能的概念功和能的关系
- 格式:doc
- 大小:583.00 KB
- 文档页数:20
第2讲 动能 势能[目标定位] ,,,会分析决定弹性势能大小的因素.一、功和能的关系1.能量:一个物体能够对其他物体做功,那么该物体具有能量.2.功与能的关系:做功的过程就是能量转化的过程,做了多少功,就有多少能发生转化,所以功是能量转化的量度.功和能的单位相同,在国际单位制中,都是焦耳. 二、动能1.定义:物体由于运动而具有的能量.2.大小:物体的动能等于物体的质量与它的速度的平方乘积的一半,表达式:E k =12m v 2,动能的国际单位是焦耳,简称焦,用符号J 表示.3.动能是标量(填“标量〞或“矢量〞),是状态(填“过程〞或“状态〞)量. 三、重力势能 1.重力的功 (1)重力做功的特点:只与物体运动的起点和终点的位置有关,而与物体所经过的路径无关. (2)表达式W G =mg Δh =mg (h 1-h 2),其中h 1、h 2分别表示物体起点和终点的高度. 2.重力势能(1)定义:由物体所处位置的高度决定的能量称为重力势能.(2)大小:物体的重力势能等于它所受重力的大小与所处高度的乘积,表达式为E p =mgh ,国际单位:焦耳.3.重力做功与重力势能变化的关系 (1)表达式:W G =E p1-E p2=-ΔE p . (2)两种情况:4.重力势能的相对性(1)重力势能总是相对某一水平面而言的,该水平面称为参考平面,也常称为零势能面,选择不同的参考平面,同一物体在空间同一位置的重力势能不同.(2)重力势能为标量,其正负表示重力势能的大小.物体在参考平面上方时,重力势能为正值;在参考平面下方时,重力势能为负值.想一想 在同一高度质量不同的两个物体,它们的重力势能有可能相同吗?答案 有可能.假设选定两物体所处的水平面为参考平面,那么两物体的重力势能均为0. 四、弹性势能1.定义:物体由于发生形变而具有的能量.2.大小:跟形变的大小有关.弹簧被拉伸或压缩的长度越大,弹性势能就越大. 3.势能:与相互作用物体的相对位置有关的能量.一、对动能的理解 动能的表达式:E k =12m v 21.动能是状态量:动能与物体的运动状态(或某一时刻的速度)相对应.2.动能具有相对性:选取不同的参考系,物体的速度不同,动能也不同,但一般以地面为参考系.3.动能是标量:只有大小,没有方向;只有正值,没有负值. 例1 关于动能的理解,以下说法正确的选项是( ) A .但凡运动的物体都具有动能B .一定质量的物体,动能变化时,速度一定变化C .一定质量的物体,速度变化时,动能一定变化D .动能不变的物体,一定处于平衡状态 答案 AB解析 动能是物体由于运动而具有的能量,所以运动的物体都具有动能,A 正确;由于速度是矢量,当方向变化时,假设速度大小不变,那么动能不变,C 错误;但动能变化时,速度的大小一定变化,故B 正确;动能不变的物体,速度的方向有可能变化,如匀速圆周运动,是非平衡状态,故D 错误. 二、重力势能1.重力做功的特点由W=Fs cos α可知,重力做的功W=mgh,所以重力做功的大小由重力大小和重力方向上位移的大小即高度差决定,与其他因素无关,所以只要起点和终点的位置相同,不管沿着什么路径由起点到终点,重力所做的功相同.2.对重力势能的理解及计算(1)相对性:E p=mgh中的h是物体重心相对参考平面的高度.参考平面选择不同,那么物体的高度h不同,重力势能的大小也就不同,所以确定某点的重力势能首先选择参考平面.(2)系统性:重力是地球与物体相互吸引产生的,所以重力势能是物体和地球组成的系统共有,平时所说的“物体〞的重力势能只是一种简化说法.(3)重力势能是标量:无方向,但有正负.负的重力势能只是表示物体的重力势能比在参考平面上时具有的重力势能要少,这跟用正负表示温度上下是一样的.3.重力做功与重力势能变化的关系(1)重力做功是重力势能变化的原因,且重力做了多少功,重力势能就改变多少,即W G=E p1-E p2=-ΔE p.①当物体从高处向低处运动时,重力做正功,重力势能减少.②当物体从低处向高处运动时,重力做负功,重力势能增加.(2)重力做的功与重力势能的变化量均与参考平面的选择无关.(3)重力势能的变化只取决于物体重力做功的情况,与物体除重力外是否还受其他力作用以及除重力做功外是否还有其他力做功等因素均无关.例2某游客领着孩子游泰山时,孩子不小心将手中的皮球滑落,球从A点滚到了山脚下的B点,高度标记如图1所示,那么以下说法正确的选项是()图1A.从A到B的曲线轨迹长度不知道,无法求出此过程中重力做的功B.从A到B过程中阻力大小不知道,无法求出此过程中重力做的功C.从A到B重力做功mg(H+h)D.从A到B重力做功mgH答案 D解析重力做功与物体的运动路径无关,只与初末状态物体的高度差有关,从A到B的高度是H,故从A到B重力做功mgH,D正确.例3如图2所示,m,一物体质量为2 kg,m的支架上,g取10 m/s2,求:图2(1)以桌面为零势能参考平面,计算物体具有的重力势能,并计算物体由支架下落到地面过程中重力势能减少多少?(2)以地面为零势能参考平面,计算物体具有的重力势能,并计算物体由支架下落到地面过程中重力势能减少多少?(3)以上计算结果说明什么?答案(1)8 J24 J(2)24 J24 J(3)见解析解析(1)以桌面为零势能参考平面,物体距离零势能参考平面的高度h1 m,因而物体具有重力势能.E p1=mgh1=2×10× J=8 J.物体落至地面时,物体重力势能E p2=2×10×() J=-16 J.因此物体在此过程中重力势能减小量ΔE p=E p1-E p2=8 J-(-16) J=24 J.(2)以地面为零势能参考平面,物体的高度h1′=() m.因而物体具有的重力势能E p1′=mgh1′=2×10× J=24 J.物体落至地面时重力势能E p2′=0.在此过程中物体重力势能减小量ΔE′=E p1′-E p2′=24 J-0=24 J.(3)通过上面的计算可知,重力势能是相对的,它的大小与零势能参考平面的选取有关,而重力势能的变化是绝对的,它与零势能参考平面的选取无关,其变化值与重力对物体做功的多少有关.三、对弹性势能的理解1.产生原因:(1)物体发生了弹性形变.(2)物体各局部间有弹力作用.2.对同一弹簧,伸长和压缩相同的长度时弹性势能相同.3.弹性势能与弹力做功的关系:弹性势能的变化量总等于弹力对外做功的负值,表达式为W弹=-ΔE p.例4如图3所示,一个物体以速度v0冲向与竖直墙壁相连的轻质弹簧,墙壁和物体间的弹簧被物体压缩,在此过程中,以下说法正确的选项是()图3A.物体对弹簧做的功与弹簧的压缩量成正比B.物体向墙壁运动相同的位移,弹力做的功不相等C.弹簧的弹力做正功,弹性势能增加D.