2017年河北省石家庄市桥西区中考数学二模试卷带答案解析
- 格式:doc
- 大小:1.26 MB
- 文档页数:30
2016-2017 学年度石家庄市第二次模 考数学理科答案一、1-5DDACA 6-10 DADBA 11-12AB二、填空13.54014 .22x 2 y 2 1315.52016.5三、解答17. 解: (1)当n1,a 1 2a 2na n ( n 1)2n 1 2 ①a 1 2a 2 (n-1)a n 1 (n 2)2n2②⋯⋯⋯⋯⋯⋯⋯⋯ 2 分① -②得na n (n 1)2 n 1 (n 2)2 n n 2 n所以a n2n ,⋯⋯⋯⋯⋯⋯⋯⋯3 分当n1, a 12 ,所以a n2n , nN * ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2) 因 a n2n ,b n111 1 1⋯⋯⋯⋯⋯⋯⋯⋯ 6 分log 2 a n log 2 a n 2n( n2)( n n ) .2 2所以T1 1 11 1 11 1 111 1 1 1 1 .n2 3 2 2 42 3 52 n 1 n 12 n n 2⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分1 1 11 1 1 ⋯⋯⋯⋯⋯⋯⋯ 10 分2 2 n n 231 11 3 42 n 1 n 24所以,随意 n N *, T n3.⋯⋯⋯⋯⋯⋯⋯ 12 分418. (1) 明 : 取AD中点M,接EM,AF=EF=DE=2,AD=4,可知EM= 1AD,∴ AE⊥2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分DE又 AE⊥EC,DE EC E ∴AE⊥平面CDE,∴AE⊥CD,又 CD⊥ AD,AD AE A,∴ CD⊥平面 ADEF,CD平面 ABCD,∴平面 ABCD⊥平面 ADEF;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分( 2)如,作EO⊥ AD, EO⊥平面 ABCD,故以 O原点,分以OA, DC , OE的方向 x 、 y 、 z 的正方向成立空平面直角坐系,依意可得E(0,0,3) , A(3,0,0) ,C (1,4,0) , F (2,0,3),所以EA(3,0,3), AC( 4,4,0),CF(3, 4,3) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分n( x, y, z)平面 EAC的法向量,n EA03z0不如 x=1,即 3xn AC04x4y0可得 n(1,1,3),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分所以cos CF , n CF n25140 =35 ,| CF | | n |287035⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分直与平面所成角的正弦35⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分CF EAC35419. 解:( 1)四天均不降雨的概率P1381 ,56253216,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯四天中恰有一天降雨的概率P 21 32 2 分C 4 55625所以四天中起码有两天降雨的概率P 1 P 1 P 2181 216 328 625625⋯⋯⋯4分1 2 34 5625( 2)由 意可知 x3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分5y50+85+115+140+160 =110 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分55(x i x)( y iy ) 275 ,bi 1= =27.58 分510 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( x i x)2i 1a= y bx =27.5所以, y 对于 x 的回 方程 :? 27.5x 27.5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分y将降雨量 x 6代入回 方程得: y27.5 627.5192.5193 .?所以 当降雨量6 毫米 需要准 的快餐份数 193份. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分20. (Ⅰ)方法一: M (x , y ),由 意可知, A (1-r , 0),因 弦 AM 的中点恰巧落在 y 上,所以 x=r-1>0, 即 r=x+1, ⋯⋯⋯⋯⋯⋯ 2 分所以 ( x1)2 y 2 ( x 1)2 ,化 可得 y2=4x (x>0)所以,点 M 的 迹 E 的方程 : y 2=4x ( x>0)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分方法二:M ( x , y ),由 意可知,A ( 1-r , 0), AM 的中点,x>0 ,因 C (1, 0),,.⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分在⊙ C 中,因 CD ⊥ DM ,所以,,所以.所以, y 2=4x ( x>0)所以,点 M 的 迹 E 的方程 : y 2=4x ( x>0)⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(Ⅱ)直 MN的方程x my 1 ,M ( x1, y1),N (x2, y2),直BN的方程y k (x y22)y24x my1y24my40 ,可得 y1y24m, y1 y2 4 ,⋯⋯⋯⋯⋯⋯⋯ 6 分y24x由( 1)可知,r1x1,点 A(x1 ,0) ,所以直AM的方程y 2 x y 1 ,y12y k( x y22)y2ky2 4 y 4 y2 ky222 40 ,0 ,可得 k,y24x y2直 BN的方程y2x y2,⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分y22y 2 x y1 ,y12立y12可得 x B44my12m,2 x y2,1, y By 2 y1 2 y1 y22所以点 B( -1 , 2m)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分|BC| 44m2,d| 2 2m2 |4m2 4 =2m2 1 ,m21e B 与直MN相切⋯⋯⋯⋯⋯⋯⋯⋯⋯12分21. 【解】( 1)f ()e xa .x若 a ≤ 0 , f( x)0 ,函数 f (x) 是增函数,与矛盾.所以 a0 ,令 f ()x 0,x ln a . .................................................................................2分当 x ln a , f(x)0 , f (x) 是减函数; x ln a , f ( x)0 , f (x) 是增函数;于是当 x ln a , f (x) 获得极小.因 函数 f (x) e x ax a (a R ) 的 象与 x 交于两点 A(x 1 ,0), B( x 2 ,0) ( x 1< x 2) ,所以 f (ln a)a(2ln a) 0 ,即a e 2 . (4)分此 ,存在 1ln a , f (1)e 0 ;(或 找f (0))存在 3ln aln a , f (3ln a)332,a 3a ln a a a 3aa 0又由 f ( x) 在 (,ln a) 及 (ln a ,) 上的 性及曲 在R 上不 断,可知 ae 2 所求取 范. .......................................................................... (5)分(2)因e x 1ax 1a 0 ,x 2x 1. (7)分ex2两式相减得 aeeax 2 a 0 ,x 2 x 1x 2 x 1x 1 x 2x 1 x 2x xx 1x 2e2s( s 0) , fe2e 2 e 1ss,22x 2x 12 s (ee )2s⋯⋯⋯⋯⋯⋯⋯ 9 分g ( ) 2 (e s e s ) ,g (s)2 (ese s) 0 ,所以 g( s) 是 减函数,s sx 1 x 2x 1 x 2有 g( s)g(0)0 ,而e20 ,所以 f0 .22 s又 f ( x) e xa 是 增函数,且x 1 x 2 2 x 1 x 2 ,2 3所以f '(2x13 x2 )0 。
2021年X X省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两局部;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷总分值为120分,考试时间为120分钟.卷Ⅰ〔选择题,共42分〕本卷须知:1.答卷I前,考生务必将自己的XX、XX号、科目填涂在答题卡上.考试完毕,监考人员将试卷和答题卡一并收回.2.每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题〔本大题共16个小题,1~6小题,每题2分;7~16小题,每题3分,共42分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.4的算术平方根是【】。
A.2B.-2C.±2D.22.某种微粒子,测得它的质量为0.00006746克,这个质量用科学计数法表示〔保存三个有效数字〕应为〔〕-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克A.6.75×103.26的值A.在3和4之间B.在4和5之间C.在5和6之间D.在6和7之间4.以下运算正确的选项是〔〕A. a5+a5=a10B.a3·a3=a9C.〔3a3〕3=9a9123=a9D.a÷a5.如图,在△ABC中,∠ACB=90 0 ,∠A=20 0 ,假设将△ABC沿CD折叠,使B点落在AC边上的E处,那么∠ADE的度数是〔〕0B.400C.500D.550A.306.使代数式x2x1有意义的x的取值X围是【】11x C.x0且x22A.x0B.D.一切实数2x40 7.一组数据2,3,6,8,x的众数是x,其中x又是不等式组的整数解,那么这x70 组数据的中位数可能是【】A.3B.4C.6D.3或68.(3ay)(3ay)是以下哪一个多项式因式分解的结果〔〕A.229ayB.229ayC.229ayD.229ay9.菱形的边长和一条对角线的长均为2cm,那么菱形的面积为〔〕A. 24cmB.23cmC.223cmD.3cm210.左图是一几何体,某同学画出它的三视图如下〔不考虑尺寸〕,你认为正确的选项是〔〕正面①正视图②俯视图③左视图A.①②B.①③C.②③D.③11.不等式组2x40x1≥0的解集在数轴上表示正确的选项是〔〕10121012A.B.10121012C.D.12.以下列图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.13.某单位购置甲、乙两种纯洁水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x桶,买乙种水y桶,那么所列方程组中正确的选项是〔〕A.8x6y250y75%xB.8x6y250x75%yC.6x8y250y75%xD.6x8y250x75%y14.将一X矩形纸片A B C D如图所示折叠,使顶点C落在C点.AB2,DEC,那么折痕DE的长为〔〕30A.2B.23C.4D.1第14题图第15题图15.2021年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名学生就哪支队伍将夺冠进展竞猜,统计结果如图.假设把认为巴西队将夺冠的这组学生人数作为一组的频数,那么这一组的频率为〔〕A.0.1B.0.15C.0.25D.0.316.一个装有进出水管的水池,单位时间内进、出水量都是一定的.水池的容积为800 升,又知单开进水管20分钟可把空水池注满;假设同时翻开进、出水管,20分钟可把满水池的水放完,现水池内有水200升,先翻开进水管3分钟,再翻开出水管,两管同时开放,直至把水池中的水放完,那么能确定反映这一过程中水池的水量Q〔升〕随时间t〔分钟〕变化的函数图象是〔〕Q〔升〕Q〔升〕320320200200O38O311t〔分钟〕t〔分钟〕A.B.Q〔升〕Q〔升〕320200200O311O311t〔分钟〕t〔分钟〕C.D.