无源滤波器和有源滤波器特点
- 格式:docx
- 大小:21.67 KB
- 文档页数:5
什么是有源滤波器?他的工作原理是什么?
有源滤波器是现代电力系统中经常用到的仪器,它的一种新型电力装置,常见的主要是有源电力滤波器,常用于动态抑制谐波、补偿无功,能够对大小和频率都变化的谐波以及变化的无功进行补偿。
有源滤波器是一种新型的电力系统谐波治理设备,它主要用在电流运算电路和补偿电流发生电路方面,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的。
指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。
有源滤波器在工作的时候,需要提供电源,这也是它名称的来源,电源的主要作用就是用来补偿主电路的谐波,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF 有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。
有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高。
EMC基础之滤波三、有源滤波器[ 录入者:admin | 时间:2007-11-16 13:34:16 | 作者: | 来源:采集所得 | 浏览:602次 ]中国电磁兼容网第三节有源滤波器1.一、有源滤波器的特性有源滤波器是由有源器件(例如晶体管、集成运算放大器等)和阻容等元件组成的一类滤波器。
近年来,成运算放大器发展十分迅速,一些有源滤波器中的有源器件,几乎都是采用了集成运放。
与无源滤波器相比,有源滤波器一般具有下列特点:(1)由于使用了有源器件,信号在无源器件(例如电阻)上的损失可口在有源器件中得到补充。
因而,有可能在电路中优先采用损耗耗较大而体积较小的电阻来代替无源滤波器中的电感器件。
这样不仅可以使滤波器的重量和体积大大缩小,而且可以避免由电感所带来的非线性、参数调整困难以及制造成本高等缺点。
另外从抑制干扰的角度考虑,这样就从根本上排除了电感所具有的对电磁场敏感、易检取外界噪声和本身易向外界施放电磁干扰噪声的弊端。
(2)由于运算放大器具有输入阻抗高、输出阻抗低以及高增益、高稳定性和闭环增益等参数调整灵活的一系列优点,从而为有源滤波器的设计提供了很大的方便。
(3)有源滤波器频率精度高,一般可达到±3%~±0.5%;频率稳定性好,通常可做到10-3~10-5/℃;低频滤波特性好,例如用集成运放和阻容元件组成的有源滤波器可使滤波频率范围低达10ˉ3H Z,并且具有较好的频率稳定性。
这些指标,都是无源滤波器难以达到的。
(4)有源滤波器的上限频率由于受有源器件(主要是集成运放)本身带宽的限制,一般只用在几十千赫以下的频率范围内,其最高频率也只接近1M H Z,因而在更高的频率范围内一般均采用无源滤波器。
这是有源滤波器的最大缺点。
有源滤波器按其工作性质,仍可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种基本类型。
此外,还有移相滤波器和开关电容滤波器以及跟踪滤波器等类型。
2.二、低通滤波器低通滤波器是一种用于通过某一频率以下的低频信号,抑制或衰减该频率以上的高频信号的滤波电路。
电流滤波器原理电流滤波器是一种用于去除电路中电流中的杂波和谐波的电子元件。
它的原理基于对电流信号的频率特性进行调节,从而实现滤波效果。
在电子电路中,电流滤波器起着至关重要的作用,可以有效净化电流信号,保证电路正常运行。
电流滤波器主要分为有源滤波器和无源滤波器两种类型。
有源滤波器通过集成运算放大器等有源元件实现滤波功能,具有较高的增益和频率特性调节范围,适用于要求较高的滤波性能场合。
而无源滤波器则主要通过电阻、电容、电感等被动元件组成,其特点是结构简单、成本低廉,适用于一般的电流滤波需求。
电流滤波器的原理是利用电容、电感和电阻等元件对电路中的不同频率信号进行阻隔或通过,从而实现对电流信号的滤波效果。
在滤波器中,电容器主要用于通过高频信号,而电感主要用于通过低频信号,电阻则用于调节整个滤波器的阻抗匹配。
通过合理设计这些元件的参数,可以实现对不同频率信号的滤波效果。
电流滤波器的工作原理可以简单概括为:当电流信号进入滤波器时,经过电容、电感和电阻等元件的作用,不同频率的信号会受到不同程度的阻隔或通过,从而实现对电流信号的滤波处理。
通过这种方式,可以去除电路中的杂波和谐波,保证电路的稳定运行。
在实际应用中,电流滤波器广泛用于各种电子设备和系统中,如电源供应器、通信设备、工控系统等。
通过合理设置电流滤波器,可以有效减小电路中的干扰,提高系统的抗干扰能力,保证设备的正常运行。
总的来说,电流滤波器原理是基于对电流信号频率特性的调节,通过电容、电感和电阻等元件对不同频率信号进行阻隔或通过,从而实现对电路中电流信号的滤波处理。
电流滤波器在电子电路中扮演着重要的角色,可以有效净化电流信号,保证电路的正常运行。
在实际应用中,合理设计和使用电流滤波器可以提高系统的稳定性和可靠性,确保设备的正常工作。
摘要滤波器的功能是让一定频率范围内的信号通过,而将此频率范围之外的信号加以抑制或使其急剧衰减。