弹簧的弹力做负功,弹性势能增加答案BD解析由功的计算公式W=Fs cos α知,恒力做功时,做功的多少与物体的位移成正比,而弹簧对物体的弹力是一个变力,所以选项A错误;弹簧开始被压缩时弹力小,弹力做的功也少,弹簧的压缩量变大时,物体移动相同的距离做的功多,应选项B正确;物体压缩弹簧的过程,弹簧的弹力与弹力作用点的位移方向相反,所以弹力做负功,弹性势能增加,应选项C错误,D正确.对动能的理解1.下面有关动能的说法正确的选项是()A.物体只有做匀速运动时,动能才不变B.物体做平抛运动时,水平方向速度不变,物体的动能也不变C.物体做自由落体运动时,重力做功,物体的动能增加D.物体的动能变化时,速度不一定变化,速度变化时,动能一定变化答案 C解析物体只要速率不变,动能就不变,A错;做平抛运动的物体动能逐渐增大,B错;物体做自由落体运动时,速度增大,物体的动能增加,故C正确;物体的动能变化时,速度一定变化,速度变化时,动能不一定变化,故D错.对重力做功的理解2.如图4所示,某物块分别沿三条不同的轨道由离地面高h的A点滑到同一水平面上,轨道1、2是光滑的,轨道3是粗糙的,那么()图4A.沿轨道1滑下重力做的功多B.沿轨道2滑下重力做的功多C.沿轨道3滑下重力做的功多D.沿三条轨道滑下重力做的功一样多答案 D解析重力做功只与初、末位置的高度差有关,与路径无关,D选项正确.重力势能及其变化的理解3.质量为20 kg的薄铁板平放在二楼的地面上,二楼地面与楼外地面的高度差为5 m.这块铁板相对二楼地面的重力势能为________J,相对楼外地面的重力势能为________J;将铁板提高1 m,假设以二楼地面为参考平面,那么铁板的重力势能变化了________J;假设以楼外地面为参考平面,那么铁板的重力势能变化了________J.答案010*******解析根据重力势能的定义式,以二楼地面为参考平面:E p=0.以楼外地面为参考平面:E p′=mgh=20×10×5 J=103 J.以二楼地面为参考平面:ΔE p=E p2-E p1=mgh1-0=20×10×1 J=200 J.以楼外地面为参考平面:ΔE p′=E p2′-E p1′=mg(h+h1)-mgh=mgh1=20×10×1 J=200 J.弹力做功与弹性势能变化的关系4.如图5所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中以下说法正确的选项是()图5A.弹簧对物体做正功,弹簧的弹性势能逐渐减少B.弹簧对物体做负功,弹簧的弹性势能逐渐增加C.弹簧先对物体做正功,后对物体做负功,弹簧的弹性势能先减少再增加D.弹簧先对物体做负功,后对物体做正功,弹簧的弹性势能先增加再减少答案 C解析弹簧由压缩到原长再到伸长,刚开始时弹力方向与物体运动方向同向做正功,弹性势能减少.越过原长位置后弹力方向与物体运动方向相反,弹力做负功,故弹性势能增加,所以只有C正确,A、B、D错误.(时间:60分钟)题组一对动能的理解1.质量一定的物体()A.速度发生变化时其动能一定变化B.速度发生变化时其动能不一定变化C.速度不变时其动能一定不变D.动能不变时其速度一定不变答案BC解析速度是矢量,速度变化时可能只有方向变化,而大小不变,动能是标量,所以速度只有方向变化时,动能可以不变;动能不变时,只能说明速度大小不变,但速度方向不一定不变,故只有B、C正确.2.甲、乙两个运动着的物体,甲的质量是乙的2倍,乙的速度是甲的2倍,那么甲、乙两物体的动能之比为()A.1∶1 B.1∶2 C.1∶4 D.2∶1答案 B解析由动能的表达式E k=12m v2知,B正确.题组二对重力做功的理解与计算3.将一个物体由A 移至B ,重力做功( ) A .与运动过程中是否存在阻力有关 B .与物体沿直线或曲线运动有关 C .与物体是做加速、减速或匀速运动有关 D .只与物体初、末位置高度差有关 答案 D解析 将物体由A 移至B ,重力做功只与物体初、末位置高度差有关,A 、B 、C 错,D 对. 4.如图1所示,质量为m 的小球从高为h 处的斜面上的A 点滚下经过水平面BC 后,再滚上另一斜面,当它到达h4的D 点时,速度为零,在这个过程中,重力做功为( )图1A.mgh 4B.3mgh 4C .mghD .0答案 B解析 根据重力做功的公式,W =mg (h 1-h 2)=3mgh4.故答案为B.题组三 对重力势能及其变化的理解5.关于重力势能的理解,以下说法正确的选项是( ) A .重力势能有正负,是矢量B .重力势能的零势能参考平面只能选地面C .重力势能的零势能参考平面的选取是任意的D .重力势能的正负代表大小 答案 CD解析 重力势能是标量,但有正负,重力势能的正、负表示比零势能的大小,A 错误,D 正确;重力势能零势能参考平面的选取是任意的,习惯上常选地面为零势能参考平面,B 错误,C 正确.、乙两个物体的位置如图2所示,质量关系m 甲<m 乙,甲在桌面上,乙在地面上,假设取桌面为零势能面,甲、乙的重力势能分别为E p1、E p2,那么有()图2A.E p1>E p2B.E p1<E p2C.E p1=E p2D.无法判断答案 A解析取桌面为零势能面,那么E p1=0,物体乙在桌面以下,E p2<0,故E p1>E p2,故A项正确.7.一个100 m的高度,那么整个过程中重力对球所做的功及球的重力势能的变化是(g=10 m/s2)()A.JB.J的负功C.JD.J答案 C解析整个过程中重力做功W G=mgΔh×10×J,所以选项C正确.8.物体在某一运动过程中,重力对它做了40 J的负功,以下说法中正确的选项是() A.物体的高度一定升高了B.物体的重力势能一定减少了40 JC.物体重力势能的改变量不一定等于40 JD.物体克服重力做了40 J的功答案AD解析重力做负功,物体位移的方向与重力方向之间的夹角一定大于90°,所以物体的高度一定升高了,A正确;由于W G=-ΔE p,故ΔE p=-W G=40 J,所以物体的重力势能增加了40 J,B、C错误;重力做负功又可以说成是物体克服重力做功,D正确.,质量为m的小球,从离桌面H高处由静止下落,桌面离地高度为h.假设以桌面为参考平面,那么小球落地时的重力势能及整个过程中重力势能的变化分别是()图3A .mgh 减少mg (H -h )B .mgh 增加mg (H +h )C .-mgh 增加mg (H -h )D .-mgh 减少mg (H +h ) 答案 D解析 以桌面为参考平面,落地时物体的重力势能为-mgh ,初状态重力势能为mgH ,即重力势能的变化ΔE p =-mgh -mgH =-mg (H +h ).所以重力势能减少了mg (H +h ).D 正确. 10.升降机中有一质量为m 的物体,当升降机以加速度a 匀加速上升高度h 时,物体增加的重力势能为( ) A .mgh B .mgh +mah C .mah D .mgh -mah答案 A解析 重力势能的改变量只与物体重力做功有关,而与其他力的功无关.物体上升h 过程中,物体克服重力做功mgh ,故重力势能增加mgh ,选A.11.