斜拉桥合理成桥状态的确定
- 格式:pptx
- 大小:1.52 MB
- 文档页数:28
施工监控课后习题整理第一章绪论----要点与作业一、四种大跨度桥梁主要施工方法与施工控制技术关键(一)混凝土梁桥施工方法:先简支后连续、顶推法、悬臂现浇法、悬臂拼装法悬臂法施工控制关键:主梁线形、合龙精度、主梁正应力、腹板主拉应力(二)拱式桥拱桥的施工技术1.支架法2.缆索吊装法3.悬臂法4.转体法拱桥施工控制关键:主拱圈线形、合龙精度、主梁线形、吊杆力(中、下承式拱桥)、系杆力(系杆拱桥)(三)斜拉桥主梁悬臂现浇施工钢箱梁吊装施工斜拉桥桥施工控制关键:主梁线形、斜拉索索力、合龙精度、主塔偏位(四)悬索桥悬索桥施工:猫道架设、主缆架设、吊杆安装、主梁架设、主梁架设方法【1.跨缆吊机法(大江大河)2.缆索吊机法(山区,江河)3.桥面吊机法(山区,江河)4.轨索运梁法(山区)5.顶推法(自锚式)】悬索桥施工控制关键:主缆线形、吊索索力、加劲梁安装、主索鞍偏位二、桥梁施工控制概念桥梁施工控制技术,就是把现代控制理论应用在桥梁施工过程中,确保在施工过程中,桥梁结构的内力、变形一直处于允许的安全范围内,确保最终的实际桥梁变形和内力符合设计理想的变形和内力的要求。
通过施工控制来解决:成桥设计目标;施工安全。
三、桥梁施工控制的任务与工作内容1) 施工状态的计算。
?即计算各施工状态的结构内力、应力、变位等理论值。
2) 状态变量的量测。
即量测各施工状态的结构内力、应力、变位等实际值。
3) 控制分析与调整。
对结构刚度、自重、?混凝土收缩与徐变等设计参数进行识别和预测,以理想成桥状态作为控制目标,通过对安装索力和立模标高等参数的调整,使最终实际成桥受力和线形状态满足设计要求,并且确保施工过程中受力安全。
第二章桥梁施工正装计算一、试述桥梁施工过程模拟计算的基本方法;一般用有限元法:平面杆系、空间杆系、精确空间模型(板壳、体元等)有限元法中混凝土收缩和徐变的计算方法:初应变法、等效弹性模量法等。
二、试述桥梁施工过程模拟计算中混凝土收缩和徐变的计算方法;徐变影响计算方法:初应变法;等效弹性模量法等。
叠合梁斜拉桥合理成桥索力确定新方法探讨摘要:叠合梁斜拉桥的主梁是一种组合结构,在确定合理成桥索力时,与其它类型的斜拉桥有着不同之处。
本文针对叠合梁斜拉桥的特点,结合具体算例,采用平面双层框架模型模拟主梁,首先根据零位移法初定一个成桥索力,然后在此基础上考虑恒载和活载的共同作用,根据应力平衡法确定主梁弯矩的合理恒载可行域,最后,根据索力对主梁弯矩的影响矩阵进行索力调整,所得索力更加符合斜拉桥的要求。
关键词:斜拉桥叠合梁合理成桥状态索力1.前言叠合梁斜拉桥就是主梁为钢结构,桥面系为混凝土结构的斜拉桥。
叠合梁斜拉桥的结构分析与其它类型的斜拉桥一样,确定理想的成桥索力是一个非常关键的问题。
同时,由于叠合梁斜拉桥又具有它自身的特点,使得在确定成桥索力时又存在着与众不同的问题[1]。
对于叠合梁斜拉桥,叠合梁一般可以按照常规的方法将混凝土翼缘板面积换算为等效的钢截面,然后按普通的斜拉桥的计算方法进行计算。
但这在进行施工过程的分析计算时又有很大的困难,计算过程比较繁琐。
本文采用平面双层框架模型对叠合梁进行模拟,可以很方便的根据施工顺序进行施工过程的模拟计算。
2.采用分步算法确定叠合梁斜拉桥合理成桥索力对于叠合梁斜拉桥来说,由于主梁截面由两种材料组成,在确定成桥状态时既要考虑钢主梁又要兼顾桥面板的受力,单一采用某一种方法难以取得满意的结果,往往需要综合比较使用才能达到设计者的要求。
本文以控制结构在正常使用状态下最大、小应力为主要目标,采用分步算法进行成桥索力优化。
2.1分步算法确定叠合梁斜拉桥合理成桥索力的步骤首先,用零位移法初定成桥状态。
用零位移法将能得到一个主梁和塔内弯矩较小、主梁线形合理,且索力基本均匀的成桥状态,但是这时的状态并不是最合理的,这种成桥状态也不是最终的目标,它是后面进行理想成桥状态调整的基础;根据主梁上下缘的拉压应力控制条件,综合考虑活载应力,即可得到主梁在成桥状态下恒载弯矩的合理范围[2];最后进行合理成桥状态调整。
斜拉桥的设计过程与一般梁式桥的设计过程有所不同。