总分核分人2021年XX省初中毕业生升学文化课模拟考试数学试卷卷II〔非选择题,共78分〕本卷须知:1.答卷II前,将密封线左侧的工程填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.三题号二212223242526得分得分评卷人二、填空题〔本大题共4个小题,每题3分,共12分.把答案写在题中横线上〕2.17.圆锥的底面半径为3cm,母线长4cm,那么它的侧面积为cm18.如图,AB是⊙O的弦,OC⊥AB,垂足为C.假设AB=23,OC=1,那么OB的长为▲.yADOBOCxACB〔第18题〕〔第19题〕19.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,假设点A的坐标是〔-1,4〕,那么点C的坐标是.20.在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.假设满足∠DEC=90°的点E有且只有一个,那么BC=cm.三、解答题〔本大题共6个小题,共66分.解容许写出文字说明、证明过程或演算步骤〕得分评卷人21.〔本小题总分值9分〕|a-1|+b2=0,求方程ax+bx=1的解.得分评卷人22.〔本小题总分值10分〕某校九年级男生进展引体向上训练,体育教师随机选择了局部男生,根据训练..前.成绩编组:0~4个的编为第一组,5~8个的编为第二组,9~12个的编为第三组,在训练后制作了如下两幅统计图,请答复以下问题:每个小组引体向上平均成绩比照统计图每组人数占所选男生人数的百分比统计图平均成绩/个121086 5 68910训练前训练后第二组60%10%430%第三组22第一组第一组第二组第三组①②〔第22题〕〔1〕以下说法正确的选项是〔填写所有正确的序号〕.①训练后,第一组引体向上平均成绩的增长率最大;②训练前,所选男生引体向上成绩的中位数一定在第二组;③训练前,所选男生引体向上成绩的众数一定在第二组.〔2〕估计该校九年级全体男生训练后的平均成绩是多少?得分评卷人23.〔本小题总分值10分〕如下列图,A、B两地之间有一条河,原来从A地到B地需要经过桥D C,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线A B从A地到达B地.BC=16km,∠A=53°,∠B=30°.桥D C和AB平行,那么现在从A地到达B地可比原来少走多少路程?〔结果准确到0.1km.参考数据:31.73,sin53°≈0.,80cos53°≈0.6〕0A53°DGHCEF30°B得分评卷人24.〔本小题总分值11分〕如果一条抛物线y=ax 2 +bx+c〔a≠0〕与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形〞.〔1〕“抛物线三角形〞一定是____________三角形;〔2〕假设抛物线抛物线m: 2ya(x2)b(ab0)的“抛物线三角形〞是直角三角形,请求出a,b满足的关系式;2〔3〕如图,△OAB是抛物线n:y=-x+b′x〔b′>0〕的“抛物线三角形〞,是否存在以原点O为对称中心的矩形ABCD?假设存在,求出过O、C、D三点的抛物线的表达式;假设不存在,说明理由.yAOBx得分评卷人25.〔本小题总分值12分〕两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进展如下操作:(1)如图11(1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.CFAD图11(1) BE (2)如图11(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.CFAD图11(2) BE(3)如图11(3),△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sinα的值.C(F)AD(F)B(E)α图11(3)E得分评卷人26.〔本小题总分值14分〕某市今年在中心城区启动二环路高架桥快速通道建立工程,研究说明,某种情况下,高架桥上的车流速度V〔单位:千米/时〕是车流密度x〔单位:辆/千米〕的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如下列图.〔1〕求当28<x≤188时,V关于x的函数表达式;〔2〕假设车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P〔单位:辆/时〕到达最大,并求出这一最大值.〔注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度〕v千米/时80x辆/千米281882021年X X省初中毕业生升学文化课模拟考试数学试题参考答案一、选择题题号12345678答案AACDDCDC题号910111213141516答案CABDACDB二、填空题17.12π18.219.〔3,0〕20.8三、解答题21.解:解:由|a-1|+b2=0,得a=1,b=-2.由方程1x-2x=1得2x2+x-1=02+x-1=0解之,得x1=-1,x2= 12.经检验,x1=-1,x2=12是原方程的解.22.解:〔1〕①②.〔2〕5×30%+8×60%+10×10%=7.3〔个〕.答:估计该校九年级全体男生训练后的平均成绩是7.3个.23.解:23.作DG⊥AB于G、CH⊥AB于H在Rt△BCH中,Sin∠B= ∴CH=8;C HCB,BC=16km,∠B=30°cos∠B= B HCB∴BH=83易得DG=CH=8在△ADG中,Sin∠A= D GAD、DG=8∴AD=10、AG=6∴〔AD+DC+CB〕-〔AG+GH+HB〕=20-83≈6.2 24.解:〔1〕等腰〔2〕ab1.〔3〕存在.所求抛物线的表达式为 2y=x+23x.25.解:(1)过C点作CG⊥AB于G,CF在Rt△AGC中,∵sin60°=CG,∴AC CG32ADG解图11(1) BE∵AB=2,∴S梯形CDBF=S△ABC= 1223232(2)菱形∵CD∥BF,FC∥BD,∴四边形CDBF是平行四边形∵DF∥AC,∠ACD=90°,∴CB⊥DF∴四边形CDBF是菱形(判断四边形CDBF是平行四边形,并证明正确,记2分)(3)过D点作DH⊥AE于H,那么S△ADE= 12ADEB121 332······又S△ADE= 1233321AEDH,DH(或)············2AE77DH321∴在Rt△DHE’中,sinα=)或(DE142726.解:〔1〕设函数解析式为V=kx+b,那么,解得:,故V关于x的函数表达式为:V=﹣x+94;〔2〕由题意得,V=﹣x+94≥50,解得:x≤8,又P=Vx=〔﹣x+94〕x=﹣x2+94x,当0<x≤88时,函数为增函数,即当x=88时,P取得最大,故Pmax=﹣×882+94×88=4400.答:当车流密度到达88辆/千米时,车流量P到达最大,最大值为4400辆/时。
2017年石家庄市初中毕业生升学文化课考试数学试题参考答案及评分标准说明:1.各地在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(1~10小题,每小题3分;11~16小题,每小题3分,共42分)二、填空题(本大题有3个小题,17~18小题各3分;19小题4分,每空2分;共10分.)17.2;18.-1(答案不唯一);19.;.三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.解:(1),; (4)分(2)原式==…………………………………………………………… 6分=.………………………………………………………………………… 9分21. 解:(1)由题意知,在Rt△ADC中,∠DCA = 90°,AC=24m,tanα =,∵tanα =tan∠DAC =,∴=,DC=12,∴教学楼DC的高度是12m. …………………………………………………… 3分(2)∵∠DAC=α,∠DBC=2α,∴∠DAC=∠BDA=α,∴BA = BD,……………………………………………………………………5分BC = AC – AB = 24− BD,在Rt△BDC中,由勾股定理,得BC2+DC2=BD2(24−BD)2+122= BD2解得,BD=15,则BC =9,……………………………………………………7分∴cos∠DBC==.……………………………………………………… 9分22. 解:(1)200;………………………………………………………………… 2分(2)54;……………………………………………………………………4分(3)如图1所示,…………………………………6分(4)从甲、乙、丙、丁四名同学中任意抽取两名同学,共有六中等可能的情况,甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,……………………………………… 8分则P(选中甲乙)=.……………………… 9分23. 解:(1)0.8,3.1;……………………………………………………………………… 2分(2)由题意知,第2趟电瓶车距乙地的路程y2的图象过点(0.5,12)和(1,0),设(k,b为常数,且k≠0),代入上述两个点,得,解得,………………………………………………4分∴.……………………………………………………………… 5分(3)(如图2,画对每条直线得1分,共3分)…………………………………8分3.………………………………………………………………………………… 9分24.(1)ADE,BCF;EPF,CPB;………………………………………………… 2分(2)证明:∵AC是正方形ABCD的对角线,∴∠PCE=∠PCB=45°,又∵PE⊥AC,∴PE=PC,∠PEC=∠PCE=45°,又∵PF⊥PB,∴∠EPC=∠FPB=90°,∴∠EPC+∠CPF=∠FPB+∠CPF,即∠EPF =∠CPB,∴△EPF≌△CPB,……………………………………………………………5分∴EF=CB,∴EF=AB,又∵正方形ABCD,EF∥AB,∴四边形AEFB是平行四边形. ……………………………………………… 7分(3)存在. …………………………………………………………………………… 8分由(2)中的证明可知PB=PF,则△PBF是等腰直角三角形,∴S△PFB=PB•PF =PB2,当点P运动到正方形对角线的交点时,BP即为点B到AC的距离,此时PB最小,则S△PFB取得最小值.由AB=,得BP= 2,∴S△PFB的最小值=PB2= 2. …………………………………………… 10分25.解:(1)();……………………………………………………… 2分(2)∵抛物线L经过点M(﹣2,﹣1),∴,解得.∴抛物线如图3所示.……………… 4分由,得.∴.∴当x<0时,;当x>0时,.(不写范围,不扣分)………………………………8分(3).……………………………………………………………… 10分(提示:∵抛物线L经过A、C两点,且矩形ABCD在其对称轴的左侧,∴当且仅当点C与抛物线L的顶点重合时CD取得最小值.此时有,∴26.发现:,,.………………… 3分思考:解:(1)如图4,设半圆O交CE于M点,∵∠D=45°,∠E=75°,∴∠ECD=60°,∵AB⊥DC,∴∠ACM=30°.连接OM,并过点O作ON⊥MC于点N,则有ON=,OC=1,CM=2 CN=2OC cos30°=,∠COM=2∠CON=120°,∴半圆O与△CDE重叠部分的面积为.……………………………………………………………………… 6分(2)……………………………………………8分(提示:如图5,当点A落在CE上时,AB刚刚开始落在△CDE内,此时AB=2,∴如图6,当点A落在DE上时,∴∴)探究:①如图7,当半圆O与EC相切时,弧AB与△CDE有一个交点,设切点为P,连接OP、OC,则有OP⊥EC,∵AB⊥DC,OP=OB,∴CO平分∠PCB,∴∠OCB=60°,∴CB=OB tan30°=,∴;②当点A落在CE上时,弧AB与△CDE有两个交点.此时,由思考(2)知;③如图8,当半圆O与DE相切时,弧AB与△CDE有两个交点,设切点是Q,BA的延长线交DE于点F,连接OQ.则有OQ⊥DE.∵AB⊥DC,∠D=45°,∴∠QOF=45°,∴QF=OQ=1,∴OF=,∴DB=BF=1+.∴x=4+-;④当点A落在DE上时,弧AB与△CDE有三个交点.此时,由思考(2)知,;⑤当点B与点D重合时,弧AB与△CDE仅有一个交点.此时,由发现(1)得,.综上所述:…………12分。