如图4所示,一条铁链长为2 m ,质量为10 kg ,放在水平地面上,拿住一端提起铁链直到铁链全部离开地面的瞬间,铁链克服重力做功________ J ;铁链的重力势能________(填“增加〞或“减少〞)________ J.图4答案 98 增加 98解析 铁链从初状态到末状态,它的重心位置提高了h =l2,因而铁链克服重力所做的功为W =12mgl =12×10××2 J =98 J ,铁链的重力势能增加了98 J.铁链重力势能的变化还可由初、末状态的重力势能来分析.设铁链初状态所在水平位置为零势能参考平面,那么E p1=0,E p2=mgl 2,铁链重力势能的变化ΔE p =E p2-E p1=mgl 2=12×10××2J=98 J,即铁链重力势能增加了98 J.题组四对弹性势能的理解12.如图5所示的几个运动过程中,物体的弹性势能增加的是()图5A.如图甲,撑杆跳高的运发动上升过程中,杆的弹性势能B.如图乙,人拉长弹簧过程中,弹簧的弹性势能C.如图丙,模型飞机用橡皮筋发射出去的过程中,橡皮筋的弹性势能D.如图丁,小球被弹簧向上弹起的过程中,弹簧的弹性势能答案 B解析选项A、C、D中物体的形变量均减小,所以弹性势能减小,选项B中物体的形变量增大,所以弹性势能增加.所以B正确..弹簧一端固定(如图6所示),另一端用钢球压缩弹簧后释放,钢球被弹出后落地.当他发现弹簧压缩得越多,钢球被弹出得越远,由此能得出的结论应是()图6A.弹性势能与形变量有关,形变量越大,弹性势能越大B.弹性势能与形变量有关,形变量越大,弹性势能越小C.弹性势能与劲度系数有关,劲度系数越大,弹性势能越大D.弹性势能与劲度系数有关,劲度系数越大,弹性势能越小答案 A,质量不计的弹簧一端固定在地面上,弹簧竖直放置,将一小球从距弹簧自由端高度分别为h1、h2的地方先后由静止释放,h1>h2,小球触到弹簧后向下运动压缩弹簧,从开始释放小球到获得最大速度的过程中,小球重力势能的减少量ΔE p1′、ΔE p2′的关系及弹簧弹性势能的增加量ΔE p1、ΔE p2的关系中,正确的一组是()图7A.ΔE p1′=ΔE p2′,ΔE p1=ΔE p2B.ΔE p1′>ΔE p2′,ΔE p1=ΔE p2C.ΔE p1′=ΔE p2′,ΔE p1>ΔE p2D.ΔE p1′>ΔE p2′,ΔE p1>ΔE p2答案 B解析速度最大的条件是弹力等于重力即kx=mg,即到达最大速度时,弹簧形变量x相同.两种情况下,对应于同一位置,那么ΔE p1=ΔE p2,由于h1>h2,所以ΔE p1′>ΔE p2′,B对.。
高中物理:如何正确地理解功和能及两者之间的关系一. 功和能是两个不同的物理量功和能是两个联系密切的物理量,但功和能又有着本质的区别。
功是力在位移上的累积效果,力与力在位移方向上发生一段位移是做功的两个必要因素。
功是反映物体在相互作用过程中能量变化多少的物理量,与具体的能量变化过程相联系,是一个过程量。
能是用来反映物体具有做功本领的物理量,一个物体能够对外做功,这个物体就具有能。
如运动的物体具有动能,被举高的物体具有重力势能,发生形变的弹簧具有弹性势能。
物体处于一定的状态就对应一定的能量,是一个状态量。
因此,功反映能量变化的多少,而不反映能量的多少。
二. 做功的过程就是能量转化的过程不同形式能之间的转化只有通过做功才能实现。
做功的过程必然伴随着能量转化的过程,能量转化的过程中必然存在做功的过程,这两个过程形影相随、不可分离。
不存在有能量转化却没有做功的过程。
同样,也不存在有做功却没有能量转化的过程。
如:举重运动员把重物举起来对重物做了功,重物的重力势能增加,同时运动员消耗了体内的化学能。
被压缩的弹簧放开时把一个小球弹出去对小球做了功,小球的动能增加,同时,弹簧的弹性势能减少。
列车在机车的牵引下加速运动,机车对列车做了功,列车的机械能增加,同时,机车的热机消耗了内能。
起重机提升重物,起重机对重物做了功,重物的机械能增加,同时,起重机的电动机消耗了电能。
可见,做功和能量转化是一个过程,所以做功的过程就是能量转化的过程。
例1. 一质量分布均匀的不可伸长的绳索重为G,A、B两端固定在水平的天花板上,如图1所示,今在绳索的最低点C施加一竖直向下的力将绳绷直。
在此过程中绳索A、B的重心位置将:A. 逐渐升高B. 逐渐降低C. 先降低后升高D. 始终不变。
正确认识功和能的关系王军礼(陇南师范高等专科学校物信系09级物理教育班甘肃陇南742500)摘要:功和能的关系是物理量之间最重要的关系之一,本文通过阐述功和能两个物理量的区别和联系,纠正了人们通常对功和能的一种不科学的表述和认识,从而加深对功能关系的正确理解。
关键词:做功;能量;功能关系1.功和能的概念1.1什么是功在普通物理学中,功的概念最初是在力学中引入的。
如果一个物体受到某一外力作用时,它的运动状态就要发生变化,也就是说描述物体运动的基本物理量速度就会发生变化,而物体的速度一旦发生变化就必然会在该速度变化的方向上引起位移。
如果物体在力的作用下沿某一路径L从一处移到另一处,其动能的增量等于与位移矢量的标积沿运动轨迹的积分线。
把这个积分定义为力对该物体所做的功,表达式为,从表达式中可以看到力所做的功W的大小由力和位移的大小决定,和得夹角θ决定了W的正负,这说明功是一个标量。
此外,除了普通的机械力所做的功外,还有广义功的概念。
广义功虽然范围很广,但在所有做功过程中有一个共同的表观特点,就是有一定有宏观位移产生,或者可以归结为宏观位移的作用。
例如,被推动的活塞所发生的是一段宏观位移,而电场、磁场的变化则可以归结为电荷的宏观位移的作用。
机械功就是用力和宏观位移的标积来计算。
所以,效仿机械功,广义功的广义元功可以用广义力和广义元位移的乘积来表示。
1.2什么是能能就是人们经常所说的能量,是一个日常生活中常用的物理、化学概念,但是我们又很难用一句话给出严格的定义。
好的定义不容易提出,好的定义同时也是好的描述就更难。
在很多基础科学书中,我们常常看到把能定义为“做功的能力,”这样的定义都是描述性的,是很不确切的。
在普通物理学的力学部分,先是从确定和定义动能入手来研究能的概念的,通过动能定理:外力对物体所做的功等于物体动能的增量。
进而得出功和其他形式的能的联系,最终利用功来定义能:如果一个物体能够做功,我们就收这个物体具有能量。
高中物理:功和能的关系功是能量转化的方式及量度。
能量的转化是通过做功来实现的,做功的过程就是能量转化的过程,即功是能量转化的方式;做了多少功,就有多少能量发生了转化,即功是能量转化的量度。
自然界中各种不同性质的力做功,使形形色色的能发生相互转化,不同力做的功对应着不同的能量转化。
1、摩擦生热系统增加的内能就等于系统克服滑动摩擦内力所做的总功。
简单的理解:在摩擦生热现象中,系统内能的获得,是通过系统克服滑动摩擦内力做功的方式来实现的。
公式:内克相(Q表示系统获得的内能,f表示滑动摩擦力的大小,S相表示系统内两物体之间的相对位移或路程)2、重力做功与重力势能变化的关系重力做功等于重力势能变化的负值。