对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。
对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。
因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。
确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书—《斜拉桥》。
MIDAS/Civil 程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。
1 .未闭合力功能通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用未知荷载系数’的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。
此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。
第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。
此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择体内力”第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。
此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择体外力”但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。
这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。
斜拉桥的合理成桥状态一、概述在通常意义下,桥梁的设计必须遵照适用、经济、安全和美观的基本原则,这在桥梁的初步设计阶段显得尤为突出。
桥梁初步设计要解决桥型方案问题,即根据行车、通航等使用要求,选定合适的桥梁类型和立面布置,确定主要的结构尺寸。
对于斜拉桥方案,需确定塔的个数、主跨大小、边跨与主跨比例、主梁的截面形式和高度、主塔的形式、斜拉索的布置、主梁与塔和墩的连接或支承方式等主要参数。
这些主要参数的确定通常是先根据经验初拟。
进行结构分析计算出设计内力,进行截面设计确定配筋和验算应力或裂纹,如果内力和截面设计结果不合理。
再修正有关参数重新作结构分析和截面设计,直至满足规范要求。
传统的设计方法在计算设计内力时,通常采用一次落架法计算恒载内力,这对于结构体系比牧简单的桥梁(如简支梁桥,采用一次落架法施工的中小型桥梁)来说是可行的,但对于斜拉桥,由于斜拉索需要进行预张拉,因此即使采用一次落架法施工,结构内力的计算也不是确定的。
斜拉桥一般采用悬臂法施工,最终的成桥恒载受力状态是通过施工过程一步步形成的,施工过程中斜拉索要逐根安装并进行张拉。
施工工序和张拉索力决定了桥梁在施工过程中的受力,也决定了成桥的恒载受力状态。
但张拉索力的确定又必须有一个已知的成桥恒载受力状态作为目标才能实现。
因此斜拉桥的设计计算首先要解决成桥受力状态的问题。
前,桥梁的设计规范采用极限状态理论,分正常使用和承载能力两种极限状态。
按正常使用极限状态验算结构刚度、截面应力或裂纹宽度:按承载能力极限状态验算截面的极限抗力。
通常按弹性理论进行结构内力计算,按此内力进行验算。
但由于斜拉桥为高次超静定结构,如果要分析结构的极限承载力,则必须考虑材料的塑性,充分计入材料和儿何非线性引起的结构内力重分布,才能真正求出结构的极限承载力,国内外在这方面有一些研究,但还有不少问题需要解决。
二、斜拉桥成桥受力状态确定方法斜拉桥成桥受力状态包括成桥恒载内力状态和主梁线形状态,并且对于混凝土斜拉桥,由于混凝土收缩徐变的影响,成桥后相当一段时间内恒载内力状态和主梁线形状态会随时间变化,通常认为5年后才能基本稳定。
斜拉桥的合理成桥状态
斜拉桥是一种以斜拉索支撑主梁的桥梁结构,其合理成桥状态是指在斜拉桥建成后,其结构应该达到的一种理想状态,以保证桥梁的安全、稳定和经济运行。