当干扰信号与有用信号不在同一频率范围之内,可使用滤波器有效的抑制干扰。
用LC网络组成的无源滤波器在低频范围内有体积重量大,价格昂贵和衰减大等缺点,而用集成运放和RC网络组成的有源滤波器则比较适用于低频,此外,它还具有一定的增益,且因输入与输出之间有良好的隔离而便于级联。
由于大多数反映生理信息的光电信号具有频率低、幅度小、易受干扰等特点,因而RC有源滤波器普遍应用于光电弱信号检测电路中。
关键字:滤波器;集成运放;RC网络;有源滤波器The function of the filter is to make certain frequency within the scope of the signal, and the frequency by outside the scope curbed the signal or sharp attenuation. When the disturbance signal and the useful signal not in the same frequency range, can use filter to suppress the interference effectively.With LC network consisting of passive filter in the low frequency within the area, volume weight expensive and attenuation shortcomings, but with integrated op-amp and RC network consisting of active filter is more applicable to low frequency, in addition, it also has some of the gain, and because between the input and output has good isolation and facilitate cascade. Since most reflect the photoelectric signal has a physical information low frequency and amplitude small, vulnerable to interference, and characteristics of the RC active filters widely applied electric light weak signal detection circuit.Filter;integrated op-amp;RC network;active filter引言滤波器的功能是让一定频率范围内的信号通过,而将此频率范围之外的信号加以抑制或使其急剧衰减。
有源电力滤波器和无源滤波器哪个发展前景比较大安科瑞王志彬2019.03大家都知道谐波治理无非有两种:一是有源电力滤波器装置二是无源滤波装置,但是到底哪个有发展前景,希望下面的介绍可以帮助到大家正确的分辨出有源和无源的前景:传统无源滤波器为T治理电网中的谐波,目前工业应用而言,无源电力滤波器(Passive Power Filter, PPF)以其投资少,效率高,结构简单,运行可靠,维护方便等优点而在众多领域得到了广泛使用。
但其也有诸多的缺点:滤波特性易受电力系统参数的影响,特别是在高压系统中,滤波器失谐状态下,难以满足治理要求;易与系统发生谐振,导致谐波放大,引起无源滤波器过载,甚至烧毁,危及电网安全;单独的无源电力滤波器难以避免无功倒送.此外无源滤波器中的电感、电容消耗大量有效材料,体积大,占地多。
有源电力滤波器由于传统无源滤波器存在固有缺陷,有源电力滤波器(Active Power Filter,APF)的概念于1971年由H.Sasaki和T.Machida提出[Wl,通过向电网注入反方向谐波电流来减少电源电流中的谐波成分,从而改善电源电流波形的新方法.1976年,LGyugyi和ECStyaula提出了用PWM逆变器构成的有源电力滤波器[[12]s1983年,赤木泰文等人提出的“三相电路瞬时无功功率理论”[13〕极大的推动了有源电力滤器的发展.90年代后,并伴随着新型电力半导体器件的出现,脉宽调制技术及高速数字信号处理器的发展,日本、美国、德国等工业发达国家有源电力滤波器已得到了高度重视和日益广泛的应用.目前许多国际著名公司均开发了相关APF产品,如ABB,TOSHIBA,SIEMENS等,其中较多的单台容量为数百千瓦的并联APF.我国在有源电力滤波器方面的研究起步较晚,直到1989年才见到这方面研究的文章,1993年才见到试验性的工业应用实验.21世纪初,研究单位主要集中在一些高等院校和少数研究机构,并取得了一定的科研成果近年来伴随着我国经济高速发展,谐波治理需求越来越迫切。
滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。