简单的理解:重力势能的变化是通过重力做功的方式来实现的,重力不做功,物体的重力势能就不变化。
公式:3、弹簧弹力做功与弹性势能变化的关系弹簧弹力做功等于弹力势能变化的负值。
简单的理解:弹簧弹性势能的变化是通过弹力做功的方式来实现的,弹力不做功,弹簧的弹性势能就不变化。
公式:4、物体的动能定理:合外力做功和物体动能变化的关系合外力对物体所做的功等于物体动能的变化。
简单的理解:物体动能的变化是通过合外力做功的方式来实现的,合外力不做功,物体的动能就不变化。
公式:外5、系统的动能定理:合外力与内力所做的总功与系统动能变化的关系合外力与内力所做的总功等于系统动能的变化。
简单的理解:系统动能的变化是通过合外力与内力所做的总功的方式来实现的,合外力与内力所做的总功为0,系统的动能就不变化。
公式:外+内6、物体的功能原理:除重力外,其他力做的总功与物体机械能变化的关系除重力外,其他力所做的总功等于物体机械能的变化。
简单的理解:物体的机械能变化是通过除重力外其他力所做的总功的方式来实现的,除重力外,其他力所做的总功为0,物体的机械能就不变化。
公式:其他7、系统的功能原理:系统内,除重力、弹簧弹力外,其他外力与内力所做的总功与系统机械能变化的关系系统内,除重力、弹簧弹力外,其他外力与内力所做的总功等于系统机械能变化。
功与能的关系功和能是物理学中两个重要的概念,它们描述了物体在运动中所具有的性质和变化。
功指的是物体受到的力在运动方向上所做的功或所消耗的能量,而能则是物体所具有的执行功的能力。
通过对功与能的深入探讨,可以更好地理解它们之间的关系。
一、功的定义和计算在物理学中,功的定义是指力对物体所作的做功或消耗的能量。
当一个力作用在一个物体上时,它可以改变物体的位置、速度或形状,从而产生功。
依据力的定义,力可以表示为:F = ma,其中F为力的大小,m为物体的质量,a为物体所受到的加速度。
为了计算功,我们需要考虑力的大小和物体在力的作用下所移动的距离。
根据物理学中计算功的公式,功可表示为:W = F·d·cosθ,其中W为功,F为力的大小,d为物体所移动的距离,θ为力和物体移动方向之间的夹角。
二、能的定义和分类能是指物体所具有的执行功的能力。
根据物理学的基本定律,能可以存在于不同的形式。
常见的能的形式包括机械能、热能、电能、化学能等。
这些能都是物体所拥有的,可以通过相应的方式进行转化或转移。
1. 机械能:机械能是指物体所具有的由于位置或运动而产生的能量,它可以分为动能和势能。
动能是指物体由于运动而具有的能量,可以用公式E_k = 0.5mv²来计算,其中E_k为动能,m为物体的质量,v为物体的速度。
势能是指物体由于所处的位置而具有的能量,可以用公式E_p = mgh来计算,其中E_p为势能,m为物体的质量,g为重力加速度,h为物体的高度。
2. 热能:热能是物体由于温度而具有的能量,它是物体内部分子与原子的运动与振动的总和。
热能可以通过热传导、热辐射等方式进行传递。
3. 电能:电能是指物体所具有的由于电荷的分布或电流所产生的能量,它可以通过电场或电流进行转移。
4. 化学能:化学能是指物体所具有的由于化学反应而产生的能量,常见的化学能包括燃烧能、化学键的能量等。
三、功和能是紧密相关的概念,它们之间存在着一定的关系。
功与能量的转化关系人类活动的本质是一种能量的转化过程。
从科学的角度来看,功和能量是这个过程中最为核心的两个概念。
功是指一个物体通过某种力量在平移或旋转运动中所做的功,而能量则是物体具有的做功的能力。
功和能量之间存在着密切而又紧密的关系,它们相互转化,推动着我们的世界不断发展演变。
首先,我们来探讨功与能量之间的关系。
功和能量是可以相互转化的。
当一个物体做功时,它的能量发生了转化。
以人类的运动为例,当我们跑步时,我们的身体做功,消耗了能量。
这是一种能量的转化,我们的身体将储存在体内的化学能转化为机械能。
同样,在物理世界中,例如金属球从高处下落到地面上时,它的重力势能被转化为动能,也是功的转化过程。
其次,功和能量的转化关系可以在多个领域中得到应用。
在日常生活中,我们可以通过控制功和能量的转化关系来实现许多实用的应用。
例如,当我们踩车踏板时,我们的身体做了功,将我们体内储存的能量转化为机械能,推动自行车前进。
这种功与能量的转化关系也可以应用于工业生产中。
以发电厂为例,通过燃烧化石燃料产生的热量转化为蒸汽,推动涡轮机旋转,从而产生电能。
此外,功与能量的转化关系也存在于其他学科领域中。
在生物学中,人体的新陈代谢过程就是功与能量的不断转化。
人体摄入食物后,食物被消化吸收,转化为体内储存的能量。
当人体需要能量时,这些储存的能量会被转化为机械能,推动我们的肢体运动。
在化学反应中,也存在着功与能量的转化。
例如,当两种化学物质反应时,化学能被转化为热能或发光能,这是一种能量的转化过程。
最后,功与能量的转化关系对于我们认识世界有着重要的意义。
通过学习功与能量的转化关系,我们可以深入了解物质运动和能量转化的规律,从而推动科学技术的发展。
例如,利用功与能量的转化关系,科学家们研发出了许多能源转化和利用的技术,如太阳能、风能、水能等。
这些技术不仅可以为人类提供可持续的能源供应,也减少了对传统能源的依赖。
综上所述,功与能量的转化关系贯穿着我们的生活和科学研究的方方面面。
高中物理功能关系知识归纳在高中物理教学中,对于功能关系而言是我们教学过程中的重点所在,同时也是学生在教学中存在问题较多的地方。
对于高中物理功能关系而言所涉及的范围很大,之间存在的环节也是紧密相扣,对于学生的知识串联过程要求很高。
为了帮助大家更好的学习物理学科,以下本人搜集整合了高中物理功能关系知识,欢迎参考阅读!高中物理功能关系知识归纳如下:功能关系:功和能的关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程,(2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
做功的过程是物体能量的转化过程,做了多少功,就有多少能量发生了变化,功是能量转化的量度.(1)动能定理合外力对物体做的总功等于物体动能的增量.即#FormatImgID_0#(2)与势能相关力做功#FormatImgID_1# 导致与之相关的势能变化重力重力做正功,重力势能减少;重力做负功,重力势能增加.重力对物体所做的功等于物体重力势能增量的负值.即WG=EP1—EP2= —ΔEP弹簧弹力弹力做正功,弹性势能减少;弹力做负功,弹性势能增加.弹力对物体所做的功等于物体弹性势能增量的负值.即W弹力=EP1—EP2= —ΔEP分子力分子力对分子所做的功=分子势能增量的负值电场力电场力做正功,电势能减少;电场力做负功,电势能增加。