河北省石家庄市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)有理数a、b在数轴上的位置如图所示,则a+b的值()A . 大于0B . 小于0C . 大于等于0D . 小于等于02. (2分)(2018·深圳模拟) 如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A . (5,0)B . (8,0)C . (0,5)D . (0,8)3. (2分)如图,在正方形网格中,∠1、∠2、∠3的大小关系()A . ∠1=∠1=∠3B . ∠1<∠2<∠3C . ∠1=∠2>∠3D . ∠1<∠2=∠34. (2分)次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而增大,则m=()A . -1B . 3C . 1D . -1或35. (2分)今年的“六·一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了如图1、2的统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有()A . 4个.B . 3个.C . 2个.D . 1个.6. (2分)(2017·德州模拟) 直角梯形的一个内角为120°,较长的腰为6cm,有一底边长为5cm,则这个梯形的面积为()A . cm2B . cm2C . 25 cm2D . cm2或 cm2二、填空题 (共12题;共12分)7. (1分)一种病毒近似于球体,它的半径为0.00000000375,用科学记数法表示为________8. (1分) (2018九上·孝感月考) 已知关于的方程的一个根为2,则另一个根是________.9. (1分) (2016九上·无锡开学考) 如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C 在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为________.10. (1分) (2019九上·灌阳期中) 若的一元二次方程有两个不相等的实数根,则的取值范围是________.11. (1分)(2017·哈尔滨模拟) 把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的顶点坐标为________.12. (1分)(2019·朝阳模拟) 如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是________.13. (1分)如图是某市3月1日至14日的空气质量指数趋势图.由图判断从第________ 日开始连续三天空气质量指数的方差最大.14. (1分)若4a﹣2b+c=0且a≠0,则一元二次方程ax2+bx+c=0必有一个根是________.15. (1分)如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是________ .16. (1分)(2017·徐汇模拟) 点C是线段AB延长线的点,已知 = , = ,那么 =________.17. (1分)(2019·杭州) 如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A'点,D点的对称点为D'点,若∠FPG=90°,△A'EP 的面积为4,△D'PH的面积为1.则矩形ABCD的面积等于________。
2017年九年级数学中考模拟试卷一、选择题:1.﹣4的相反数是()A.﹣B.C.﹣4D.42.下列计算中正确的是()A.2x3﹣x3=2B.x3•x2=x6C.x2+x3=x5D.x3÷x=x23.下列各图中,不是中心对称图形的是()4.使分式有意义的x的值为()A.x≠1B.x≠2C.x≠1 且 x≠2D.x≠1或 x≠25.在平面直角坐标系中,点P(x,0)是x轴上一动点,它与坐标原点O的距离为y,则y关于x的函数图象大致是()6.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个7.下列二次根式中,与是同类二次根式的是( )A.B.C.D.8.图①是由五个完全相同的小正方休组成的立休图形,将图①中的一个小正方体改变位置后如图②.则三视图发生改变的是()A.主视图B.俯视图C.左视图D.主视图、俯视图和左视图9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤311.如图,数轴上点M所表示的数可能是()A.1.5B.﹣1.6C.﹣2.6D.﹣3.412.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A. B. C. D.13.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对14.用因式分解法解方程,下列方法中正确的是( )A.(2x-2)(3x-4)=0,∴2-2x=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x-2)(x-3)=2×3,∴x-2=2或x-3=3D.x(x+2)=0,∴x+2=015.图中的AD是安装在广告架AB上的一块广告牌,AC和DE分别表示太阳光线.若某一时刻广告牌AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,广告牌的顶端A到地面的距离AB=20m,则广告牌AD的高为()A.5mB. mC.15mD. m16.设二次函数y=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数1y=y2+y1的图象与x轴仅有一个交点,则()A.a(x1-x2)=dB.a(x2-x1)=dC.a(x1-x2)2=dD.a(x1+x2)2=d二、填空题:17.若m的平方根是5a+1和a-19,则m= .18.分解因式:x2+3x(x-3)-9=19.如图,已知等边△ABC的边长为3,点E在AC上,点F在BC上,且AE=CF=1,则AP•AF的值为.三、计算题:20.计算:21.计算:四、解答题:22.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.23.如图,已知△ABC和△ADE均为等边三角形,BD、CE交于点F.(1)求证:BD=CE;(2)求锐角∠BFC的度数.24.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是多少?(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是6的倍数的概率.25.如图所示,L,L2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间1x(h)的函数关系图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.26.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD(CD⊥AE),在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米,试求该校地下停车场的高度AC及限高CD(≈1.73,结果精确到0.1米)27.如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.参考答案1.D2.D3.B4.B5.A6.A7.A8.A9.C10.C11.C12.D13.A14.A15.A16.B17.答案为:m=256.18.答案为:(x-3)(4x+3)_.19.答案为:3.20.答案为:-1;21.原式= ==22.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.23.(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,,∴△EAC≌△DAB,即可得出BD=CE.(2)解:由(1)△EAC≌△DAB,可得∠ECA=∠DBA,又∵∠DBA+∠DBC=60°,在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,则∠BFC=180°﹣∠ACB﹣(∠ECA+∠DBC)=180°﹣60°﹣60°=60°.24.解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,∴P(牌面是偶数)=0.5;(2)列表如下:由表可知共有16∴P(组成的两位数恰好是6的倍数)=3/16.25.解:(1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2.由图可知L1过点(0,2),(500,17),∴∴k1=0.03,b1=2,∴y1=0.03x+2(0≤x≤2000).由图可知L2过点(0,20),(500,26),同理y2=0.012x+20(0≤x≤2000).(2)两种费用相等,即y1=y2,则0.03x+2=0.012x+20,解得x=1000.∴当x=1000时,两种灯的费用相等.(3)显然前2000h用节能灯,剩下的500h,用白炽灯.26.解:连接AC,∵∠ABE=90°,∠E=30°,∴AB=0.5AE=8,∴AC=8﹣1.2=6.8,∴CD=AC•sin∠EAB=6.8×≈5.9,答:地下停车场的高度AC为6.8米,限高CD约为5.9米.27.解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DE O.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形DOGF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGF=AG•FG=﹣a3+4a2﹣3a,∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FDA的最大值为.∴点P的坐标为(,).。
2017年河北省石家庄市中考数学二模试卷;一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是();A.4和﹣4 B.﹣3和C.﹣2和 D.0和02.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160° B.140° C.60°D.50°3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+15.下面的图形中,既是轴对称图形又是中心对称图形的是;()A.B.C.D.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70°B.40°C.70°或40°D.70°或55°8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个B.中位数是2.5个C.众数是2个D.众数是5个10.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A . =B . =C . =D . =11.(2分)定义新运算:a※b=,则函数y=3※x 的图象大致是( )A .B .C .D .12.(2分)如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x 轴、y 轴交于A 、B 两点,以A 为圆心,适当长为半径画弧分别交AB 、AO 于点C 、D ,再分别以C 、D 为圆心,大于CD 的长为半径画弧,两弧交于点E ,连接AE 并延长交y 轴于点F ,则下列说法正确的个数是( );①AF 是∠BAO 的平分线;②∠BAO=60°;③点F 在线段AB 的垂直平分线上;④S △AOF :S △ABF =1:2.A.1 B.2 C.3 D.413.(2分)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60°B.65°C.70°D.75°14.(2分)如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.15.(2分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB 于点D .设BP=x ,BD=y ,则y 关于x 的函数图象大致是( )A .B .C .D .16.(2分)在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ,2n ﹣1)C .(2n ﹣1,2n +1)D .