滤波器分为无源滤波器与有源滤波器两种:①无源滤波器:由电感L、电容C及电阻R等无源元件组成②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。
利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。
从功能来上有源滤波器分为:低通滤波器(L P F)、高通滤波器(H P F)、带通滤波器(B P F)、带阻滤波器(B E F)、全通滤波器(A P F)。
其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。
当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。
在实用电子电路中,还可能同时采用几种不同型式的滤波电路。
滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率f P及阻尼系数Q等。
带通滤波器(BPF)(a)电路图(b)幅频特性图1 压控电压源二阶带通滤波器工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。
典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。
如图1(a)所示。
电路性能参数通带增益中心频率通带宽度选择性此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。
例.要求设计一个有源二阶带通滤波器,指标要求为:通带中心频率通带中心频率处的电压放大倍数:带宽:设计步骤:1)选用图2电路。
2)该电路的传输函数:品质因数:通带的中心角频率:通带中心角频率处的电压放大倍数:取,则:图2 无限增益多路负反馈有源二阶带通滤波器电路。
第1篇一、模拟电子电路部分1. 请简要介绍基尔霍夫定律的内容及其应用。
2. 描述反馈电路的概念,并列举它们的应用。
(1)反馈的定义:(2)反馈的分类:a. 按反馈的效果分:b. 按反馈量的类型分:3. 负反馈电路的特点及其对放大电路性能的影响。
4. 交流负反馈四种组态及其应用。
5. 放大电路中引入负反馈的一般原则。
6. 有源滤波器和无源滤波器的区别。
7. PN结上所加端电压与电流符合欧姆定律吗?为什么具有单向导电性?在PN结加反向电压时果真没有电流吗?8. 二极管的伏安特性。
9. 三极管曲线特性:a. 输入特性曲线b. 输出特性曲线10. 放大电路的主要性能指标,如何实现?a. 放大倍数b. 输入电阻c. 输出电阻11. 晶体管单管放大电路的三种基本解法:a. 共射放大电路b. 共集放大电路c. 共基放大电路12. 为什么要设置静态工作点?如何求静态工作点?13. 直流通路与交流通路的画法。
14. 两种实用的共射放大电路:a. 阻容耦合共射放大电路(耦合电容的作用、特点?)b. 基本共集放大电路15. 三种接法的比较。
16. 各种场效应管的符号和特性曲线。
17. 开关电源和线性电源的优缺点和区别。
二、数字电子电路部分1. 请简要介绍数字电路与模拟电路的区别。
2. 请列举数字电路的主要特点。
3. 什么是数字信号?什么是模拟信号?4. 什么是逻辑门?请列举常见的逻辑门及其功能。
5. 什么是组合逻辑电路?什么是时序逻辑电路?6. 什么是编码器?什么是译码器?7. 什么是触发器?请列举常见的触发器及其功能。
8. 什么是计数器?请列举常见的计数器及其功能。
9. 什么是A/D转换器?什么是D/A转换器?10. 什么是串行通信?什么是并行通信?11. 什么是串行接口?什么是并行接口?12. 什么是中断?什么是DMA?13. 什么是逻辑代数?请列举逻辑代数的基本公式。
14. 什么是布尔代数?请列举布尔代数的基本公式。
滤波器的分类按元件分类,滤波器可分为:有源滤波器、无源滤波器、陶瓷滤波器、晶体滤波器、机械滤波器、锁相环滤波器、开关电容滤波器等。
按信号处理的方式分类,滤波器可分为:模拟滤波器、数字滤波器。
按通频带分类,滤波器可分为:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
除此之外,还有一些特殊滤波器,如满足一定频响特性、相移特性的特殊滤波器,例如,线性相移滤波器、时延滤波器、音响中的计杈网络滤波器、电视机中的中放声表面波滤波器等。
按通频带分类,有源滤波器可分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)等。
按通带滤波特性分类,有源滤波器可分为:最大平坦型(巴特沃思型)滤波器、等波纹型(切比雪夫型)滤波器、线性相移型(贝塞尔型)滤波器等。
按运放电路的构成分类,有源滤波器可分为:无限增益单反馈环型滤波器、无限增益多反馈环型滤波器、压控电源型滤波器、负阻变换器型滤波器、回转器型滤波器等。
有源滤波器的特点及分类1.有源滤波器的特点有源滤波器的频率范围是由直流到500KHZ,在低频范围内已取代了传统的LC滤波器。
特别是在很低频率下不可能实现LC滤波器,但有源滤波器却能给出满意的结果.1、有源滤波器它的输入阻抗高,输出阻抗极低,因而具有良好的隔离性能,所以各级之间均无阻抗匹配的要求。