注意:电荷的正负及移动方向电场力对电荷所做的功=电荷电势能增量的负值(3)机械能变化原因除重力(弹簧弹力)以外的的其它力对物体所做的功=物体机械能的增量即WF=E2—E1=ΔE当除重力(或弹簧弹力)以外的力对物体所做的功为零时,即机械能守恒(4)机械能守恒定律在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即 EK2+EP2 =EK1+EP1,#FormatImgID_2# 或ΔEK = —ΔEP(5)静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功;(2)在静摩擦力做功的过程中,只有机械能的互相转移,而没有机械能与其他形式的能的转化,静摩擦力只起着传递机械能的作用;(3)相互摩擦的系统内,一对静摩擦力对系统所做功的和总是等于零.(6)滑动摩擦力做功特点“摩擦所产生的热”(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功;=滑动摩擦力跟物体间相对路程的乘积,即一对滑动摩擦力所做的功(2)相互摩擦的系统内,一对滑动摩擦力对系统所做功的和总表现为负功,其大小为:W= —fS相对=Q 对系统做功的过程中,系统的机械能转化为其他形式的能,(S相对为相互摩擦的物体间的相对位移;若相对运动有往复性,则S相对为相对运动的路程)(7)一对作用力与反作用力做功的特点(1)作用力做正功时,反作用力可以做正功,也可以做负功,还可以不做功;作用力做负功、不做功时,反作用力亦同样如此.(2)一对作用力与反作用力对系统所做功的总和可以是正功,也可以是负功,还可以零.(8)热学外界对气体做功外界对气体所做的功W与气体从外界所吸收的热量Q的和=气体内能的变化W+Q=△U (热力学第一定律,能的转化守恒定律)(9)电场力做功W=qu=qEd=F电SE (与路径无关)(10)电流做功(1)在纯电阻电路中#FormatImgID_3# (电流所做的功率=电阻发热功率)(2) 在电解槽电路中,电流所做的功率=电阻发热功率+转化为化学能的的功率(3) 在电动机电路中,电流所做的功率=电阻发热功率与输出的机械功率之和P电源t =uIt= +E其它;W=IUt >#FormatImgID_4#(11)安培力做功安培力所做的功对应着电能与其它形式的能的相互转化,即W安=△E电,安培力做正功,对应着电能转化为其他形式的能(如电动机模型);克服安培力做功,对应着其它形式的能转化为电能(如发电机模型);且安培力作功的绝对值,等于电能转化的量值, W=F安d=BILd #FormatImgID_5# 内能(发热)(12)洛仑兹力永不做功洛仑兹力只改变速度的方向(13)光学光子的能量: E光子=hγ;一束光能量E光=N×hγ(N指光子数目)在光电效应中,光子的能量hγ=W+#FormatImgID_6#(14)原子物理原子辐射光子的能量hγ=E初—E末,原子吸收光子的能量hγ= E末—E初爱因斯坦质能方程:E=mc2(15)能量转化和守恒定律对于所有参与相互作用的物体所组成的系统,其中每一个物体的能量的数值及形式都可能发生变化,但系统内所有物体的各种形式能量的总合保持不变功和能的关系贯穿整个物理学。
功与能
1 功
在物理学中,把力与在力的方向上移动的距离的乘积叫做功。
如果一个物体受到力的作用,并在力的方向上发生了一段位移,我们就说这个力对物体做了功。
做功的两个因素:一个是作用在物体上的力,另一个是物体在这个力的方向上移动的距离。
功是一个过程量。
2 能
一个物体能做功就说这个物体具有能;或者说,能是指物体做功的能力。
能是一个状态量。
2.1 势能
势能是指相互作用的物体凭借其位置优势而具有的能量。
2.1.1 重力势能是指物体因受重力作用而具有的能量。
2.1.2 弹性势能是指物体因发生弹性形变而具有的能量。
2.2 动能
动能是指物体因运动而具有的能量。
动能定理:力(物体所受的合力或物体的受力之和)对物体所做的功等于在这个过程中物体动能的变化。
2.3 机械能
机械能是动能与势能的总和,势能包括重力势能和弹性势能。
决定动能的是质量与速度;决定重力势能的是高度和质量;决定弹性势能的是劲度系数与形变量。
机械能守恒定律
在只有重力或弹力做功而其他力不做功的系统,系统的动能和势能可以发生相互转化(动能增加量等于重力势能减少量),但机械能的总量保持不变,这个规律叫做机械能守恒定律。
物理功和能四大核心素养内容概述说明1. 引言1.1 概述物理功和能是物理学中非常基础且重要的概念,它们在研究和描述物体的运动与相互作用中起着关键的作用。
在学习物理学的过程中,理解和掌握物理功和能的核心素养内容对于建立坚实的物理基础知识至关重要。
1.2 文章结构本文将首先介绍物理功的核心素养内容,重点包括其定义和概念、计算方法和单位以及功与能的关系。
接下来,我们将详细探讨物理能的核心素养内容,包括动能和势能、能量守恒定律以及能量转化与转移。
最后,在文章结论部分我们将总结核心素养内容,并探讨其实际应用和重要性,并对物理学习提出启示和展望。
1.3 目的本文旨在通过对物理功和能核心素养内容进行概述说明,帮助读者全面了解这两个概念在物理学中的重要性以及相关知识点。
同时,通过阐述其实际应用与意义,引发读者对于学习、研究以及应用物理学的思考,促进对物理学习的启示和展望。
通过本文的阐述,读者将能够更清晰地认识到物理功和能在日常生活中的应用以及它们对于科技、工程等领域的重要作用。
2. 物理功的核心素养内容:2.1 定义和概念:物理功是指力对物体做功的量度,表示为力乘以物体在力的作用下发生位移的大小。
简单来说,它是描述力如何影响物体运动和变化的重要概念。
在物理学中,功被定义为力与位移的乘积,可以用以下公式表示:功= 力×位移×cosθ,其中θ是力和位移之间的夹角。
2.2 计算方法和单位:为了计算功,我们需要知道施加在物体上的力以及物体在该力作用下发生的位移。
通常情况下,如果力和位移具有相同的方向,则所做的功为正值;如果它们方向相反,则所做的功为负值。
计算功时使用国际单位制中的标准单位——焦耳(J)。
一焦耳等于一牛顿乘以一米(J = N·m)。
除了焦耳,常见地使用千焦耳(kJ)或者卡路里(cal)作为能量转化过程中常用的单位。
其中一千焦耳等于一焦耳乘以一千(1 kJ = 1000 J),而一卡路里约等于4.184焦耳。
功与能的关系及其应用在物理学中,功和能被认为是两个重要的概念,它们在解释物体运动和能量转化过程中扮演着至关重要的角色。
功和能之间存在着密切的关联,而且它们在日常生活和科学研究中都得到了广泛的应用。
一、功的定义和性质功是描述力对物体做功的量度,表示为W。
当一个力F作用于物体上时,沿着物体的位移方向产生了位移s,那么力对物体所做的功可以表示为:W = F × s × cosθ其中,θ表示力F与位移s之间的夹角。
功的单位是焦耳(J),表示的是力和位移的乘积。
从功的定义可以看出,当力和位移方向一致时,功为正值;当力和位移方向相互垂直时,功为零;当力和位移方向相互逆向时,功为负值。
