工程力学——第2章(力系的简化)
- 格式:pdf
- 大小:1.33 MB
- 文档页数:33
工程力学(静力学与材料力学)习题第2章力系的等效与简化2-1 脊柱上低于腰部的部位A是脊椎骨受损最敏感的部位,因为它可以抵抗由力F对A之矩引起的过大弯曲效应,如图所示。
已知F、d1和d2。
试求产生最大弯曲变形的角度 。
习题2-1图2-2 作用于铣刀上的力系可以简化为一个力和一个力偶。
已知力的大小为1200N,力偶矩的大小为240N·m,方向如图所示。
试求此力系对刀架固定端点O的力矩。
习题2-2图2-3 如图所示,试求F对点A的力矩。
习题2-3图习题2-6图2-4 图示作用于管板子手柄上的两个力构成一力偶,试求此力偶矩矢量。
2-5 齿轮箱有三个轴,其中A 轴水平,B 和C 轴位于yz 铅垂平面内,轴上作用的力偶如图所示。
试求合力偶。
2-6 槽钢受力如图所示。
试求此力向截面形心C 平移的结果。
2-7 截面为工字形的立柱受力如图所示。
试求此力向截面形心C 平移的结果。
2-8 平行力(F ,2F )间距为d ,试求其合力。
2-9 已知图示一平面力系对A (3,0),B (0,4)和C (–4.5,2)三点的主矩分别为:M A = 20kN ·m ,M B = 0,M C =–10kN ·m 。
试求该力系合力的大小、方向和作用线。
习题2-4图习题2-5图习题2-7图 习题2-8图75习题2-11图2-10 空间力系如图所示,其中力偶矩M = 24N·m,作用在Oxy平面内。
试求此力系向点O简化的结果。
2-11 图示电动机固定在支架上,它受到自重160N、轴上的力120N以及力偶矩为25N·m的力偶的作用。
试求此力系向点A简化的结果。
2-12 对于图示作用在平板上的平行力系,试求其合力。
习题2-9图习题2-10图习题2-12图z2-13 试确定作用在曲轴的各曲柄销中点的力系F k(k = 1,2,...,6)是否平衡。
假定各力F i(i = 1,2, (6)的大小均为F,其作用线均通过曲轴的轴线并与之相垂直,指向背离轴线。
工程力学(静力学与材料力学)习题详细解答(第2章)习题2-2图第2章 力系的简化2-1 由作用线处于同一平面内的两个力F 和2F 所组成平行力系如图所示。
二力作用线之间的距离为d 。
试问:这一力系向哪一点简化,所得结果只有合力,而没有合力偶;确定这一合力的大小和方向;说明这一合力矢量属于哪一类矢量。
解:由习题2-1解图,假设力系向C 点简化所得结果只有合力,而没有合力偶,于是,有∑=0)(F C M ,02)(=⋅++−x F x d F ,dx =∴,F F F F =−=∴2R ,方向如图示。
合力矢量属于滑动矢量。
2-2 已知一平面力系对A (3,0),B (0,4)和C (-4.5,2)三点的主矩分别为:M A 、M B 和M C 。
若已知:M A =20 kN·m 、M B =0和M C =-10kN·m ,求:这一力系最后简化所得合力的大小、方向和作用线。
解:由已知M B = 0知合力F R 过B 点;由M A = 20kN ·m ,M C = -10kN ·m 知F R 位于A 、C 间,且CD AG 2=(习题2-2解图)在图中设OF = d ,则θcot 4=dCD AG d 2)sin 3(==+θ (1) θθsin )25.4(sin d CE CD −== (2)即θθsin )25.4(2sin )3(dd −=+ d d −=+93 3=d习题2-1图习题2-1解图R∴ F 点的坐标为(-3, 0)合力方向如图所示,作用线过B 、F 点; 34tan =θ 8.4546sin 6=×==θAG 8.4R R ×=×=F AG F M A kN 6258.420R ==F 即 )kN 310,25(R=F 作用线方程:434+=x y 讨论:本题由于已知数值的特殊性,实际G 点与E 点重合。
2-3三个小拖船拖着一条大船,如图所示。
第2章 力系的简化2-1 三力作用在正方形上,各力的大小、方向及位置如图示,试求合力的大小、方向及位置。
分别以O 点和A 点为简化中心,讨论选不同的简化中心对结果是否有影响。
答: 45,N 66.5N 24===x R θ︒,合力作用线过A 点。
题2-1图 题2-2图 2-2 图示等边三角形ABC ,边长为l ,现在其三顶点沿三边作用三个大小相等的力F ,试求此力系的简化结果。
答:力偶,Fl m 23=,逆时针。
2-3 沿着直棱边作用五个力,如图示。
已知F 1=F 3=F 4=F 5=F ,F 2=2P ,OA =OC =a ,OB =2a 。
试将此力系简化。
答:力偶,191),cos(,193),(cos ),cos(,19-=-===k M j M i M P a M 。
题2-3图 题2-4图2-4 图示力系中,已知F 1=F 4=100N ,F 2=F 3=1002N ,F 5=200N ,a =2m ,试将此力系简化。
答:力,R =200 N ,与y 轴平行。