2、易于制作截止频率或中心频率连续可调的滤波器且调整容易.3、如果使用电位器、可变电容器,有源滤波器的频率精度易于达到0。
5%。
4、不用电感器,体积小、重量轻,在低频情况下,这种优点就更极为突出。
5、设计有源滤波器比设计LC滤波器具灵活性,也可得到电压增益.但是应当注意,有源滤波器以集成运放作有源元件,所以一定要电源,输入小信号时受运放带宽有限的限制,输入大信号时受运放压摆率的限制,这就决定了有源滤波器不适用于高频范围。
目前实用范围大致在100KHZ以内,另一方面,在频率高于100KHZ时,无源滤波器的性能却比有源滤波器的好,当频率高于10MHZ时,无源滤波器则更显得优越。
电力滤波技术简介随着大量电力电子装置在电网的投入运行,谐波已被公认为电力系统的“污染”和“公害”,谐波问题以及谐波的治理问题随着电力系统的发展愈来愈引起广泛的关注。
目前谐波治理的方法主要有无源滤波技术和有源滤波技术两种。
一、有源滤波器与无源滤波器有源电力滤波器(APF)是一种用于动态抑制谐波、补偿无功的新型电力电子装置,它能够对大小和频率都变化的谐波以及变化的无功进行补偿,之所以称为有源,顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。
有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!目前有源滤波器能滤到50次谐波; 无源滤波器只能针对3,5,7,9等几次谐波。
无源滤波装置是目前应用最为广泛的谐波抑制手段,它是按照希望抑制的谐波次数专门量身制造的,采用电感、电容的调谐原理,将谐波陷落在滤波器中,以减少对电网的注入。
无源滤波装置结构简单,成本较低,技术已比较成熟,但是也存在着难以克服的缺陷:1、滤波特性受系统参数的影响较大,极易与系统或者其它滤波支路发生串并联谐振。
2、只能消除特定的几次谐波,而对其他的某次谐波则会产生放大作用3、滤波、无功补偿、调压等要求之间有时难以协调4、谐波电流增大时,滤波器负担随之加重,可能造成滤波器过载,甚至损坏设备。
5、有效材料消耗多,体积大有源滤波技术作为一种新型的谐波治理技术,是消除谐波污染、提高电能质量的有效工具,与无源滤波技术相比,有着无可比拟的优势,主要表现在以下几个方面。
1、实现了动态补偿,可对频率和大小均变化的无功功率进行补偿,对补偿对象的变化有极快的响应速度;2、有源滤波装置是一个高阻抗电流源,它的接入对系统阻抗不会产生影响,因此此类装置适合系列化,规模化生产;3、当电网结构发生变化时装置受电网阻抗的影响不大,不存在与电网阻抗发生谐振的危险,同时能抑制串并联谐振4、补偿无功功率时不需要储能元件,补偿谐波时所需要的储能元件不大5、用同一台装置可同时补偿多次谐波电流和非整数倍次的谐波电流,既可以对一个谐波和无功源进行单独补偿,也可对多个谐波和无功源进行集中补偿6、当线路中的谐波电流突然增大时有源滤波器不会发生过载,并且能正常发挥作用,不需要与系统断开7、装置可以仅输出所需要补偿的高次谐波电流,不输出基波无功功率,不但减小了有源滤波器的总容量,还可以避免轻负荷时发生无功倒送现象。
第 1 页 共 1 页 实验报告 课程名称: 信号分析与处理 指导老师: 杨欢老师 成绩:__________________ 实验名称: 无源滤波器和有源滤波器 实验类型: 基础实验 同组学生姓名
第三次实验 无源滤波器和有源滤波器(按照老师后来的要求修正) 一、实验目的 1.1熟悉模拟滤波器的构成及其特性。 1.2学会测量滤波器幅频特性的方法。 二、实验原理 2.1滤波器概述 模拟滤波器是一种能使有用频率信号通过而同时抑制(或大为衰减)无用频率信号的电子装置,工程 上常用它作信号处理、数据传送和抑制干扰等。以往的模拟滤波器电路主要采用无源元件R、L和C组成,为无源滤波器。无源滤波器结构简单、噪声小、无须电源,且其动态范围宽。从理论上讲,采用级联多个 RC电路可提高滤波器的阶次,从而达到提高衰减速度的目的,但它的倍频程选择性不好,各级间负载效应严重。 60 年代以来,集成运放获得了迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点,同时有源滤波器的参数更易调节,覆盖的频率范围很宽。此外,由于集成运放的开环电压增益和输入阻抗均很高,输出阻抗又低,有利于多级级联,并能方便地在不同的滤波器类型之间进行转换。构成有源滤波电路后还具有一定的电压放大和缓冲作用。 滤波器的一般结构如图2.1所示。图中的Vi(t)表示输入信号,Vo(t)为输出信号。
假设滤波器是一个线性时不变网络,则在复频域内有 式中A(s)是滤波器的系统函数,一般为复数。Vo(s)和Vi(s)分别对应输出、输入信号的拉普拉斯变换。对于实际频率(s=jw)来说,有)(j)j()j(eAA。这里)(为相频特性。此外,在滤波器中关