二、能的定义和性质能是物体具有产生物理变化和进行功的能力,表示为E。
能分为两种形式:动能和势能。
1. 动能(Kinetic Energy):物体由于运动而具有的能量。
动能的大小取决于物体的质量m和速度v,可以用公式表示为:E_k = (1/2) × m × v^2其中,E_k表示动能。
动能的单位也是焦耳(J)。
2. 势能(Potential Energy):物体由于其位置或状态而具有的能量。
势能可以分为重力势能、弹性势能、化学势能等多种形式。
以重力势能为例,当物体被抬高h高度时,它具有的重力势能可以表示为:E_p = m × g × h其中,E_p表示重力势能,m表示物体的质量,g表示重力加速度,h表示抬高的高度。
三、功与能的关系功和能之间存在着紧密的联系。
按照物理定律,做功的力和做功的物体之间的功永远等于物体所具有的能量变化。
换言之,功就是能的转移和转化。
当一个力对物体作功时,它将一定数量的能量从外界传递给物体,使其增加能量;反之,物体对外做功时,它将一部分能量转移给外界,使其减少能量。
例如,我们抬起一个重物,对物体施加的力所做的功将使重物具有更多的重力势能。
类似地,当我们用手杆推动自行车时,施加的力所做的功将使自行车增加动能。
功能关系1.功和能(1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现。
(2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。
2.功能关系(1)重力做功等于重力势能的改变,即W G=E p1-E p2=-ΔE p(2)弹簧弹力做功等于弹性势能的改变,即W F=E p1-E p2=-ΔE p(3)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变,即W其他力=E2-E1=ΔE。
(功能原理)(1)动能的改变量、机械能的改变量分别与对应的功相等。
(2)重力势能、弹性势能、电势能的改变量与对应的力做的功数值相等,但符号相反。
(3)摩擦力做功的特点及其与能量的关系:类别比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数总和等于零一对滑动摩擦力所做功的代数和不为零,总功W=-F f·l相对,即摩擦时产生的热量相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功1.自然现象中蕴藏着许多物理知识,如图5-4-1所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()图5-4-1A.增大B.变小C.不变D.不能确定解析:选A人推袋壁使它变形,对它做了功,由功能关系可得,水的重力势能增加,A正确。
能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
2.表达式ΔE减=ΔE增。
1.应用能量守恒定律的基本思路(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。
2.应用能量守恒定律解题的步骤(1)分清有多少形式的能(动能、势能、内能等)发生变化。
功能关系和能量守恒定律班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1.功能关系__能量守恒定律1.功和能(1)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。
(2)做功的过程一定伴随有能量的转化,而且能量的转化必须通过做功来实现。
2.力学中常用的四种功能对应关系(1)合外力做功等于物体动能的变化:即W合=E k2-E k1=ΔE k。
(动能定理)即W G=E p1-E p2=-ΔE p。
即W弹=E p1-E p2=-ΔE p。
等于物体机械能的变化,即W其他=E2-E1=ΔE。
(功能原理) 2.应用功能关系解题的基本思路(1)受力分析:按照“一重二弹三摩擦”的顺序分析受力;(2)做功分析:判断力是否做功,做正功还是负功;(3)能量分析:“(N+1)原则”,N个力做功对应(N+1)种能量转化,明确哪种形式的能量增加,哪种形式的能量减少;(4)功能关系:求某种能量的变化找出与之对应的力做功;求力做的功找出与之对应的能量变化。
(5)能量守恒:列出减少的能量ΔE减和增加的能量ΔE增的表达式,列出能量守恒关系式:ΔE减=ΔE增.3.功能关系的选用原则(1)在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.(2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析.(3)只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.功能关系中的图像问题例题1. (多选)(2013·大纲卷)如图9,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g 。
若物块上升的最大高度为H ,则此过程中,物块的( )A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH2. 质量为M 的物体其初动能为100 J,从倾角为θ的足够长的斜面上的A 点向上匀减速滑行,到达斜面上的B 点时物体动能减少了80 J,机械能减少了32 J,若μ<tanθ,则当物体回到A 点时具有的动能为( ) A.60 J B.20 J C.50 J D.40 J3. (2009上海)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的两倍,在下落至离地高度h 处,小球的势能是动能的两倍,则h 等于( ) A .H /9B .2H /9C .3H /9D .4H /94. (2005辽宁)一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和5.(2014•潍坊一模)如图所示,轻质弹簧下端固定在倾角为θ的粗糙斜面底端的挡板C 上,另一端自然伸长到A 点.质量为m 的物块从斜面上B 点由静止开始滑下,与弹簧发生相互作用,最终停在斜面上某点.下列说法正确的是( )A .物块第一次滑到A 点时速度最大B .物块停止时一定在A 点C .在物块滑到最低点的过程中,物块减少的重力势能全部转化成弹簧的弹性势能D .在物块的整个运动过程中,克服弹簧弹力做的功等于重力和摩擦力做功之和6.(多选)(2014·北京西城区期末)如图4甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0 m 。
功和能、动能、动能定理知识总结归纳1. 能的概念:粗浅地说,如果一个物体能够对外界做功,我们就说物体具有能量。
