新版湘教版七年级数学下册复习教案(全册)
- 格式:docx
- 大小:353.53 KB
- 文档页数:17
新湘教版七年级下册数学教案新湘教版七年级下册数学教案1●教学内容七年级上册课本11----12页1.2.4绝对值●教学目标1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。
通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备多媒体课件●教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。
若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念) 绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。
比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
新版湘教版七年级下册数学教案全册LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第一章二元一次方程组二元一次方程组教学目标1.了解二元一次方程,二元一次方程组和它的一个解含义。
会检验一对对数是不是某个二元一次方程组的解。
2.激发学生学习新知的渴望和兴趣。
教学重点1.设两个未知数列方程。
2.检验一对数是不是某个二元一次方程组的解。
教学难点方程组的一个解的含义。
教学过程一、创设问题情境。
问题:小亮家今年1月份的水费和天然气费共元,其中水费比天然气费多元,这个月共用了13吨水,12立方米天然气。
你能算出1吨水费多少元。
1立方米天然气费多少元吗?二、建立模型。
1. 填空:若设小亮家1月份总水费为x元,则天然气费为_____元。
可列一元一次方程为__________做好后交流,并说出是怎样想的?2.想一想,是否有其它方法(引导学生设两个未知数)。
设小亮家1月份的水费为x元,天然气为y元。
列出满足题意的方程,并说明理由。
还有没有其他方法?3 .本题中,设一个未知数列方程和设两个未知数列方程哪能个更简单?三、解释。
1.察此列方程。
.46=+y x 4 6.5=+y x ()6.51213,4.461213=-=+y x y x说一说它们有什么特点?讲二元一次方程概念。
2. 二元一次方程组的概念。
3. 检查 ⎩⎨⎧==4.451y x ⎩⎨⎧==4.460y x ⎩⎨⎧==3.461.0y x ⎩⎨⎧-==200100y x 是否满足方程4.46=+y x 。
简要说明二元一次方程的解。
4. 分别检查⎩⎨⎧==4.2026y x ⎩⎨⎧==4.451y x 是否适合方程组⎩⎨⎧=-=+6.54.46y x y x 中的每一个方程?讲方程组的一个解的概念。
强调方程组的解是相关的一组未知数的值。
这些值是相互联系的。
而且要满足方程组中的每一个方程,写的时候也要象写方程组一样用{括起来。
二元一次方程组一、知识运用典型例题例1、在53=-y x 中,有含x 的代数式表示y = ,当0=y 时,____=x 。
例2、已知方程456m n m n x y -+-=是一个关于y x 、的二元一次方程,则m =______,n =______。
例3、写出一个以⎩⎨⎧=-=31y x 为解的二元一次方程组是例4、若方程组370x ay bx y -=⎧⎨-=⎩的解是12x y =⎧⎨=⎩,则a =_____,b =______。
例5、方程4320x y +=的所有非负整数解为: 例6、解方程组① 2312x y x y -=⎧⎨=+⎩ ② 34523x y x y +=⎧⎨-=⎩③ 532527x y x y +=⎧⎨-=⎩ ④ 237564x y x y +=⎧⎨-=⎩例7、解方程组① 4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩ ② ⎩⎨⎧=+=+42.8%13%1268y x y x二、知识运用课堂训练1、填空:①若3y 2x =+,则_________,=y _________=x②若064y 3x =+- ,则_________,=y _________=x2、已知方程53221=--+a b y x 是一个关于y x 、的二元一次方程,则______=+b a 。
3、写出一个以⎩⎨⎧=-=12y x 为解的二元一次方程组是4、已知10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩都是方程y ax b =+的解,则a 和b 的值是 ( )A.11a b =-⎧⎨=-⎩B.11a b =⎧⎨=⎩ C.11a b =-⎧⎨=⎩ D. 11a b =⎧⎨=-⎩5、已知⎩⎨⎧-==13y x 是方程组⎩⎨⎧=+=+803y mx ky x 的解,求k 、m 的值。
