2.6(3)所示.此时这条直线叫做圆的割线.如何用数量来体现圆与直线的位置关系呢?【合作探究】如上图,设⊙O 的半径为r ,圆心O 到直线l 距离为d ,如何用数量来体现圆与直线的位置关系呢?从图中可以看出:若d r > 直线l 与⊙O 相离 若d r = 若d r < 总结:填写表格 直线和圆 的位置关系 图形 公共点 的个数 公共点 的名称 圆心到直线的距离d 与半径r 的关系 直线 的名称4、如图,在Rt △ABC 中,∠C=90°,AC=3cm ,BC= 4cm,(1)以A 为圆心,半径为2cm 的圆与直线BC 有怎样的位置关系? (2)半径r 为多长时,直线AB 与⊙C 相切?(3)以C 为圆心,半径为4cm 的圆与直线AB 有怎样的位置关系? (4)若⊙C 与边AB 相离,则圆半径r 应取怎样的值?7.已知:Rt △ABC 中,∠C =90°,BC =5cm ,AC =12cm ,以C 点为圆心,作半径为R 的圆,求:(1)当R 为何值时,⊙C 和直线AB 相离?(2)当R 为何值时,⊙C 和直线AB 相切? (3)当R 为何值时,⊙C 和直线AB 相交?【学习目标】1.理解切线的判定定理,会准确过圆上一点画圆的切线; 2.会用圆的判定定理进行简单的证明. 【学习重难点】重点和难点是理解并掌握切线的判定定理及其应用; 【学法指导】本节课在学习过程中注重动手操作、观察、发现、总结等活动去发现相关结论,在解决问题中培养分析问题和解决问题的能力,总结常用辅助线的做法. 【自学互助】自习教材P51-52并完成下列各题⒈切线的定义:直线与圆有 公共点时,这条直线叫做圆的切线.2.切线的判定方法:(1)和圆有 公共点的直线是圆的切线.(即切线的定义) (2)到圆心的距离 半径的直线是圆的切线.3.切线的判定定理:________________________________________________________;4.切线的性质定理:________________________________________________________; 【展示互导】活动1:阅读教材p51的“做一做”:(1)做一做:如图1,在⊙O 中,经过半径OA 的外端点A 作直线l OA ⊥,则圆心O 到直线l 的距离是多少?直线l 和⊙O 有什么位置关系?为什么? (2)从作图中得到切线的判定定理:经过____________并且_______于这条半径的的直线是圆的切线.定理必须满足哪两个条件,如果只满足一个条件,画图看一看,此时所画的 直线是不是圆的切线.定理的几何语言:如图2,________________,_________ ∴直线l 是⊙O 的切线(3)已知一个圆和圆上的一个点,如何过这个点画出圆的切线?画一画! 活动2: 如图3,直线AB 经过⊙O 上的点C,并且OA=OB,CA=CB, 求证:直线AB 是⊙O 的切线.(分析:已知AB 经过圆上的点C ,要用上面的判定定理,应该连接, 证明 ) 证明:小结:当直线与圆有公共点,常连接 和公共点得半径,证明直线垂直于 .活动3: 已知:如图4,P 是∠AOB 的角平分线OC 上一点.PE ⊥OA 于E .以P 点为圆心,PE 长为半径作⊙P .求证:⊙P 与OB 相切.(分析:OB 与圆没有公共点,应该选用哪种判定方法?怎样作辅助线?)方法小结:当直线与圆没有公共点,常过圆心作直线的 ,证明圆心到直线的距离等于 . 【检测互评】1.下列说法正确的是( )A .与圆有公共点的直线是圆的切线.B .和圆心距离等于圆的半径的直线是圆的切线;C .垂直于圆的半径的直线是圆的切线;D .过圆的半径的外端的直线是圆的切线 2.教材p52练习第1,2,3题.3.已知:如图5,A 是⊙O 外一点,AO 的延长线交⊙O 于点C ,点B 在圆上,且AB BC =,30A ∠=︒.求证:直线AB 是⊙O 的切线.【总结提升】 1、课堂总结(1).圆的切线有哪几种判定方法?分别是什么? (2).证明圆的切线时,常常要添加辅助线,有两种方法: ①当直线与圆有公共点时,简说成“连半径,证垂直”; ②当直线与圆没有公共点时,简说成“作垂直,证半径”. 2、拓展提升已知:如图6,△ABC 内接于⊙O ,过A 点作直线DE , 当∠BAE =∠C 时,试确定直线DE 与⊙O 的位置关系, 并证明你的结论.3如图,AB 是⊙O 的直径,AC ⊥l ,BD ⊥l ,C 、D 是垂足,且AC +BD =AB .求证:直线l 与⊙O 相切.OA(图1)lOA(图2) BAO C 图3(图4)AC BO(图5)(图6)综合、运用、诊断1.已知:如图,割线ABC 与⊙O 相交于B ,C 两点,E 是的中点,D 是⊙O 上一点,若∠EDA =∠AMD .