(2n ﹣1,2n)二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA ,人类的DNA 是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为 .18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N 两点间的距离是cm.19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.三、解答题(本题共69分);20.(4分)计算:(﹣1)0+2﹣1﹣+|1﹣|21.(5分)如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)22.(9分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN 这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.23.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a 的值为 ; ②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是 .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.24.(10分)四边形ABCD 的对角线交于点E ,有AE=EC ,BE=ED ,以AB 为直径的半圆过点E ,圆心为O .(1)利用图1,求证:四边形ABCD 是菱形.(2)如图2,若CD 的延长线与半圆相切于点F ,已知直径AB=8.①连结OE ,求△OBE的面积.②求扇形AOE 的面积.25.(10分)如图,已知点A (0,2),B (2,2),C (﹣1,﹣2),抛物线F :y=x 2﹣2mx+m 2﹣2与直线x=﹣2交于点P .(1)当抛物线F 经过点C 时,求它的表达式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤﹣2,比较y 1与y 2的大小;(3)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.26.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x 天(x 为正整数)销售的相关信息,如表所示:(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y (元)关于x (天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?27.(12分)如图,在矩形ABCD 和矩形PEFG 中,AB=8,BC=6,PE=2,PG=4.PE 与AC 交于点M ,EF 与AC 交于点N ,动点P 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动,伴随点P 的运动,矩形PEFG 在射线AB 上滑动;动点K 从点P 出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).(1)当t=1时,KE= ,EN= ;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?2017年河北省石家庄市中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题,各2分)1.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和0【考点】17:倒数.【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A.160° B.140° C.60°D.50°【考点】JA:平行线的性质.【分析】先根据邻补角的定义计算出∠2=180°﹣∠1=140°,然后根据平行线的性质得∠B=∠2=140°.【解答】解:如图,∵∠1=40°,∴∠2=180°﹣40°=140°,∵CD∥BE,∴∠B=∠2=140°.故选:B.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.3.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.4.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.5.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】根据负数没有平方根求出x的范围,表示在数轴上即可.【解答】解:由函数y=,得到3x+6≥0,解得:x≥﹣2,表示在数轴上,如图所示:故选A【点评】此题考查了在数轴上表示不等式的解集,以及函数自变量的取值范围,熟练掌握平方根定义是解本题的关键.7.若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70°B.40°C.70°或40°D.70°或55°【考点】KH:等腰三角形的性质.【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①70°是底角,则顶角为:180°﹣70°×2=40°;②70°为顶角;综上所述,顶角的度数为40°或70°.故选:C.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.8.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】因为AB⊥BC,所以∠ABC=90°,则x+y=90°;∠ABD的度数比∠DBC的度数的2倍少15°,则x=2y﹣15;由此联立得出方程组即可.【解答】解:设∠ABD与∠DBC的度数分别为x,y,根据题意得.故选:B.【点评】此题考查二元一次方程组的运用,注意此题的等量关系:第一个等量关系从垂直定义可得∠ABD+∠DBC=90°,第二个是∠ABD的度数=∠DBC的度数×2倍﹣15.9.小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个B.中位数是2.5个C.众数是2个D.众数是5个【考点】VB:扇形统计图;W4:中位数;W5:众数.【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选C.【点评】本题考查了扇形统计图的知识,通过图形观察出投进2球的人数最多是解题的关键.10.如图,已知AB∥CD∥EF,那么下列结论中正确的是()A . =B . =C . =D . =【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:∵AB ∥CD ∥EF ,∴=,A 错误;=,B 错误;=,∴=,C 正确;=,D 错误,故选:C .【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.11.定义新运算:a※b=,则函数y=3※x 的图象大致是( )A .B .C .D .【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】先根据新定义运算列出y 的关系式,再根据此关系式及x 的取值范围画出函数图象即可.【解答】解:根据新定义运算可知,y=3※x=,(1)当x≥3时,此函数解析式为y=2,函数图象在第一象限,以(3,2)为端点平行于x轴的射线,故可排除C、D;(2)当x<3时,此函数是反比例函数,图象在二、四象限,可排除A.故选B.【点评】此题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.如图,在平面直角坐标系中,一次函数y=x+1的图象分别与x轴、y轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于CD的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A.1 B.2 C.3 D.4【考点】F8:一次函数图象上点的坐标特征;KF:角平分线的性质;KG:线段垂直平分线的性质.【分析】根据角平分线的作法可得①正确,再直线的斜率可得∠BAO=60°,再根据线段垂直平分线的性质逆定理可得③正确,根据直角三角形的性质得出AF=2OF,再由AF=BF 得出BF=2OF,进而可得④正确.【解答】解:由题意可知AF是∠BAO的平分线,故①正确;∵一次函数y=x+1∴k=,∴∠BAO=60°,故②正确;∵∠BAO=60°,∴∠ABO=30°,∵AF是∠BAO的平分线,∴∠BAF=30°,∴∠BAF=∠ABO,∴AF=BF,∴点F在AB的垂直平分线上,故③正确;∵∠OAF=30°,∴AF=2OF.∵AF=BF,∴BF=2OF,∴S△AOF:S△ABF=1:2,故④正确.故选D.【点评】此题考查的是作图﹣基本作图,角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.13.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A.60°B.65°C.70°D.75°【考点】L3:多边形内角与外角.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知, =⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故选D.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.14.如图,在平面直角坐标系中,一条直线与反比例函数y=(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数y=(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为()A.4 B.C.5 D.【考点】G5:反比例函数系数k的几何意义.【分析】根据点A、B在反比例函数y=(x>0)的图象上,可设出点B坐标为(,m),再根据B为线段AC的中点可用m表示出来A点的坐标,由AD∥x轴、BE∥x轴,即可用m表示出来点D、E的坐标,结合梯形的面积公式即可得出结论.【解答】解:∵点A、B在反比例函数y=(x>0)的图象上,设点B的坐标为(,m),∵点B为线段AC的中点,且点C在x轴上,∴点A的坐标为(,2m).∵AD∥x轴、BE∥x轴,且点D、E在反比例函数y=(x>0)的图象上,∴点D的坐标为(,2m),点E的坐标为(,m).∴S梯形ABED=(﹣+﹣)×(2m﹣m)=.故选B.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及梯形的面积,解题的关键是用m表示出来A、B、E、D四点的坐标.本题属于基础题,难度不大,解决该题型题目时,只要设出一个点的坐标,再由该点坐标所含的字母表示出其他点的坐标即可.15.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是()A.(2n﹣1,2n﹣1)B.(2n,2n﹣1)C.(2n﹣1,2n+1)D.(2n﹣1,2n)【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点B n是线段C n A n+1的中点,由此即可得出点B n的坐标.【解答】解:观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴A n(2n﹣1,2n﹣1﹣1).观察图形可知:点B n是线段C n A n+1的中点,∴点B n的坐标是(2n﹣1,2n﹣1).故选A.【点评】本题考查了一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“A n(2n﹣1,2n﹣1﹣1)”是解题的关键.二、填空题(本小题共3小题,每小题3分,共9分)17.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30000000个核苷酸,30 000 000用科学记数法表示为3×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30 000 000=3×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N 两点间的距离是5cm.【考点】M4:圆心角、弧、弦的关系.