能量有各种不同的形式。
2. 功和能关系:各种不同形式的能可通过做功来转化,能转化的多少通过功来量度,即功是能转化的量度。
3.动能定义:物体由于运动而具有的能叫做动能。
表达式:122:物体由于运动而具有的能叫做动能。
表达式:E mvk =注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J )。
4. 动能定理的推导:设物体质量为m ,初速度为v 1,在与运动方向同向的恒定合外力F 作用下,发生一段位移s ,速度增加到v 2。
由F=ma 和联立解得:由和联立解得:F ma v v as Fs mv mv =-==-22122212212125.动能定理公式:末初W E E k k k ==-∆E注意:W 为合外力做的功或外力做功的代数和,ΔE k 是物体动能的增量;ΔE k 为正值时,说明物体动能增加,ΔE k 为负值时,说明物体动能减少。
6. 应用动能定理进行解题的一般步骤: (1)确定研究对象,明确它的运动过程;(2)分析物体在运动过程中的受力情况,明确各个力是否做功,是正功还是负功;(3)明确起始状态和终了状态的动能。
()用列方程求解总421W E E k k k ==-∆E【典型例题】例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的动磨擦因数为μ,求木箱获得的速度(如图所示)分析和解答:此题知物体受力,知运动位移s ,知初态速度,求末态速度。
可用动能定理求解。
拉力F 对物体做正功,摩擦力f 做负功,G 和N 不做功。
初动能动能,末动能E E mv k k 122012==,末动能初动能,末动能E E mv k k 122012== 由动能定理得:由动能定理得:Fs fs mv cos α-=122而:f mg F =-μα(sin )解得:v F mg F s m =--2[cos (sin )]/αμα注意:此题亦可用牛顿第二定律和运动学公式求解,但麻烦些,一般可用动能定理求解的,尽可能用此定理求解。
功能关系:功和能的关系详细总结功能关系:功和能的关系:功是能量转化的量度。
有两层含义:(1)做功的过程就是能量转化的过程,(2)做功的多少决定了能转化的数量,即:功是能量转化的量度强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也是能量转化的量度.合外力对物体做的总功等于物体动能的增量.即(2)与势能相关力做功导致与之相关的势能变化重力重力做正功,重力势能减少;重力做负功,重力势能增加.重弹簧弹力分子力电场力(3)机械能变化械能守恒机械能守恒在只有重力和弹簧的弹力做功的物体系内,动能和势能可以互相转化,但机械能的总量保持不变.即 EK2+EP2= EK1+EP1,或ΔEK = —ΔEP(1)静摩擦力可以做正功,也可以做负功,还可以不做功;W=qu=qEd=F电SE(与路径无关)(1)在纯电阻电路中 (电流所做的功率=电阻发热功率)(2) 在电解槽电路中,电流所做的功率=电阻发热功率+转化为化学能的的功率(3) 在电动机电路中,电流所做的功率=电阻发热功率与输出的机械功率之和P电源t =uIt= +E其它;W=IUt 〉安培力做功安培力所做的功对应着电能与其它形式的能的相互转化,即W安=△E电,安培力做正功,对应着电能转化为其他形式的能(如电动机模型);克服安培力做功,对应着其它形式的能转化为电能(如发电机模型);且安培力作功的绝对值,等于电能转化的量值, W=F安d=BILd 内能(发热)洛仑兹力永洛仑兹力只改变速度的方向光子的能量: E光子=hγ;一束光能量E光=N×hγ(N指光子数目)在光电效应中,光子的能量hγ=W+。
机械能考点例析能的概念、功和能的关系以及各种不同形式的能的相互转化和守恒的规律是自然界中最重要、最普遍、最基本的客观规律,它贯穿于整个物理学中。
本章的功和功率、动能和动能定理、重力的功和重力势能、弹性势能、机械能守恒定律是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。
动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。
考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系实际、生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本章知识。
例如:2001年的全国卷第22题、2001年上海卷第23题、2002年全国理综第30题、2003年全国理综第34题、2004年上海卷第21题、2004年物理广西卷第17题、2004年理综福建卷第25题等。
同学平时要加强综合题的练习,学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化,对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。
一、夯实基础知识1.深刻理解功的概念功是力的空间积累效应。
它和位移相对应(也和时间相对应)。
计算功的方法有两种: ⑴按照定义求功。
即:W=Fscos θ。
在高中阶段,这种方法只适用于恒力做功。
当20πθ<≤时F 做正功,当2πθ=时F 不做功,当πθπ≤<2时F 做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
⑵用动能定理W=ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
(3).会判断正功、负功或不做功。
判断方法有:○1用力和位移的夹角α判断;○2用力和速度的夹角θ判断定;○3用动能变化判断. (4)了解常见力做功的特点:重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之则重力做负功。
滑动摩擦力做功与路径有关。
当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。
(5)一对作用力和反作用力做功的特点:○1一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;○2一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
2.深刻理解功率的概念(1)功率的物理意义:功率是描述做功快慢的物理量。
(2)功率的定义式:tW P =,所求出的功率是时间t 内的平均功率。
(3)功率的计算式:P=Fvcos θ,其中θ是力与速度间的夹角。
该公式有两种用法:①求某一时刻的瞬时功率。
这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率。