求证:AD 是⊙O 的切线.2.已知:如图,Rt △ABC 中,∠ACB =90°,以AC 为直径的半圆O 交AB 于F ,E 是BC 的中点. 求证:直线EF 是半圆O 的切线.3.已知:如图,△ABC 中,AD ⊥BC 于D 点,.21BC AD 以△ABC 的中位线为直径作半圆O ,试确定BC 与半圆O 的位置关系,并证明你的结论.4.已知:如图,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F . 求证:EF 与⊙O 相切.5.已知:如图,以△ABC 的一边BC 为直径作半圆,交AB 于E ,过E 点作半圆O 的切线恰与AC 垂直,试确定边BC 与AC 的大小关系,并证明你的结论.6.已知:如图,P A 切⊙O 于A 点,PO ∥AC ,BC 是⊙O 的直径.请问:直线PB 是否与⊙O 相切?说明你的理由.7、已知直线I 与⊙O ,AB 是⊙O 的直径,AD ⊥I 于点D .Ⅰ、如图①,当直线I 与⊙O 相切于点C 时,若∠DAC=30°,求∠BAC ; Ⅱ、如图②,当直线I 与⊙O 相交于点E 、F 时,若∠DAE=18°,求∠BAF .圆的切线的性质【学习目标】1.理解切线的性质定理及推论,能正确区分判定和性质的题设和结论;(学习重点、难点) 2.掌握圆的判定和性质的综合应用. (学习重点、难点) 【学法指导】学习过程中从切线的判定的逆命题去发现相关性质,并注意区分切线的判定定理和性质定理,在解决问题中培养分析问题和解决问题的能力,总结常用辅助线的做法. 【自学互助】)⒈切线有哪些判定方法? 2. 切线的性质:(1)切线与圆有 公共点;(2)切线和圆心的距离 半径. 【展示互导】活动1:阅读教材p51的最后一段:(1)想一想:如图1,如果直线l 是⊙O 的切线,点A 为切点,那么半径OA 与直线l 是垂直吗? (可以用反证法证明,选学) (2)切线的判定定理:圆的切线_________经过切点的 .定理的几何语言:如图1, 直线l 是⊙O 的切线 ______________.∴由性质定理,容易得到下面的推论:经过圆心且垂直于切线的直线必过 . 经过切点且垂直于切线的直线必过 .小结:一条直线若满足①过圆心,②过切点,③垂直于切线这三条中的 条,就必然满足 条.活动2: 如图2,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC .若30P ∠=︒,求B ∠的度数.活动3: 如图3,ABC ∆为等腰三角形,AB AC =,O 是底边BC的中点,⊙O 与腰AB 相切于点D ,求证:AC 与⊙O 相切.4 、已知:如图,P A 切⊙O 于A 点,PO 交⊙O 于B 点.P A =15cm ,PB =9cm . 求⊙O 的半径长.【检测互评】1.如图4,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若30OBA ∠=︒,则OB 的长为( ) A. 43 B. 4 C. 23 D. 22.如图5,已知AB 为⊙O 的直径,点D在AB 的延长线上,DC 切⊙O 于C ,若25A ∠=︒, 则D ∠等于 ( )A.40︒B. 50︒C. 60︒D. 70︒3.(2009泸州)如图6,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为 cm .4.已知:如图7,△ABC 中,AC =BC ,以BC 为直径的⊙O 交AB 于E 点,直线EF ⊥AC 于F . 求证:EF 与⊙O 相切.5.已知:如图8,PA 切⊙O 于A 点,PO ∥AC ,BC 是⊙O 的直径.请问:直线PB 是否与⊙O 相切?说明你的理由.6、拓展提升(2009安顺)如图9,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,过D 作DE⊥BC,垂足为E 。
§4.2.1 直线与圆的位置关系
班级姓名
一、知识回顾
1.平面几何中,直线与圆的位置关系有哪几种?
2.在初中,我们怎样判断直线与圆的位置关系?
二、新知探究
用直线与圆的方程判断直线与圆的位置关系
例1 如图,已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系;如果相交,求它们交点的坐标.
变式:试解引言中的问题.即判断直线: 4x+7y-28=0与圆O:无公共点.
例2 已知过点M (–3,–3)的直线被圆C: x2+y2+4y-21=0所截得的弦长为,求直线的方程.
三、反馈练习
1.已知直线相切,求圆的方程.
2. 判断直线
3.已知直线. 试判断直线与有无公
共点,有几个公共点.。