0 1 n n C C ... C 2 n n n
15
幂 集 定义
P(A) = { B | BA }
设 A={a,b,c},则 P(A)={,{a},{b},{c},{a,b},{a,c},{b,c}{a,b,c}}
计数: 6
2.真子集: A B A B A B
真包含
3.集合相等: A B A B 且 B A
14
n元集,m元子集
含有n个元素的集合简称n元集,它的含有m 个(m≤n)元素的子集称为它的m元子集. 例题3.2:A={a,b,c},求A的全部子集. 0元子集,即空集,只有1个. 1 1元子集,即单元集, c 个 {a},{b},{c} 3 2 元子集 个 {a,b},{a,c}{b,c} 2 3元子集1个c 3 {a,b,c} n元集的集合个数为:
2
当时德国数学家康托尔试图回答一些涉及无穷量 的数学难题,例如“整数究竟有多少?”“一个 圆周上有多少点?”0—1之间的数比1寸长线段 上的点还多吗?”等等。而“整数”、“圆周上 的点”、“0—1之间的数”等都是集合,因此对 这些问题的研究就产生了集合论。
3
1903年,一个震惊数学界的消息传出:集合论 是有漏洞的!这就是英国数学家罗素提出的著名 的罗素悖论。 可以说,这一悖论就象在平静的数 学水面上投下了一块巨石,而它所引起的巨大反 响导致了第三次数学危机。
19
集合基本运算的定义
并
交 相对补 对称差
AB = { x | xA xB }
AB = { x | xA xB } AB = { x | xA xB } AB = (AB)(BA) = (AB)(AB)
绝对补