【分析】根据题意得到MN=BC,当正方形纸片卷成一个圆柱时,EF卷成一个圆,线段卷成圆上一段弧,该段弧所对的圆心角为×360°,要求圆柱上M,N两点间的距离即求弦MN的长.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段EF形成一直径为10cm的圆,线段EF为圆上的一段弧.所对的圆心角为:×360°=120°,所以圆柱上M,N两点间的距离为:2×5×sin60°=5cm.故答案为:5.【点评】此题实质考查了圆上弦的计算,需要先找出圆心角再根据弦长公式计算,熟练掌握公式及性质是解本题的关键.19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2 .【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P 在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.三、解答题(本题共69分)20.计算:(﹣1)0+2﹣1﹣+|1﹣|【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣1)0+2﹣1﹣+|1﹣|=1+﹣3+﹣1=﹣2【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK 的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)【考点】SD:作图﹣位似变换;KQ:勾股定理.【分析】(1)分别延长BA、BC、BD到A′、C′、D′,使BA′=2BA,BC′=2BC,BD′=2BD,然后顺次连接A′BC′D′即可得解;(2)根据网格图形,重叠部分正好是以格点为顶点的平行四边形,求出两邻边的长的,然后根据平行四边形的周长公式计算即可.【解答】解:(1)如图所示:四边形A′BC′D′就是所要求作的梯形;(2)四边形A′BC′D′与五边形EFGHK重叠部分是平行四边形EFGD′,ED′=FG=1,在Rt△EDF中,ED=DF=1,由勾股定理得EF==,∴D′G=EF=,∴四边形A′BC′D′与五边形EFGHK重叠部分的周长=ED′+FG+D′G+EF,=1+1++,=2+2.故答案为:2+2.【点评】本题考查了利用位似变换作图,关键是根据位似变换的定义找出点A、C、D的对应点的位置.22.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)在Rt△ABE中,由tan60°==,即可求出AB=10•tan60°=17.3米;(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC 的交点为点H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大楼的影子落在台阶MC这个侧面上,故小猫仍可以晒到太阳.【解答】解:(1)当α=60°时,在Rt△ABE中,∵tan60°==,∴AB=10•tan60°=10≈10×1.73=17.3米.即楼房的高度约为17.3米;(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=17.3米,∴CF=AF ﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大楼的影子落在台阶MC 这个侧面上,∴小猫仍可以晒到太阳.【点评】本题考查了解直角三角形的应用,锐角三角函数定义,理解题意,将实际问题转化为数学问题是解题的关键.23.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为12 ;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是44% .(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)①根据各组频数之和等于总数可得a的值;②由频数分布表即可补全直方图;(2)用成绩大于或等于80分的人数除以总人数可得;(3)列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)①由题意和表格,可得:a=50﹣6﹣8﹣14﹣10=12,②补充完整的频数分布直方图如下图所示,故答案为:12;(2)∵测试成绩不低于80分为优秀,∴本次测试的优秀率是:×100%=44%,故答案为:44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BA、BC、BD,所以小明和小强分在一起的概率为: =.【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.24.(10分)(2017•石家庄二模)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求扇形AOE的面积.【考点】MR:圆的综合题.【分析】(1)首先利用对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,进而利用菱形的判定方法得出答案;(2)①首先求出△ABD的面积进而得出S△OBE=S△ABD;②首先求出扇形AOE的圆心角,进而利用扇形面积求出答案.【解答】(1)证明:∵AE=EC,BE=ED,∴四边形ABCD是平行四边形,∵AB为直径,且过点E,∴∠AEB=90°,即AC⊥BD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)解:①连结OF,∵DC的延长线于半圆相切于点F,∴OF⊥CF,∵FC∥AB,∴OF即为△ABD中AB边上的高,∴S△ABD=AB×OF=×8×4=16,∵点O是AB中点,点E是BD的中点,∴S△OBE=S△ABD=4;②过点D作DH⊥AB于点H,∵AB∥CD,OF⊥CF,∴FO⊥AB,∴∠F=∠FOB=∠DHO=90°,∴四边形OHDF为矩形,即DH=OF=4,∵在Rt△DAH中,sin∠DAB==,∴∠DAH=30°,∵D点O,E分别为AB,BD中点,∴OE∥AD,∴∠EOB=∠DAH=30°,∴∠AOE=180°﹣∠EOB=150°,∴S扇形AOE==π.【点评】此题主要考查了圆的综合以及菱形、矩形的判定方法、扇形面积求法等知识,正确掌握菱形的判定与性质是解题关键.25.(10分)(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式.【分析】(1)根据抛物线F:y=x2﹣2mx+m2﹣2过点C(﹣1,﹣2),可以求得抛物线F 的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或或,解得,﹣2≤m≤0或2≤m≤4.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.(10分)(2017•石家庄二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:。
河北省2017年中考数学模拟试卷(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省2017年中考数学模拟试卷(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省2017年中考数学模拟试卷(含解析)的全部内容。
2017年河北省中考数学模拟试卷一、选择题(本题共16个小题,共42分)1.计算(﹣3)×2的结果是( )A.5 B.﹣5 C.6 D.﹣62.计算(﹣a2)3+(﹣a3)2的结果是()A.﹣2a5B.0 C.2a5 D.﹣2a63.2017年1月,某公司新开发了一款智能手机,该手机的磁卡芯片直径为0.000001米,这个数据用科学记数法表示为()A.1×10﹣4米B.1×10﹣5米C.1×10﹣6米D.1×10﹣7米4.如图,在菱形ABCD中,∠DAC=25°,则∠B=( )A.120°B.130°C.140°D.150°5.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是( )A.点B与点D B.点A与点C C.点A与点D D.点B与点C6.若a2﹣b2=﹣,a+b=﹣,则a﹣b的值为( )A.B.﹣C.2 D.47.若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A. B. C. D.8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色,黑色球的概率稳定在15%和40%,则口袋中白色球的个数很可能是()A.25 B.26 C.29 D.279.小明买书需用34元钱,付款时恰好用了1元和5元的纸币共10张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是()A.x+10(x﹣50)=34 B.x+5(10﹣x)=34 C.x+5(x﹣10)=34 D.5x+(10﹣x)=34 10.小明拿来n个形状大小完全相同的正方体木块,整齐地摆放在桌上,其三视图如图所示,则n的值是( )A.7 B.8 C.9 D.1011.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°12.如图,已知矩形OABC面积为,它的对角线OB与双曲线相交于D且OB:OD=5:3,则k=( )A.6 B.12 C.24 D.3613.如图,AB是⊙O的直径,DC是弦,若∠COB=68°,则∠BDC的度数等于()A.30°B.32°C.34°D.45°14.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A.B.C.D.15.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt﹣2(a,b是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可得到最佳加工时间为( )A.3.75分钟B.4。
河北省石家庄市桥西区中考数学模拟试卷二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)1.(3分)(•桥西区模拟)神舟九号飞船发射成功,一条相关的微博被转发了3570000次,3570000这个数用科学记数法表示为 3.57×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:3 570 000=3.57×106,故答案为:3.57×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)(•荆门)定义a※b=a2﹣b,则(1※2)※3=﹣2 .考点:有理数的混合运算.专题:新定义.分析:按照定义的规则计算.解答:解:根据题意可知,(1※2)※3=(1﹣2)※3=﹣1※3=1﹣3=﹣2.答案:﹣2.点评:此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.3.(3分)(•威海)如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与 2 个砝码C的质量相等.考点:二元一次方程组的应用.分析:此题可以分别设砝码A、B、C的质量是x,y,z.然后根据两个天平列方程组,消去y,得到x和z之间的关系即可.解答:解:设砝码A、B、C的质量是x,y,z.根据题意,得,①+②,得2x=4z,x=2z.即1个砝码A与2个砝码C的质量相等.点评:此题注意正确根据天平列方程组,再进一步运用加减法进行消元.4.(3分)(•长春)如图,⊙P与x轴切于点O,点P的坐标为(0,1).点A在⊙P上,且位于第一象限,∠APO=120°.⊙P 沿x轴正方向滚动,当点A第一次落在x轴上时,点A的横坐标为.(结果保留π)考点:弧长的计算;坐标与图形性质;切线的性质.专题:压轴题.分析:当点A第一次落在x轴上时,点A的横坐标为OA的弧长,根据弧长公式计算即可.解答:解:弧OA=.点评:本题主要考查了弧长公式的计算.5.(3分)(•甘孜州)如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是①②③.考点:动点问题的函数图象.专题:压轴题;动点型.分析:一次函数与正比例函数动点函数图象的问题.解答:解:此题由解析式求点的坐标,再求线段长,是数形结合的典范.当x=5时,d=2=AF,故①正确;当x=0时,d=5=BF,故②正确;OA=OF+FA=5,故③正确.当x=0时,BF=5,OF=3,OB=4,故④错误.故答案为①②③.