心的另一个量是时延特性d)(d)(。 通常用幅频也行来表征一个滤波电路的特性,欲使信号通过滤波器的失真很小,则相频和时延特性均需要考虑。当相频特性为线性,而时延特性为常数时,输出信号不失真。 对于幅频特性,通常把能够通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带的界限频率称为截止频率,实际滤波器的截止频率一般指归一化幅频特性在幅为0.707(-3dB)时对应的频率,若以信号的幅值平方表示信号功率,则该频率对应的点为半功率点。 理想滤波器在通带内应具有零衰减的幅频特性和线性的相频特性,而在阻带内应具有无限大的幅度衰减。通常通带和阻带的相互位置不同,滤波器通常可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器和全通滤波器等。 2.2五种滤波器 低通滤波器幅频特性如图2.2(a)所示,图中|A|表示低频增益的幅值。由图可知,它的功能是通过从零
哈尔滨理工大学实验报告课程名称:信号与系统实验实验名称:无源和有源滤波器设计班级学号姓名指导教师2020 年6 月7 日教务处印制一、实验预习(准备)报告1、实验目的1.了解 RC 无源和有源滤波器的种类、基本结构及其特性;2.分析和对比无源和有源滤波器的滤波特性;3.掌握滤波器的设计方法并完成设计和仿真。
2、实验相关原理及内容1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可以由RC 元件和有源器件构成的有源滤波器。
2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。
把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。
而通带与阻带的分界点的频率ωc 称为截止频率或称转折频率。
图1-1 中的|H(jω)|为通带的电压放大倍数,ω0为中心频率,ωcL和ωcH分别为低端和高端截止频率。
图1-1 各种滤波器的理想频幅特性3、图 1-2 所示,滤波器的频率特性 H(jω)(又称为传递函数),它用下式表示H(jω)=u2=A(ω)∠θ(ω)u1(3-1)式中 A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。
它们都可以通过实验的方法来测量图 1-2 滤波器。
图 1-2 滤波器模型图四种滤波器的实验线路如图 1-3 所示:图 1-3 各种滤波器的实验线路图3、实验方法及步骤设计1、滤波器的输入端接正弦信号发生器或扫频电源,滤波器的输出端接示波器或交流数字毫伏表,2、测试无源和有源低通滤波器的幅频特性。
3、无源和有源低通滤波器的仿真设计与幅频特性测试。
(1)测试RC 无源低通滤波器的幅频特性。
用图1-1(a)所示的电路,测试RC 无源低通滤波器的特性。
以下为滤波器的分类及特点,一起来看看吧。
一、滤波器的分类按所处理的信号分为模拟滤波器和数字滤波器两种。
按所通过信号的频段分为低通、高通、带通、带阻和全通滤波器五种。
低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声;高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量;带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声;带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过,又称为陷波滤波器。
全通滤波器:全通滤波器是指在全频带范围内,信号的幅值不会改变,也就是全频带内幅值增益恒等于1。
一般全通滤波器用于移相,也就是说,对输入信号的相位进行改变,理想情况是相移与频率成正比,相当于一个时间延时系统。
按所采用的元器件分为无源和有源滤波器两种。
根据滤波器的安放位置不同,一般分为板上滤波器和面板滤波器。
板上滤波器安装在线路板上,如PLB、JLB系列滤波器。
这种滤波器的优点是经济,缺点是高频滤波效果欠佳。
其主要原因是:1、滤波器的输入与输出之间没有隔离,容易发生耦合;2、滤波器的接地阻抗不是很低,削弱了高频旁路效果;3、滤波器与机箱之间的一段连线会产生两种不良作用:一个是机箱内部空间的电磁干扰会直接感应到这段线上,沿着电缆传出机箱,借助电缆辐射,使滤波器失效;另一个是外界干扰在被板上滤波器滤波之前,借助这段线产生辐射,或直接与线路板上的电路发生耦合,造成敏感度问题;滤波阵列板、滤波连接器等面板滤波器一般都直接安装在屏蔽机箱的金属面板上。
由于直接安装在金属面板上,滤波器的输入与输出之间完全隔离,接地良好,电缆上的干扰在机箱端口上被滤除,因此滤波效果相当理想。
二、滤波器的特点有源滤波器1、滤波精度高,谐波电流滤除率可达97%以上;2、滤波范围广,滤波次数:2--50次谐波及间谐波;3、对负载的波动响应快,响应时间为1us;4、动态注入电流以抑制谐波和补偿功率因数;5、不会与系统发生谐振;6、可多台组合扩展容量;7、抑制系统过电压,改善系统电压稳定性8、阻尼电力系统功率振荡;9、能抑制电压闪变、补偿三相不平衡、提高功率因数;10、系统的自我保护和稳定性极强。
什么叫有源滤波器?有源滤波是什么意思?有源滤波的作⽤以LC或RC等器件组成的⽆源滤波器进⾏信号处理时,它们的滤波特性(尤其是RC组成的多阶滤波)往往不容易做的很好,且会产⽣衰减,如果配上放⼤器(运放、晶体管),利⽤放⼤、反馈等⼿段,可以取得⽐较理想的幅频响应,并且可抵消衰减甚⾄得到增益。