(4)重力的功率可表示为P G =mgV y ,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
3.深刻理解动能的概念,掌握动能定理。
(1) 动能221mV E k =是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。
(2)动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K .动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
动能定理建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
4.深刻理解势能的概念,掌握机械能守恒定律。
1.机械能守恒定律的两种表述⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
对机械能守恒定律的理解:①机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v ,也是相对于地面的速度。
②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
③“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功。
2.机械能守恒定律的各种表达形式 ⑴222121v m h mg mv mgh '+'=+,即k p k p E E E E '+'=+; ⑵0=∆+∆k P E E ;021=∆+∆E E ;减增E E ∆=∆用⑴时,需要规定重力势能的参考平面。
用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。
尤其是用ΔE 增=ΔE 减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。
5.深刻理解功能关系,掌握能量守恒定律。
(1)做功的过程是能量转化的过程,功是能的转化的量度。
能量守恒和转化定律是自然界最基本的规律之一。
而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。
本章的主要定理、定律都可由这个基本原理出发而得到。
需要强调的是:功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。
两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能”。
(2)复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。
突出:“功是能量转化的量度”这一基本概念。
○1物体动能的增量由外力做的总功来量度:W 外=ΔE k ,这就是动能定理。
○2物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。
○3物体机械能的增量由重力以外的其他力做的功来量度:W 其=ΔE 机,(W 其表示除重力以外的其它力做的功),这就是机械能定理。
○4当W 其=0时,说明只有重力做功,所以系统的机械能守恒。
○5一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
Q=fd (d 为这两个物体间相对移动的路程)。
二、解析典型问题问题1:弄清求变力做功的几种方法功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1、等值法等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa 计算,从而使问题变得简单。
例1、如图1,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。
分析与解:设绳对物体的拉力为T ,显然人对绳的拉力F 等于T 。
T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。
由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为: βαsin sin 21h h S S S -=-=∆)sin 1sin 1(.βα-=∆==Fh S F W W F T 2、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例2 、如图2所示,某力F=10N 作用于半径R=1m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为:A 、 0JB 、20πJC 、10JD 、20J.分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ=62.8J ,故B 正确。
3、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。
例3、一辆汽车质量为105kg ,从静止开始运动,其阻力为车重的0.05倍。
其牵引力的大小与车前进的距离变化关系为F=103x+f 0,f 0是车所受的阻力。
当车前进100m 时,牵引力做的功是多少?分析与解:由于车的牵引力和位移的关系为F=103x+f 0,是线性关系,故前进100m 过程中的牵引力做的功可看作是平均牵引力-F 所做的功。
由题意可知f 0=0.05×105×10N =5×104N,所以前进100m 过程中的平均牵引力: N N F 54341012)10510100(105⨯=⨯+⨯+⨯=-∴W =S =1×105×100J =1×107J 。
4、用动能定理求变力做功例4、如图3所示,AB 为1/4圆弧轨道,半径为0.8m ,BC 是水平轨道,长L=3m ,BC 处的摩擦系数为1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
分析与解:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、AC 段的摩擦力共三个力做功,重力做功W G =mgR ,水平面上摩擦力做功W f1=-μmgL ,由于物体在AB 段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W 外=0,所以mgR-umgL-W AB =0图3即W AB =mgR-umgL=6(J)5、用机械能守恒定律求变力做功如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。