点评:本题是今年出现的一种新题型,以多选题的形式出现,从考生所填的项中,能看出学生思维层次上的差异,弥补了填空题的不足.答题时,不少学生选择④,有的考生甚至填入⑤,说明学生对这类新题型的缺乏答题策略,对没有把握的结论宁可少选,也不可乱选;即宁缺勿滥.6.(3分)(•德州)长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为或.1 / 6考点:一元一次方程的应用.专题:压轴题;操作型.分析:根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1﹣a,a.由1﹣a<a可知,第二次操作时所得正方形的边长为1﹣a,剩下的矩形相邻的两边分别为1﹣a,a﹣(1﹣a)=2a﹣1.由于(1﹣a)﹣(2a﹣1)=2﹣3a,所以(1﹣a)与(2a ﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a>2a ﹣1;②1﹣a<2a﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.解答:解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.此时,分两种情况:①如果1﹣a>2a﹣1,即a <,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a >,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为或.点评:本题考查了一元一次方程的应用,解题的关键是分两种情况:①1﹣a>2a﹣1;②1﹣a<2a﹣1.分别求出操作后剩下的矩形的两边.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)7.(9分)(•桥西区模拟)先化简,再求值:(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算,即可求出值.解答:解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.8.(9分)(•天津)我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量单位:t,并将调查结果绘成了如下的条形统计图:(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?考点:条形统计图;用样本估计总体;算术平均数;中位数;众数.专题:图表型.分析:(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t的用户所占的百分比,再进一步估计总体.解答:解:(1)观察条形图,可知这组样本数据的平均数是:∴这组样本数据的平均数为6.8(t).∵在这组样本数据中,6.5出现了4次,出现的次数最多,∴这组数据的众数是6.5(t).∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是6.5,有,∴这组数据的中位数是6.5(t).(2)∵10户中月均用水量不超过7t的有7户,有50×=35.∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t的约有35户.点评:本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.9.(9分)(•桥西区模拟)注意:为了使同学们更好地解答本题,下面提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.结合以上分析完成填空:如图②,用含x的代数式表示:AB= (20﹣6x)cm;AD= (30﹣4x)cm;矩形ABCD的面积为(24x2﹣260x+600) cm2.列出方程并完成本题解答.考点:一元二次方程的应用.分析:因为每个竖彩条的宽为3x,图中有两个竖条,所以得到AB=20﹣2•3x=20﹣6x,又每个横彩条的宽为2x,图中有两个横条,所以BC=30﹣2•2x=30﹣4x,然后用AB•BC即为矩形ABCD的面积,从题中已知可知矩形ABCD的面积等于总体面积的,根据题中的等量关系:矩形ABCD的面积=(1﹣)×30×20,列出方程求解,再根据条件取值.解答:解:(1)(20﹣6x),(30﹣4x),(24x2﹣260x+600);(2)根据题意,得24x2﹣260x+600=(1﹣)×20×30,整理,得6x2﹣65x+50=0,解方程,得x1=,x2=10(不合题意,舍去),则2x=,3x=,答:每个横、竖彩条的宽度分别为cm ,cm.点评:本题考查了一元二次方程的应用.用含x的代数式正确表示矩形ABCD的长与宽是列对方程的关键.10.(9分)(•天津)已知图中的曲线是反比例函数y=(m为常数,m≠5)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当△OAB 的面积为4时,求点A的坐标及反比例函数的解析式.考点:反比例函数的性质;反比例函数系数k的几何意义;待定系数法求反比例函数解析式.专题:函数思想;转化思想.分析:(1)根据反比例函数的性质可求得比例函数的图象分布在第一、第三象限,所以m﹣5>0即可求解;(2)图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S=|k|,可利用△OAB的面积求出k值.解答:解:(Ⅰ)这个反比例函数图象的另一支在第三象限.(1分)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(3分)(Ⅱ)如图,由第一象限内的点A在正比例函数y=2x的图象上,设点A的横坐标为a,∵点A在y=2x上,∴点A的纵坐标为2a,而AB⊥x轴,则点B的坐标为(a,0)∵S△OAB=4,∴a•2a=4,解得a=2或﹣2(负值舍去)∴点A的坐标为(2,4).(6分)又∵点A在反比例函数y=的图象上,∴4=,即m﹣5=8.∴反比例函数的解析式为y=.(8分)点评:主要考查了反比例函数的性质和反比例函数(k≠0)中k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.11.(9分)(•安徽)如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图;(2)求的值.考点:作图—应用与设计作图.专题:压轴题.分析:(1)已知中的①和②,③和④形状大小分别完全相同,结合图中数据可知①④能拼成一个直角三角形,②③能拼成一个直角三角形,并且这两个直角三角形形状大小相同,利用这两个直角三角形即可拼成矩形;(2)利用拼图前后的面积相等,可列:[(x+y)+y]y=(x+y)2,整理即可得到答案.3 / 6解答:解:(1)如图;(5分)(说明:其它正确拼法可相应赋分.)(2)解:由拼图前后的面积相等得:[(x+y)+y]y=(x+y)2,可得:x2+xy﹣y2=0,因为y≠0,再除以y2得到:,解得:或=(负值不合题意,舍去).点评:本题主要考查:学生动手能力,但此题与平时训练的题正好逆过来,要求由正方形变成矩形,逆向思维.难点是求:“”的值,学生平时没有做过这种类型,丢分率高.12.(9分)(•桥西区模拟)已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程:(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.考点:全等三角形的判定与性质;勾股定理.分析:(1)将△ACM沿直线CE对折,得△DCM,连DN,证明△CDN≌△CBN,再利用勾股定理求出即可;(2)将△ACM沿直线CE对折,得△GCM,连GN,证明△CGN≌△CBN,进而利用勾股定理求出即可.解答:(1)证明:将△ACM沿直线CE对折,得△DCM,连DN,则△DCM≌△ACM.有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.又由CA=CB,得 CD=CB.由∠DCN=∠ECF﹣∠DCM=45°﹣∠DCM,∠BCN=∠ACB﹣∠ECF﹣∠ACM=90°﹣45°﹣∠ACM,得∠DCN=∠BCN.又CN=CN,∴△CDN≌△CBN.∴DN=BN,∠CDN=∠B.∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.∴在Rt△MDN中,由勾股定理,得MN2=DM2+DN2.即MN2=AM2+BN2.(2)关系式MN2=AM2+BN2仍然成立.证明:将△ACM沿直线CE对折,得△GCM,连GN,则△GCM≌△ACM.有CG=CA,GM=AM,∠GCM=∠ACM,∠CGM=∠CAM.又由CA=CB,得 CG=CB.由∠GCN=∠GCM+∠ECF=∠GCM+45°,∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM.得∠GCN=∠BCN.又CN=CN,∴△CGN≌△CBN.有GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°﹣∠CAB=135°,∴∠MGN=∠CGM﹣∠CGN=135°﹣45°=90°.∴在Rt△MGN中,由勾股定理,得MN2=GM2+GN2.即MN2=AM2+BN2.点评:此题主要考查了勾股定理以及全等三角形的证明,根据已知作出正确的辅助线是解题关键.13.(9分)(•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.考点:二次函数的应用.专题:压轴题.分析:(1)利用h=2.6将(0,2)点,代入解析式求出即可;(2)利用当x=9时,y=﹣(x﹣6)2+2.6=2.45,当y=0时,,分别得出即可;(3)根据当球正好过点(18,0)时,y=a(x﹣6)2+h还过点(0,2)点,以及当球刚能过网,此时函数解析式过(9,2.43),y=a(x﹣6)2+h还过点(0,2)点时分别得出h的取值范围,即可得出答案.解答:解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴y=a(x﹣6)2+h过(0,2)点,∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,(2)当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界;(3)当球正好过点(18,0)时,y=a(x﹣6)2+h还过点(0,2)点,代入解析式得:,解得:,此时二次函数解析式为:y=﹣(x﹣6)2+,此时球若不出边界h≥,当球刚能过网,此时函数解析式过(9,2.43),y=a(x﹣6)2+h还过点(0,2)点,代入解析式得:,解得:,此时球要过网h≤,故若球一定能越过球网,又不出边界,h 的取值范围是:≤h≤.点评:此题主要考查了二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,再根据题意确定范围.14.(9分)(•天津)已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.考点:相似三角形的判定与性质;二次函数综合题;平行线的性质;直角三角形全等的判定;勾股定理;翻折变换(折叠问题).专题:综合题;数形结合.分析:(Ⅰ)因为折叠后点B与点A重合,那么BC=AC,可先设出C点的坐标,然后表示出BC,AC,在直角三角形OCA中,根据勾股定理即可求出C点的纵坐标,也就求出了C点的坐标;(Ⅱ)方法同(Ⅰ)用OC表示出BC,B′C然后在直角三角形OB′C中根据勾股定理得出x,y的关系式.由于B′在OA上,因此有0≤x≤2,由此可求出y的取值范围;(Ⅲ)根据(Ⅰ)(Ⅱ)的思路,应该先得出OB″,OC的关系,知道OA,OB的值,那么可以通过证Rt△COB″∽Rt△BOA来实现.∠B″CO和∠CB″D是平行线B″D,OB的内错角,又因为∠OBA=∠CB″D,因此∠B″CO=∠OBA,即CB″∥BA,由此可得出两三角形相似,得出OC,OB″的比例关系,然后根据(1)(2)的思路,在直角三角形OB″C中求出OC的值,也就求出C点的坐标了.解答:解:(Ⅰ)如图①,折叠后点B与点A重合,则△ACD≌△BCD.设点C的坐标为(0,m)(m>0),则BC=OB﹣OC=4﹣m.∴AC=BC=4﹣m.在Rt△AOC中,由勾股定理,AC2=OC2+OA2,即(4﹣m)2=m2+22,解得m=.∴点C的坐标为(0,);(Ⅱ)如图②,折叠后点B落在OA边上的点为B′,∴△B′CD≌△BCD.∵OB′=x,OC=y,∴B'C=BC=OB﹣OC=4﹣y,在Rt△B′OC中,由勾股定理,得B′C2=OC2+OB′2.∴(4﹣y)2=y2+x2,即y=﹣x2+2.由点B′在边OA上,有0≤x≤2,∴解析式y=﹣x2+2(0≤x≤2)为所求.∵当0≤x≤2时,y随x的增大而减小,5 / 6∴y的取值范围为≤y≤2;(Ⅲ)如图③,折叠后点B落在OA边上的点为B″,且B″D∥OC.∴∠OCB″=∠CB″D.又∵∠CBD=∠CB″D,∴∠OCB″=∠CBD,∵CB″∥BA.∴Rt△COB″∽Rt△BOA.∴,∴OC=2OB″.在Rt△B″OC中,设OB″=x0(x0>0),则OC=2x0.由(Ⅱ)的结论,得2x0=﹣x02+2,解得x0=﹣8±4.∵x0>0,∴x0=﹣8+4.∴点C的坐标为(0,8﹣16).点评:本题综合考查了运用轴对称、相似三角形的性质和勾股定理的知识进行计算的能力.折叠型动态问题是近年来中考试题中的热点问题,它可以考查学生的综合能力,如想象能力、动手操作及创新意识能力等等,对于这类问题,通常从原图中选取满足条件的基本图形进行分析、解决问题.。