例如可以做出最平坦幅频响应的巴特沃斯滤波器、通带内等纹波的切⽐雪夫滤波器、阻带等纹波的反切⽐雪夫滤波器、通带阻带均有纹波具有最窄过渡带的椭圆滤波器、时域最平坦特性的贝塞尔滤波器等,⽽⽤⽆源RC滤波器时很难形成这些复杂滤波特性形态。
由于放⼤器需要电源,所以被称有源滤波器。
顾名思义该装置需要提供电源,其应⽤可克服LC滤波器等传统的谐波抑制和⽆功补偿⽅法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,⽽且可以既补谐波⼜补⽆功;三相电路瞬时⽆功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者⽤的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。
有源滤波器同⽆源滤波器⽐较,治理效果好,主要可以同时滤除多次及⾼次谐波,不会引起谐振,但是价位相对⾼!有源滤波器是通过实时监测谐波信号,然后发出幅值相等,相位相同,⽅向相反的电流,来抵消谐波电流的。
它的主要作⽤除了滤除谐波,还可抑制闪变、补偿⽆功等。
有源滤波器的电压放⼤倍数和通带截⽌频率不会随着负载的变化⽽变化,有很强的带载能⼒。
有源电⼒滤波器由有源逆变器构成,与被补偿的谐波负载并联连接,通过实时检测负载电流波形,控制有源电⼒滤波器产⽣相应的补偿电压,使有源⽀路的阻抗对各次谐波都为零,滤除波形中的基波(50/60Hz)成分,将剩余部分的波形反向,通过控制IGBT的触发,将反向电流注⼊供电系统中,实现滤除谐波、动态补偿系统波动、抑制谐振、提⾼功率因素等四⼤功能。
从⽽提⾼滤波器的滤波效果。
电⼒有源滤波器的功能 1、滤除电流谐波 可以⾼效的滤除负荷电流中2~25次的各次谐波,从⽽使得配电⽹清洁⾼效,满⾜国标对配电⽹谐波的要求。
无源滤波器:这种电路主要有无源元件R、L和C组成。
有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。
集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。
无源滤波装置
该装置由电容器、电抗器,有时还包括电阻器等无源元件组成,以对某次谐波或其以上次谐波形成低阻抗通路,以达到抑制高次谐波的作用;由于SVC的调节范围要由感性区扩大到容性区,所以滤波器与动态控制的电抗器一起并联,这样既满足无功补偿、改善功率因数,又能消除高次谐波的影响。
国际上广泛使用的滤波器种类有:各阶次单调谐滤波器、双调谐滤波器、二阶宽颇带与三阶宽频带高通滤波器等。
1单调谐滤波器:一阶单调谐滤波器的优点是滤波效果好,结构简单;缺点是电能损耗比较大,但随着品质因数的提高而减少,同时又随谐波次数的减少而增加,而电炉正好是低次谐波,主要是2~7次,因此,基波损耗较大。
二阶单调谐滤波器当品质因数在50以下时,基波损耗可减少20~50%,属节能型,滤波效果等效。
三阶单调谐滤波器是损耗最小的滤波器,但组成复杂些,投资也高些,用于电弧炉系统中,2次滤波器选用三阶滤波器为好,其它次选用二阶单调谐滤波器。
2高通(宽频带滤波器,一般用于某次及以上次的谐波抑制。
当在电弧炉等非线性负荷系统中采用时,对5次以上起滤波作用时,通过参数调整,可形成该滤波器回路对5次及以上次谐波的低阻抗通路。
有源滤波器
虽然无源滤波器具有投资少、效率高、结构简单及维护方便等优点,在现阶段广泛用于配电网中,但由于滤波器特性受系统参数影响大,只能消除特定的几次谐波,而对某些次谐波会产生放大作用,甚至谐振现象等因素,随着电力电子技术的发展,人们将滤波研究方向逐步转向有源滤波器(Active PowerFliter,缩写为APF。
APF即利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。
它与无源滤波器相比,有以下特点:
a.不仅能补偿各次谐波,还可抑制闪变,补偿无功,有一机多能的特点,在性价比上较为合理;
b.滤波特性不受系统阻抗等的影响,可消除与系统阻抗发生谐振的危险;
c.具有自适应功能,可自动跟踪补偿变化着的谐波,即具有高度可控性和快速响应性等特点
一、无源滤波器的优点
无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应
用广泛的被动谐波治理方法。
二、无源滤波器的分类
无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。
2.1、调谐滤波器
调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率;
2.2、高通滤波器
高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。
三、无源滤波器和有源滤波器的区别
无源滤波器和有源滤波器,存在以下的区别:
3.1、工作原理