6、解方程组⎩⎨⎧=--=2152y x xy ⎩⎨⎧-=-=-135n m n m ⎩⎨⎧-=-=-139513y x y x⎩⎨⎧=+-=+353102y x y x ⎩⎨⎧=-=+12321537n m n m ⎩⎨⎧-=-=+1843134y x y x整式的乘法一一、知识运用典型例题例1、4)3(-表示______个______相乘,指数是______,底数是______,结果是______;43-表示______个______相乘的相反数,指数是______,底数是______,结果是______;例2、计算:232x x ⋅=_ __, 2)2(2-⋅-=_____, 232()()a a a -⋅-⋅-=______;例3、232(2)x yz -=________, 22()m n a b -=________ ; 例4、化简:23322)(3)()(2b a b a -⋅-⋅-例5、计算:(1))323(22--x x x (2))2()421(22ab b a ab -⋅-例6、先化简,再求值)(4)42(2122222xy y x y x xy x -⋅--⋅-其中,1,2==y x例7、计算:(1))2)(1(-+x x (2))3)(2(b a y x -+ (3))3)(2(y x y x -+二、知识运用课堂训练1、填空: ①23()x =______,23()x -=______,32()x -=______,32()x ⎡⎤-⎣⎦=______,23()x ⎡⎤-⎣⎦=______;②_______;)()(______;)()(______;333_____;101032343235=++=-⋅-=⨯⨯=⨯y x y x a a2、计算:① ________;__________)(22=+-c b a m ② ________;)2(3)(322=+-+-y x x y x x3、先化简,再求值:)13)(52()32)(23(----+x x x x 其中:21-=x4、化简:5(1)(3)2(5)(3)x x x x -+-+-整式的乘法二一、知识运用经典例题选讲例1:计算下列各式:(1)()()()2111x x x -+- (2)()()2222a b a b +-(3)210151⎪⎭⎫ ⎝⎛--y x (4)221⎪⎭⎫ ⎝⎛+-cd例2:计算:222222008200720062005......21-+-++-例3:(1)若229x y -=,3x y +=-,则()2x y -=?(2)已知 2,3ab a b =+=,求()2a b -的值;(3)已知()()2211,9x y x y +=-=,求xy 的值;(4)设15x x +=,求221x x+=?例4:先化简,再求值:()()()()222,a b a b a b a b +--++-其中 12,2a b ==例6:已知 19901989,19901990,19901991a x b x c x =+=+=+, 求222a b c ab ac bc ++---的值。
整式的乘法教学目标:1、回顾本章内容,熟练地运用乘法公式进行计算;2、能正确地根据题目的要求选择不同的乘法公式进行运算。
教学重点:正确选择乘法公式进行运算。
教学难点:综合运用平方差和完全平方公式进行多项式的计算。
教学方法:范例分析、探索讨论、归纳总结。
教学过程:一、导学1、平方差公式:()()22b a b a b a -=-+2、完全平方公式:2222)(b ab a b a ++=+2222)(b ab a b a +-=-3、计算(1)()()b a b a --- (2)()()b a b a +--(3)())1)(1(12-++x x x (4))1(1-+++y x y x )( 二、探究(1)做一做 运用乘法公式计算:2)(c b a ++ 得:2)(c b a ++=bc ac ab c b a 222222+++++ (2)直接利用第(1)题的结论计算:2)32(z y x +-分析(2)小题中的2x 相当于公式中的a ,3y 相当于公式中的b ,z 相当于公式中的c 。
解:2)32(z y x +-=2])3(2[z y x +-+=z y z x y x z y x )3(2)2(2)3)(2(2)3()2(222-++-++-+ =yz xz xy z y x 641294222-+-++ 三、精导例1运用乘法公式计算:(1)()()22b a b a --+ (2)()()22b a b a -++(3) ()()[]233+-a a (4))(c b a c b a -++-)( 解:(1)()()22b a b a --+=()())]()][([b a b a b a b a --+-++ =()ab b a 2)2(2=∙想一想:这道题你还能用什么方法解答? (2)()()22b a b a -++=()()222222b ab abab a +-+++=222222b ab a b ab a +-+++=2222b a(3)、(4) 略注意灵活运用乘法公式,按要求最好能写出详细的过程。
最新七年级数学下册教案湘教版七年级数学下册教案湘教版1一内容和内容解析1.内容二元一次方程, 二元一次方程组概念2.内容解析二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。