2017年河北省石家庄市桥西区中考数学二模试卷一、选择题(本大题共16小题,共42分)1.(3分)与﹣3的和为0的数是()A.3 B.﹣3 C.D.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()A.B.C.D.3.(3分)下列计算正确的是()A.(a2)3=a5B.a﹣2•a2=a﹣4C.3﹣=3 D.=34.(3分)下列图形中由AB∥CD能得到∠1=∠2的是()A.B.C.D.5.(3分)实数a,b,c在数轴上对应点的位置大致如图所示,则下列式子成立的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b D.a﹣c<b﹣c6.(3分)下列关于菱形、矩形的说法正确的是()A.菱形的对角线相等且互相平分B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形7.(3分)化简的结果是()A. B.C. D.2x+28.(3分)如图,△ABC是一块三条边长均不相等的薄板,要在△ABC薄板中裁剪出一个面积最大的圆形薄板,则圆形薄板的圆心应是△ABC的()A.三条高的交点B.三条中线的交点C.三边垂直平分线的交点D.三个内角角平分线的交点9.(3分)下列关于一次函数y=﹣2x+1的说法,其中正确的是()A.图象经过第一、二、三象限B.图象经过点(﹣2,1)C.当x>1时,y<0 D.y随x的增大而增大10.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:步骤1:分别以点A,D为圆心,以大于AD的长为半径,在AD两侧作弧,两弧交于点M,N;步骤2:连接MN,分别交AB,AC于点E,F;步骤3:连接DE,DF.下列叙述不一定...成立的是()A.线段DE是△ABC的中位线B.四边形AFDE是菱形C.MN垂直平分线段AD D.=11.(2分)某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2017年该产品的产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)2C.y=D.y=100+100(1+x)+100(1+x)212.(2分)如图,点B是⊙O的劣弧上一点,连接AB,AC,OB,OC,AC交OB于点D,若∠A=36°,∠C=27°,则∠B=()A.81°B.72°C.60°D.63°13.(2分)如图,一支反比例函数y=的图象经过点A,作AB⊥x轴于点B,连接OA,若S=3,则k的值为()△AOBA.﹣3 B.3 C.﹣6 D.614.(2分)关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是()A.①②B.①③C.②③D.①②③15.(2分)小华进行了5次射击训练后,计算出这5次射击的平均成绩为8环,方差为s12,随后小华又进行了第6次射击,成绩恰好是8环,并计算出这6此射击成绩的方差为s22,则下列说法正确的是()A.s12=s22B.s12<s22C.s12>s22D.无法确定s12与s22的大小16.(2分)如图1,在等边△ABC中,点D,E分别是BC,AC边上的中点,点P 为AB边上的一个动点,设AP=x,连接PE,PD,PC,DE,其中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.线段PE B.线段PD C.线段PC D.线段DE二、填空题(本大题共3小题,共10分)17.(3分)计算:=.18.(3分)一个n边形的内角和是其外角和的2倍,则n=.19.(4分)如图,直线l经过平面直角坐标系的原点O,且与x轴正方向的夹角是30°,点A的坐标是(0,1),点B在直线l上,且AB∥x轴,则点B的坐标是,现将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线l上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线l上,顺次旋转下去…,则点A6的横坐标...是.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=﹣,等式右边是通常的加法、减法及除法运算,例如2⊗3=﹣=+=1.(1)求(﹣2)⊗3的值;(2)若x⊗2=1,求x的值.21.(9分)如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC 的角平分线BF交DE于△ABC内一点P,连接PC.(1)若∠ACP=24°,求∠ABP的度数;(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:.22.(9分)某校组织甲、乙两队开展“保护生态环境知识竞赛”,满分为10分,得分均为整数,规定得分达到6分及以上为合格,达到9分及以上为优秀,如图是甲、乙两队学生这次竞赛成绩分布条形统计图.根据以上信息,请解答下面的问题:(1)在下面甲、乙两队的成绩统计表中,a=,b=c=.(2)小华同学说:“我在这次比赛中得到了7分,这在我所在的小队成绩中属于中等偏上的位置!”观察(1)中的表格,小华是队的学生;(填“甲”或“乙”)(3)甲队同学认为:甲队的合格率、优秀率均高于乙队,所以甲队的成绩好于乙队.但乙队同学不同意甲队同学的说法,认为乙队的成绩要好于甲队.请你写出两条支持乙队同学观点的理由.(4)学校要从从甲、乙两队获得优秀的学生中,选取两名同学参加市级比赛,则恰好同时选中的两人均为甲队学生的概率为.23.(9分)某营业厅对手机话费业务有如下的优惠:优惠规则:①用户手机账户原有话费不能低于240元;②办理业务时,首先从手机账户中一次性扣除240元,并把这240元抵为300元话费,然后将这300元话费分12次,在每月的15号等额返还到手机账户;③每月1号从手机账户中扣除话费49元,当月不再扣除其他任何费用;④每月1号手机账户的话费余额不足以扣除49元时,视为欠费,则当月不再返还等额的话费.小明的手机账户中原有话费400元,办理了这项优惠业务,设小明的手机账户中每个月末的话费余额是y(元),月数为x(个),则(1)每个月等额返还的话费是元,第2个月末的话费余额是元;(2)求y关于x的函数关系式;(3)若不续费,小明的手机第几个月会欠费?24.(10分)在菱形ABCD中,AB=2,AC是对角线,∠B=60°,点E在BC边上,点F在DC边上,且∠EAF=60°,AE与DC的延长线交于点M,AF与BC的延长线交于点N.(1)如图1,若点E为BC边上的中点.①求证:△ACM≌△ACN;②CM•NC的值是.(2)如图2,若点E为BC边上的任意点(不与点B,C重合),请说明CM•NC 是一个定值.25.(10分)抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是;(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点M在AC边上,点N从点C出发沿折线CB﹣BA运动到点A停止,点P是点C关于直线MN的对称点,连接MP,NP(当点N与点C,A重合时,点P均与点C重合).(1)若CM=2,①又当点N在CB上,MP∥BC时,则CN=,MN=;②又当MN∥AB时,求CN的长;(2)在(1)的条件下,求点P到AB边的距离的最小值,并求出当取得这个最小值时,点P运动路线的长是多少?(参考数据:sin54°=cos36°≈,sin36°=cos54°≈,结果保留π)(3)设MC=a(a>2),其他条件不变,当有且只能有唯一的点P落在线段AB 上时,直接写出a的取值范围.2017年河北省石家庄市桥西区中考数学二模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分)1.(3分)与﹣3的和为0的数是()A.3 B.﹣3 C.D.【解答】解:﹣3+3=0,∴与﹣3的和为0的数是3.故选:A.2.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()A.B.C.D.【解答】解:从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.3.(3分)下列计算正确的是()A.(a2)3=a5B.a﹣2•a2=a﹣4C.3﹣=3 D.=3【解答】解:A、(a2)3=a6,故此选项错误;B、a﹣2•a2=1,故此选项错误;C、3﹣=2,故此选项错误;D、=3,正确.故选:D.4.(3分)下列图形中由AB∥CD能得到∠1=∠2的是()A.B.C.D.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故本选项错误;B、∵AB∥CD,∴∠1=∠3,又∵∠2=∠3,∴∠1=∠2,故本选项正确;C、根据AB∥CD可得∠BAD=∠CDA,不能推出∠1=∠2,故本选项错误;D、根据AB∥CD不能推出∠1=∠2,故本选项错误;故选B.5.(3分)实数a,b,c在数轴上对应点的位置大致如图所示,则下列式子成立的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b D.a﹣c<b﹣c【解答】解:由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣a>﹣b,a﹣c<b﹣c,故选D6.(3分)下列关于菱形、矩形的说法正确的是()A.菱形的对角线相等且互相平分B.矩形的对角线相等且互相平分C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形【解答】解:A、错误.菱形的对角线互相垂直平分.B、正确.矩形的对角线相等且互相平分.C、错误.对角线互相垂直的四边形不一定是菱形.D、错误.对角线相等的四边形不一定是矩形.故选B.7.(3分)化简的结果是()A. B.C. D.2x+2【解答】解:原式=•(x﹣1)=.故选C.8.(3分)如图,△ABC是一块三条边长均不相等的薄板,要在△ABC薄板中裁剪出一个面积最大的圆形薄板,则圆形薄板的圆心应是△ABC的()A.三条高的交点B.三条中线的交点C.三边垂直平分线的交点D.三个内角角平分线的交点【解答】解:△ABC是一块三条边长均不相等的薄板,要在△ABC薄板中裁剪出一个面积最大的圆形薄板,则最大圆的圆心即为三角形的内心,三角形的内心是三个角平分线的交点,故选D.9.(3分)下列关于一次函数y=﹣2x+1的说法,其中正确的是()A.图象经过第一、二、三象限B.图象经过点(﹣2,1)C.当x>1时,y<0 D.y随x的增大而增大【解答】解:A、∵函数y=﹣2x+1中,k=﹣2<0,b=1>0,∴该函数的图象经过一、二、四象限,故本选项错误;B、x=﹣2时,y=﹣2×(﹣2)+1=5,故本选项错误;C、∵函数y=﹣2x+1中,k=﹣2<0,则y随x的增大而减小,直线与x轴的交点为(,0),∴当x>1时,y<0,故本选项正确;D、∵函数y=﹣2x+3中,k=﹣2<0,b=1>0,∴当x值增大时,函数y值减小,故本选项错误;故选C.10.(3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:步骤1:分别以点A,D为圆心,以大于AD的长为半径,在AD两侧作弧,两弧交于点M,N;步骤2:连接MN,分别交AB,AC于点E,F;步骤3:连接DE,DF.下列叙述不一定...成立的是()A.线段DE是△ABC的中位线B.四边形AFDE是菱形C.MN垂直平分线段AD D.=【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF为菱形,故B,C正确;∵四边形AEDF为菱形,∴DE∥AC,∴=,故D正确.故选A.11.