无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP 等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。
3.2、谐波处理能力
无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。
3.3、系统阻抗变化的影响
无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。
3.4、频率变化的影响
无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。
3.3、负载增加的影响
无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。
3.6、负载变化对谐波补偿效果的影响
无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。
3.7、设备造价
无源滤波器较低;有源滤波器太高。
3.8、应用场合对比分析
1.有源滤波容量单套不超过100KVA,无源滤波则无此限制;
2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。
3.有源滤波目前最高适用电网电压不超过430V,而低压无源滤波最高适用电网电压可达3000V。
4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。
无源滤波器又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。
无源滤波器的优点
无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。
无源滤波器的分类
无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。
调谐滤波器
调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率;
高通滤波器
高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。
无源滤波器的发展历程
3.1、1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。
3.2、20世纪50年代无源滤波器日趋成熟。
3.3、自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。
导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展;
3.4、到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。
3.5、80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。
3.6、90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。
当然,对滤波器本身的研究仍在不断进行。
我国滤波器行业现状
我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。
经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。
无源滤波器和有源滤波器的区别
无源滤波器和有源滤波器,存在以下的区别:
工作原理
无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。
谐波处理能力
无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。
系统阻抗变化的影响
无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。
频率变化的影响
无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。
负载增加的影响
无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。
负载变化对谐波补偿效果的影响
无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。
设备造价
无源滤波器较低;有源滤波器太高。
应用场合对比分析
1.有源滤波容量单套不超过100KVA,无源滤波则无此限制;
2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。
3.有源滤波目前最高适用电网电压不超过450V,而低压无源滤波最高适用电网电压可达3000V。
4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。
主要发展情况
由于无源滤波的具有大容量低价位的优点,钢铁行业的滤波都采用无源滤波,目前国内滤波市场(电力谐波治理市场)上主要以无源滤波为主。