2-5 图示力系中F 1=100N ,F 2=F 3=1002N ,F 4=300N ,a =2m ,试求此力系简化结果。
答:力螺旋,R =200 N ,平行于 z 轴向下,M =200 N ⋅m题2-5图 题2-7图 2-6 化简力系F 1(P ,2P ,3P )、F 1(3P ,2P ,P ),此二力分别作用在点A 1(a ,0,0)、A 2(0,a ,0)。
答: 力螺旋,3,34aP M P R ==。
2-7 求图示平行力系合力的大小和方向,并求平行力系中心。
图中每格代表1m 。
答:力,R =25 kN ,向下,平行力系中心(4.2, 5.4, 0)。
2-8 将题2-8中15kN 的力改为 40kN ,其余条件不变。
力系合成结果及平行力系中心将如何变化?答:力偶。
无平行力系中心。
2-9 用积分法求图示正圆锥曲面的重心。
答:h z y x C C C 31,0===。
第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。
答:F/2;62F/5。
2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。
答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。
答:-60N;320N.m2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE 的一个力F,图中α=30°,则此力对各坐标轴之矩为:M x(F)= ;M Y(F)= ;M z(F)= 。
答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/42-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。
答:M x(F)=160 N·cm;M z(F)=100 N·cm图2-42 图2-432-6.试求图示中力F 对O 点的矩。
解:a: M O (F)=F l sin αb: M O (F)=F l sin αc: M O (F)=F(l 1+l 3)sin α+ F l 2cos αd: ()2221l l F F M o +=αsin2-7.图示力F=1000N ,求对于z 轴的力矩M z 。
题2-7图 题2-8图2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。
试求其合力,并画在图上(图中长度单位为米)。
解:将力系向O 点简化R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m合力的方向:cos (R ,i )=0.6,cos (R ,i )=-0.8(R,i)=-53°08’(R,i)=143°08’2-9.在图示正方体的表面ABFE内作用一力偶,其矩M=50KN·m,转向如图;又沿GA,BH作用两力R、R',R=R'=502KN;α=1m。
第2章力系的简化工程力学学习指导第2章力系的简化2.1 教学要求与学习目标1. 正确掌握下列基本概念与定义:1) 力系。
2) 力系的主矢与主矩。
3) 等效的概念。
2. 正确掌握下列重要定理及其应用:1) 等效力系定理。
2) 力向一点平移定理。
3) 合力之矩定理。
3. 正确掌握并应用力系简化的基本方法。
4. 正确掌握固定端约束的性质及其约束力。
2.2 理 论 要 点2.2.1等效的概念及有关等效的原理等效力系定理:如果作用于刚体上的力系可以用另一个力系来代替,而不改变刚体的运动状态,则称这两个力系等效。
加减平衡力系原理:在已知力系上附加任意平衡力系,或除去任意平衡力系,则不改变原来力系对刚体的作用。
这一原理又叫做“加减平衡力系原理”。
它表明,加减平衡力系后,新力系与原来的力系等效。
根据这一原理,可以将已知力沿其作用线移至任意点而不改变力对物体的作用效果。
这就是所谓力的可传性。
上述有关等效的概念和加减平衡力系原理以及力的可传性,都是针对运动效果而言的,因而只适用于刚体。
当研究力对变形体所产生的变形效果时,这些都不适用。
2.2.2力向一点平移将一个力分解为一个力和力偶的过程叫做“力向一点平移”。
应用加减平衡力系原理,可以证明;作用于刚体上的已知力F可以向同一刚体上的任意一点平行移动,平移时需要附加一力偶,附加力偶的力偶矩M等于已知力F对平移点之矩。
力向一点平移的结果说明:作用于刚体上A点的力F与作用另一点O的力F及力偶M等效。
这也证明了力偶与力是不能等效的。
利用力向一点平移的结果不仅可以解决力系简化和平衡问题,而且在材料力学中讨论到平衡问题时,还可以将变形体视为刚体,从而可以应用上述结果,使问题简化。
但必须注意,这一结果在材料力学中应用时是要受到严格限制的。
2.2.3平面力系的简化为了得到平面力系向一点简化的结果,可以将力系中的所有力向该点平移,得到一个平面汇交力系和平面力偶系。
前者可以进一步合成一合力F R,后者则合成一合力偶M。