(2分)某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2017年该产品的产量为y吨,则y关于x的函数关系式为()A.y=100(1﹣x)2B.y=100(1+x)2C.y=D.y=100+100(1+x)+100(1+x)2【解答】解:根据题意,得:y关于x的函数关系式为y=100(1+x)2,故选:B.12.(2分)如图,点B是⊙O的劣弧上一点,连接AB,AC,OB,OC,AC交OB于点D,若∠A=36°,∠C=27°,则∠B=()A.81°B.72°C.60°D.63°【解答】解:由圆周角定理得:∠BOC=2∠A=72°,∵∠ODA=∠BOC+∠C=72°+27°=99°,∠ODA=∠B+∠A,∴∠B=99°﹣36°=63°;故选:D.13.(2分)如图,一支反比例函数y=的图象经过点A,作AB⊥x轴于点B,连=3,则k的值为()接OA,若S△AOBA.﹣3 B.3 C.﹣6 D.6【解答】解:设A点坐标为A(x,y),由图可知A点在第二象限,∴x<0,y>0,又∵AB⊥x轴,∴|AB|=y,|OB|=|x|,=×|AB|×|OB|=×y×|x|=3,∴S△AOB∴﹣xy=6,∴k=﹣6故选C.14.(2分)关于x的方程mx2﹣4x﹣m+5=0,有以下说法:①当m=0时,方程只有一个实数根;②当m=1时,方程有两个相等的实数根;③当m=﹣1时,方程没有实数根.则其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当m=0时,原方程为﹣4x+5=0,解得:x=,∴当m=0时,方程只有一个实数根;②当m=1时,原方程为x2﹣4x+4=0,∵△=(﹣4)2﹣4×1×4=0,∴当m=1时,方程有两个相等的实数根;③当m=﹣1时,原方程为x2+4x﹣6=0,∵△=42﹣4×1×(﹣6)=40>0,∴当m=﹣1时,方程有两个不相等的实数根.综上所述:正确的说法有①②.故选A.15.(2分)小华进行了5次射击训练后,计算出这5次射击的平均成绩为8环,方差为s12,随后小华又进行了第6次射击,成绩恰好是8环,并计算出这6此射击成绩的方差为s22,则下列说法正确的是()A.s12=s22B.s12<s22C.s12>s22D.无法确定s12与s22的大小【解答】解:6次成绩的平均数为8环,由方差公式得:s12>s22,故选:C.16.(2分)如图1,在等边△ABC中,点D,E分别是BC,AC边上的中点,点P 为AB边上的一个动点,设AP=x,连接PE,PD,PC,DE,其中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.线段PE B.线段PD C.线段PC D.线段DE【解答】解:设等边三角形边长为1,则0≤x≤1,如图1,分别过点E、C、D作AB的垂线,垂足分别为F、G、H,根据等边三角形的性质可知,当x=时,线段PE有最小值;当x=时,线段PC有最小值;当x=时,线段PD有最小值;∵点E、D分别是AC,BC边的中点∴线段DE的长为定值.根据图2可知,当x=时,函数有最小值,故这条线段为PE.故选A.二、填空题(本大题共3小题,共10分)17.(3分)计算:=0.2.【解答】解:==0.2.故答案为:0.2.18.(3分)一个n边形的内角和是其外角和的2倍,则n=6.【解答】解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;19.(4分)如图,直线l经过平面直角坐标系的原点O,且与x轴正方向的夹角是30°,点A的坐标是(0,1),点B在直线l上,且AB∥x轴,则点B的坐标是(,1),现将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线l上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线l上,顺次旋转下去…,则点A6的横坐标...是+.【解答】解:∵点A的坐标是(0,1),∠ABO=30°,AB∥x轴,∴AB=,AO=1,∴点B的坐标为(,1),由题可得,A1的横坐标为+,A2的横坐标为+,A3的横坐标为3+,A4的横坐标为3+3,A5的横坐标为+4,A6的横坐标为+,故答案为:(,1),+.三、解答题(本大题共7小题,共68分)20.(9分)定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=﹣,等式右边是通常的加法、减法及除法运算,例如2⊗3=﹣=+=1.(1)求(﹣2)⊗3的值;(2)若x⊗2=1,求x的值.【解答】解:(1)原式=﹣=﹣3(2)由题意可知:﹣=11﹣(x﹣2)=x1﹣x+2=xx=经检验,x=是原方程的解,21.(9分)如图,在△ABC中,∠A=60°,点D是BC边的中点,DE⊥BC,∠ABC 的角平分线BF交DE于△ABC内一点P,连接PC.(1)若∠ACP=24°,求∠ABP的度数;(2)若∠ACP=m°,∠ABP=n°,请直接写出m,n满足的关系式:m+3n=120.【解答】解:(1)∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP,∵∠A=60°,∠ACP=24°,∴∠PBC+∠PCB+∠ABP=120°﹣24°,∴3∠ABP=120°﹣24°,∴∠ABP=32°;(2)∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∴∠PBC+∠PCB+∠ABP=120°﹣m°,∴3∠ABP=120°﹣m°,∴3n°+m°=120°,故答案为:m+3n=120.22.(9分)某校组织甲、乙两队开展“保护生态环境知识竞赛”,满分为10分,得分均为整数,规定得分达到6分及以上为合格,达到9分及以上为优秀,如图是甲、乙两队学生这次竞赛成绩分布条形统计图.根据以上信息,请解答下面的问题:(1)在下面甲、乙两队的成绩统计表中,a= 6.8,b=7.5c=6.(2)小华同学说:“我在这次比赛中得到了7分,这在我所在的小队成绩中属于中等偏上的位置!”观察(1)中的表格,小华是甲队的学生;(填“甲”或“乙”)(3)甲队同学认为:甲队的合格率、优秀率均高于乙队,所以甲队的成绩好于乙队.但乙队同学不同意甲队同学的说法,认为乙队的成绩要好于甲队.请你写出两条支持乙队同学观点的理由.(4)学校要从从甲、乙两队获得优秀的学生中,选取两名同学参加市级比赛,则恰好同时选中的两人均为甲队学生的概率为.【解答】解:(1)a=×(4×1+6×5+7×1+8×1+9×1+10×1)=6.8,b==7.5,c为6;(2)因为甲的中位数为6,而乙的中位数为7,如果成绩属于中等偏上的位置,则应该为甲组;(3)乙队的平均分高于甲队的平均分;乙的方差小于甲队的方差,乙队的成绩比较稳定;(4)画树状图为:(甲队的优秀学生用A、A表示,乙队的优秀学生用B表示)共有6种等可能的结果数,其中恰好同时选中的两人均为甲队学生的结果数为2,所以恰好同时选中的两人均为甲队学生的概率==.故答案为6.8,7,6;甲;.23.(9分)某营业厅对手机话费业务有如下的优惠:优惠规则:①用户手机账户原有话费不能低于240元;②办理业务时,首先从手机账户中一次性扣除240元,并把这240元抵为300元话费,然后将这300元话费分12次,在每月的15号等额返还到手机账户;③每月1号从手机账户中扣除话费49元,当月不再扣除其他任何费用;④每月1号手机账户的话费余额不足以扣除49元时,视为欠费,则当月不再返还等额的话费.小明的手机账户中原有话费400元,办理了这项优惠业务,设小明的手机账户中每个月末的话费余额是y(元),月数为x(个),则(1)每个月等额返还的话费是25元,第2个月末的话费余额是112元;(2)求y关于x的函数关系式;(3)若不续费,小明的手机第几个月会欠费?【解答】解:(1)300÷12=25(元),400﹣240﹣(49﹣25)×2=160﹣24×2=160﹣48=112(元).答:每个月等额返还的话费是25元,第2个月末的话费余额是112元;(2)依题意有y=400﹣240﹣(49﹣25)x=160﹣24x.故y关于x的函数关系式为y=160﹣24x;(3)若不续费,话费余额不足以扣除49元时,视为欠费,则160﹣24x<49,解得x>4,故第5个月末的话费余额不足以49元,故小明的手机第6个月会欠费.故答案为:25,112.24.(10分)在菱形ABCD中,AB=2,AC是对角线,∠B=60°,点E在BC边上,点F在DC边上,且∠EAF=60°,AE与DC的延长线交于点M,AF与BC的延长线交于点N.(1)如图1,若点E为BC边上的中点.①求证:△ACM≌△ACN;②CM•NC的值是12.(2)如图2,若点E为BC边上的任意点(不与点B,C重合),请说明CM•NC 是一个定值.【解答】(1)①证明,∵AC是菱形ABCD的对角线,∠B=60°,点E为BC边上的中点,∴∠MAC=∠NAC=30°,∠ACD=∠ACB=60°,∴∠ACM=∠ACN=120°.在△ACM与△ACN中,,∴△ACM≌△ACN(ASA);②解:∵∠MAC=30°,∠ACM=120°,∴∠AMC=30°,∴CM=CA=2,∵△ACM≌△ACN,∴CM=CN,∴CM•NC=CM2=12.故答案是:12;(2)证明:∵∠EAF=60°,即∠MAC+∠NAC=60°.又∠ACD=60°,∴∠MAC+∠AMC=60°,∴∠AMC=∠NAC.又∠ACM=∠ACN=120°,∴△ACM∽△NCA,∴=,由题意可知,△ABC是等边三角形,∴AC=AB=2,∴CM•NC=AC2=(2)2=12,即CM•NC是一个定值.25.(10分)抛物线L:y=a(x﹣x1)(x﹣x2)(常数a≠0)与x轴交于点A(x1,0),B(x2,0),与y轴交于点C,且x1•x2<0,AB=4,当直线l:y=﹣3x+t+2(常数t>0)同时经过点A,C时,t=1.(1)点C的坐标是(0,3);(2)求点A,B的坐标及L的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L的大致图象;(4)将L向右平移t个单位长度,平移后y随x的增大而增大部分的图象记为G,若直线l与G有公共点,直接写出t的取值范围.【解答】解:(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3),(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4∴L的顶点坐标为(﹣1,4);(3)函数图象如图;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≥t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点M在AC边上,点N从点C出发沿折线CB﹣BA运动到点A停止,点P是点C关于直线MN的对称点,连接MP,NP(当点N与点C,A重合时,点P均与点C重合).(1)若CM=2,①又当点N在CB上,MP∥BC时,则CN=2,MN=2;②又当MN∥AB时,求CN的长;(2)在(1)的条件下,求点P到AB边的距离的最小值,并求出当取得这个最小值时,点P运动路线的长是多少?(参考数据:sin54°=cos36°≈,sin36°=cos54°≈,结果保留π)(3)设MC=a(a>2),其他条件不变,当有且只能有唯一的点P落在线段AB 上时,直接写出a的取值范围a=或3<a≤6.【解答】解:(1)①连接CP,如图1所示:由对称的性质得:PM=CM=2,PC⊥MN,∵MP∥BC,∠C=90°,∴∠PMC=90°,∴△PMC是等腰直角三角形,∴∠PCM=45°,∴∠PCN=90°﹣45°=45°,∴∠CNM=45°,∴△CMN是等腰直角三角形,∴CN=CM=2,MN=CM=2;故答案为:2,2;②当MN∥AB时,△MNC∽△ABC,∴,即,∴CN=;(2)P在M为圆心,CM为半径的圆周上运动,作MT⊥AB于T,如图2所示:则PT=MT﹣2,当MT最小时,P在线段MT上最小,∵AB==10,sinA===,∴MT=AM=(6﹣2)=,∴PT=﹣2=,即点P到AB边的距离的最小值为;∵cos∠AMT=sinA=,∴∠AMT=36°,∴∠CMT=180°﹣36°=144°,∴点P运动路线的长==;(3)分情况:①当圆M与AB相切时,sinA=,解得:a=;②当<a≤3时,圆M与AB有2个交点;③当3<a≤6时,圆M与线段AB仅1个交点;综上所述:当a=或3<a≤6时,圆M与线段AB有1个交点;即当有且只能有唯一的点P落在线段AB上时,a的取值范围是a=或3<a≤6;故答案为:a=或3<a≤6.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:PABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。