重四级杆质谱仪原理整合完整版
- 格式:ppt
- 大小:930.50 KB
- 文档页数:15
四极杆飞行时间质谱仪原理
四极杆飞行时间质谱仪是一种常用于质谱分析的仪器。
其原理基于带电粒子在磁场中受到洛伦兹力以及电场力的作用,从而确定粒子的质量和电荷比。
该仪器由四根平行排列的金属杆(四极杆)组成,杆之间存在一定的电势差,形成一个电场。
在四极杆的两端还有一个均匀的磁场作用,形成一个向前加速粒子的区域。
当带电粒子进入仪器后,首先会在电场中加速,并沿着四极杆飞行。
同时,磁场会对粒子施加一个垂直于杆的洛伦兹力,使其偏离原来的路径。
由于电场和磁场力的施加方向不同,使得粒子在四极杆内做着动态的偏转运动。
根据四极杆飞行时间质谱仪的工作原理,可以将不同质量和电荷比的粒子分离出来。
因为不同质量和电荷比的粒子会受到不同大小的洛伦兹力和电场力的影响,从而在四极杆内拥有不同的飞行时间。
通过测量粒子飞行时间和飞行距离的关系,可以计算出粒子的质量和电荷比。
四极杆飞行时间质谱仪在实际应用中具有广泛的用途。
它可以用来分析和鉴定各种物质的成分和结构,包括有机化合物、无机离子、生物大分子等。
同时,该仪器还可以进行质量测定、同位素分析以及反应动力学等研究。
总结起来,四极杆飞行时间质谱仪的工作原理是基于带电粒子在电场和磁场的共同作用下进行运动,通过测量粒子的飞行时
间来确定其质量和电荷比。
这种仪器具有高分辨率、高灵敏度和广泛的应用领域。
三重四级杆液相色谱质谱联用仪原理
三重四级杆液相色谱质谱联用仪的结构由三个四级杆(Q1,Q2,Q3)
组成,其作用分别为:Q1作为入口四级杆,通过调整电压和磁场来选择
特定的前驱离子(precursor ion)进入系统;Q2作为碰撞池,用于离子
的碰撞解离和选择性筛选;Q3作为出口四级杆,根据质量/荷电比(m/z)对产生的离子进行进行分离和检测。
1.采样和预处理:样品通过进样系统进入色谱柱进行分离。
在进样之前,可以对样品进行前处理,如样品制备、固相萃取等。
3. 离子化:分离后的化合物分子进入质谱部分,通常采用电喷雾(electrospray ionization,ESI)或大气压化学电离(atmospheric pressure chemical ionization,APCI)等离子化方式进行离子化。
离子
化过程中,化合物分子失去或获得一个或多个电子而变成带电离子。
4. 离子的选择性解离:离子进入Q2碰撞池后,在与碰撞气体(collision gas)碰撞的过程中发生解离反应。
这些反应是高度选择性的,只能发生在特定离子对中。
5.质谱分析:环境中的离子经过Q3四级杆的分离后,根据其质量/荷
电比(m/z)和强度进行检测。
通过对质谱图的分析,可以确定样品中存
在的化合物种类和含量。
总之,三重四级杆液相色谱质谱联用仪通过液相色谱和质谱的联用,
结合分离和离子化技术,实现了复杂样品的分离、检测和分析。
其原理和
操作流程相对复杂,但能够提供高灵敏度和高选择性的分析结果,广泛应
用于食品安全、环境监测、药物分析等领域。
三重四级杆气相色谱质谱联用仪原理
三重四级杆气相色谱质谱联用仪是一种分析仪器,结合了气相色谱(GC)和质谱(MS)技术,用于分析复杂样品中的组分。
三重四级杆气相色谱质谱联用仪的工作原理如下:
1. 气相色谱(GC)分离:样品经过预处理后,通过进样口注
入气相色谱柱中。
然后,样品在高温条件下挥发,并通过气流带动进样口中的挥发物进入气相色谱柱。
在气相色谱柱中,样品中的成分会因为不同的亲和性而在柱上发生分离。
2. 离子化与分析:GC柱分离出的组分进入质谱部分。
首先,
离子源将分离出的化合物离子化,通常使用电子轰击(EI)或化学电离(CI)方法。
离子化后的化合物会形成离子云。
3. 气体四级杆质量分析器:离子云被引入到四级杆质量分析器中,在四级杆中通过运动激发进行质量分析。
通过调节四级杆中的偏压和交变电场的频率,只有质量-电荷比(m/z)在指定
范围内的离子可以穿过四级杆,其他离子则被排除。
4. 超过磁扇质谱仪:离子从四级杆进一步进入超过磁扇质谱仪。
在这里,离子会被分离成不同的mm/z比。
质谱仪会测量这些
离子的强度,从而得到样品中的各种成分及其相对丰度。
5. 数据分析和识别:质谱仪测量得到的数据可以通过计算机进行分析和识别。
根据谱图中离子的相对强度和m/z比,可以确定各个组分的存在和相对丰度。
通过气相色谱质谱联用仪的工作原理,可以实现对复杂样品中微量成分的快速准确分析和鉴定。
四级杆质谱原理
四级杆质谱(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,简称FT-ICR MS)是一种高分辨质谱技术,主
要用于分析复杂的化学样品。
它利用磁场中离子的旋转和振荡来分离和测量不同荷质比的离子。
该技术具有极高的分辨率和灵敏度,能够检测到极微量的化合物。
FT-ICR MS的核心部分是四级杆磁铁,其结构类似于一个罗
氏飞轮。
离子在四级杆磁场中做旋转和振荡运动,其运动速度和频率与离子的质荷比相关。
通过调节外加的垂直电场和磁场的强度,可以让具有不同质荷比的离子在四级杆中保持稳定的运动。
在质谱仪中,高频电场会扰动离子的径向运动,使其振荡。
当电场频率与离子的固有振荡频率匹配时,离子会吸收能量,从而产生共振。
这就是离子循环共振(ion cyclotron resonance,ICR)的原理。
共振频率与质量和电荷有关,因此可以根据吸
收信号的频率确定离子的质量。
FT-ICR MS的核心原理是将离子的振荡信号转换成电信号,
并利用Fourier变换将时域信号转换成频域信号。
通过对频域
信号进行分析,可以得到离子的精确质量,并进一步推断出其组成和结构。
由于Fourier变换的特性,FT-ICR MS具有极高
的分辨率和灵敏度,能够检测到质量差异非常细微的分子。
总之,FT-ICR MS利用四级杆磁铁中离子的旋转和振荡运动,通过离子循环共振和Fourier变换来实现对离子质量的精确测
量。
这种技术在生物医学、环境分析、材料科学等领域有着广泛的应用。