斜拉桥的合理成桥状态包括以下几个方面:
1. 结构稳定:斜拉桥的结构应该具有足够的稳定性,能够承受各种荷载和风载的作用,同时在地震等自然灾害下也能够保持稳定。
2. 安全可靠:斜拉桥的结构应该具有足够的安全性和可靠性,能够保证车辆和行人的安全通行,同时在发生事故时也能够保证救援和维修的便利性。
3. 经济性好:斜拉桥的结构应该具有良好的经济性,能够在设计、施工和运营过程中尽可能地减少成本和资源的浪费,同时能够实现长期的经济效益。
4. 美观性好:斜拉桥的结构应该具有良好的美观性,能够与周围环境相协调,同时能够体现出设计者的创意和技术水平。
为了达到斜拉桥的合理成桥状态,需要在设计、施工和运营过程中进行全面的考虑和规划,同时需要进行严格的质量控制和监测,确保斜拉桥的安全、稳定和经济运行。
斜拉桥的设计要点(1)结构几何尺寸的确定斜拉桥作为由塔、梁、索组成的组合体系,进行设计时必须综合考虑塔、梁、索三者之间的相互关系。
在桥跨布置、主梁断面形式、索塔形式、索塔高度及支承体系确定后,就可拟定主梁高度以及索塔截面尺寸,并根据主梁高度、受力及构造要求初拟各部分尺寸,然后用平面杆系程序进行试算调整。
调整的原则:①边跨配重应使结构在恒载作用下边墩支座不产生拉力,且在运营期间边墩支座的拉力应控制在一个适当的数值内(便于边墩设计和支座生产)。
②斜拉索的应力、索塔混凝土的压应力、主梁恒载弯矩都应根据桥梁的实际情况控制在合适的幅度内。
③结构体系刚度必须满足要求,主梁在汽车荷载作用下的挠度小于规范规定,并有一定的富余。
④尽量减少梁段类型,方便施工。
几何尺寸的拟定过程中还应结合桥位考虑结构的抗风和抗震要求,必要时应进行节段或全桥的风洞模型试验。
(2)整体静力分析一般来讲,斜拉桥静力分析是先确定合理的成桥状态,再进行施工过程计算,通过控制施工中每根拉索的安装索力来确保实现预定的合理成桥状态。
①合理的成桥状态在确定成桥状态时,起控制作用的往往是主梁的应力。
因此,成桥状态的确定应以主梁受力合理为目标,以应力平衡法来设计主梁恒载内力为佳。
该方法是:以主梁各截面上下缘的最大最小应力作为控制条件来确定其预应力大小和恒载弯矩。
对于混凝土梁一般以拉压应力控制,以截面上下缘的最大应力满足拉压应力控制条件为最理想。
用这种方法确定的预应力和主梁成桥恒载弯矩称之为理想值,其成桥状态称之为理想状态。
但恒载弯矩在一些控制区域(如跨中)准确地为理想值实际很难实现,设计时一般允许恒载弯矩有一定的活动范围,并将由此确定的预应力和主梁成桥恒载弯矩称之为合理值,其成桥状态称之为“合理状态”。
②静力分析计算成果合理的成桥状态确定之后,就可以对结构进行详细的静力分析计算。
静力分析的主要内容有:结构设计的施工流程在各阶段的应力、变形、初始索力等,以及成桥运营状态下,各截面的应力和变形。
斜拉桥施工状态的确定方法一、概述通常,斜拉桥要实现最终的成桥状态豁要经过一系列的施工步骤。
根据主梁的施工方法不同有支架现浇法、支架拼装法、顶推法、悬臂现浇法、悬臂拼装法。
从斜拉索的张拉次数不同可分为一次张拉法和多次张拉法。
从悬僻现浇挂篮的支承方式不同可分为后支点挂篮和前支点挂篮。
支架现浇法或支架拼装法的主梁是在支架上进行现浇或拼装的,一般为落地支架。
通常用于规模较小的斜拉桥。
顶推法是指主梁采用顶推法施工的情况,一般也只适用于较小规模的斜拉桥。
悬臂现浇法是利用挂篮进行主梁的施工,通常相应梁段的斜拉索必须同步施工,对于采用后支点挂篮施工的情况,一个标准梁段的施工工序通常为:①挂篮前移并立模定位;②安装钢筋等、浇注混凝土;③混凝土待强后,张拉梁内预应力;④挂对应梁段的斜拉索并进行张拉。
对于采用前支点挂篮施工的情况,一个标准梁段的施工工序通常为:①挂篮前移并立模定位;②挂当前梁段斜拉索与挂篮前端相连并进行第一次张拉;③安装钢筋等、浇注部分混凝土;④当前梁段斜拉索进行第二次张拉;⑤浇完梁段混凝土;⑥混凝土待强后张拉梁内预应力;⑦降挂篮,当前梁段斜拉索进行第三次张拉。
悬臂拼装法是利用浮吊或桥面吊机将预制好的梁段逐段拼装的,通常斜拉索也必须同步安装并张拉。
悬臂施工法(现浇或拼装)施工达到最大悬臂后,要进行合龙段施工,如标准的三跨双塔斜拉桥,一般分别以两个主塔为中心进行双悬臂施工,达到最大悬臂后先合龙边跨,然后再进行中跨合龙施工,各跨的合龙施工是斜拉桥施工中极其关键的环节,通常的合龙程序为:①安装合龙段混凝土施工的吊架;②配平衡重施加在合龙口两侧;③利用定位装置嵌定合龙口;④安装钢筋等、浇注合龙段混凝土并逐级去掉合龙口两侧的平衡重;⑤张拉合龙预应力束。
如果平衡重与合龙梁段的重盆相等,则合龙口嵌定装置基本上不承受由合龙段混凝土浇注引起的内力。
合龙程序还有一个核心问题就是平衡重施加的时间。
这里是在合龙口嵌定之前,施加在主梁最大悬臂状态下,如果在合龙门嵌定之后施加,则由于嵌定装置使主梁成为了连续结构,其受力情况完全不一样,并且,合龙口嵌定装置需承受由平衡重引起的很大的内力,对成桥状态的主梁弯矩影响很大,后者与前者相比,跨中区域产生较大的恒载正弯矩,与该区域的控制弯矩同号,是不利的。
斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。
通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。
在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。
有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。
斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。
本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。
根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。
主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。
主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。
还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。
此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。
弯曲能量最小法确定斜拉桥合理成桥索力杨希尧;杨树萍;蔡敏【摘要】斜拉桥成桥恒载内力的分布对其结构体系的好坏有重大的影响.斜拉桥恒载内力的优化过程也是一个设计过程.文章介绍了基于Midas/Civil 2010有限元软件,以某独塔斜拉桥为工程实例,利用弯曲能量最小法确定斜拉桥合理成桥索力,并与测定的实际成桥索力进行对比分析,确定弯曲能量最小法的的实用性.【期刊名称】《安徽建筑》【年(卷),期】2014(021)002【总页数】2页(P112,193)【关键词】斜拉桥;索力优化;弯曲能量【作者】杨希尧;杨树萍;蔡敏【作者单位】合肥工业大学土木与水利工程学院,安徽合肥230009;合肥工业大学土木与水利工程学院,安徽合肥230009;浙江水利水电专科学校,浙江杭州310018【正文语种】中文【中图分类】U4410 前言斜拉桥设计的首要任务就是确定该桥合理成桥状态,然后基于该成桥状态做进一步的分析,选择科学且安全的施工过程,使得斜拉桥在成桥时达到理想的受力状态。
合理的成桥恒载受力状态指的是斜拉桥施工完成之后,在自重、斜拉索拉力以及桥面铺装等恒载作用下,其结构内力达到预期的状态[1]。
1 基于Midas/Civil的弯曲能量最小法应用斜拉桥的索力优化方法中无约束的索力优化法,典型例子就是弯曲能量最小法[3]。
定理:在斜拉桥结构中,令结构单元的EI→0或者EA→∞,则斜拉桥一次落架时的内力状态与把结构弯曲能量最小作为调索目标时的内力状态是一致的。
证明:建立结构体系的目标函数是为了得到斜拉桥的合理索力Xi 的第一步。
对于目前实际工程中采用常规材料建造的斜拉桥,主梁和索塔截面的尺寸大小主要由相应的弯矩控制,所以结构承受弯矩所需要的材料用量大很多,因此用结构体系的弯曲应变能作为结构经济指标的衡量标准是可行的[4]。
弯曲能量最小法是以结构体系的弯曲应变能作为目标函数,使结构弯曲应变能达到最小,以此来得到优化的目的。