直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.本节课的教学重点是:二元一次方程, 二元一次方程组的概念二、目标和目标解析1.教学目标(1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.(2)理解解二元一次方程, 二元一次方程组的解的概念.2. 教学目标解析(1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.(2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.三、教学问题诊断分断1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。
需要结合实际问题进行分析。
由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.本节教学难点:1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.2.二元一次方程组的解的意义四、教学过程设计1.创设情境,提出问题问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?师生活动:学生回答:能。
湘教版七年级下册复习教案数学教案标题:湘教版七年级下册复习教案数学教学目标:1. 复习七年级下册数学内容,巩固学生的基础知识和技能。
2. 帮助学生回顾和理解重要概念、公式和解题方法。
3. 提高学生的问题解决能力和数学思维能力。
教学重点:1. 复习和巩固七年级下册数学的基本知识点。
2. 强化学生的解题技巧和运算能力。
教学难点:1. 引导学生将所学知识应用于解决实际问题。
2. 帮助学生理解数学概念的本质和意义。
教学准备:1. 湘教版七年级下册数学教材和教辅资料。
2. 复习教案的课件和习题。
3. 学生练习册和作业本。
教学过程:一、复习知识点1. 复习七年级下册数学的基本概念,如整数、分数、小数、比例等。
2. 复习基本运算法则和运算技巧,如四则运算、分数运算、百分数运算等。
3. 复习几何图形的性质和计算方法,如平行线、垂直线、三角形等。
二、巩固解题方法1. 回顾解题步骤和思维方法,如分析问题、设立方程、列式子、推理论证等。
2. 练习不同类型的数学题目,包括选择题、填空题、计算题和应用题等。
3. 引导学生分析和解决实际问题,培养他们的问题解决能力和创新思维。
三、拓展应用能力1. 组织学生进行数学游戏和竞赛,激发他们的学习兴趣和积极性。
2. 给学生布置一些拓展性的作业和课外练习,提高他们的数学应用能力和思维能力。
四、评价与反馈1. 对学生的课堂表现和作业完成情况进行评价和反馈。
2. 针对学生的问题和困惑进行解答和指导。
3. 总结教学经验和教学效果,为下一步的教学提供参考。
教学延伸:1. 鼓励学生积极参加数学竞赛和活动,拓宽数学视野。
2. 提供适当的数学拓展资源和阅读材料,培养学生的数学兴趣和学习能力。
以上是针对湘教版七年级下册复习教案数学的一个示例,根据具体的教学内容和学生情况,可以进行相应的调整和补充。
希望对您的教案撰写有所帮助!。
七年级下学期数学教案全集湘教版教案内容:一、第一章:有理数1.1 学习有理数的定义,掌握有理数的分类及特点。
1.2 学习有理数的加法、减法、乘法、除法运算,掌握运算规律和技巧。
1.3 学习有理数的乘方,理解乘方的意义及计算方法。
1.4 综合练习,巩固所学知识。
二、第二章:整式的加减2.1 学习整式的定义,掌握整式的加减法运算规则。
2.2 学习整式的乘法,掌握整式乘法的计算方法。
2.3 学习整式的除法,理解整式除法的概念及计算方法。
2.4 综合练习,巩固所学知识。
三、第三章:一次函数3.1 学习一次函数的定义,理解一次函数的图像特点。
3.2 学习一次函数的解析式,掌握一次函数的求解方法。
3.3 学习一次函数的图像与解析式之间的关系,理解一次函数的性质。
3.4 综合练习,巩固所学知识。
四、第四章:不等式与不等式组4.1 学习不等式的定义,掌握不等式的基本性质。
4.2 学习一元一次不等式的解法,理解解不等式的步骤。
4.3 学习不等式组的概念,掌握解不等式组的方法。
4.4 综合练习,巩固所学知识。
五、第五章:数据的收集、整理与分析5.1 学习数据的收集方法,了解数据收集的重要性。
5.2 学习数据的整理方法,掌握数据整理的技巧。
5.3 学习数据的分析方法,理解数据分析的意义。
5.4 综合练习,巩固所学知识。
六、第六章:平行线与相交线6.1 学习平行线的定义和性质,掌握平行线的判定方法。
6.2 学习相交线的定义和性质,理解相交线与平行线的区别。
6.3 学习直线、射线、线段的性质,掌握它们的相互关系。
6.4 综合练习,巩固所学知识。
七、第七章:三角形7.1 学习三角形的定义和性质,了解三角形的基本概念。
7.2 学习三角形的分类,掌握各种类型三角形的特征。
7.3 学习三角形的内角和定理,理解三角形的内角和为180度。
7.4 综合练习,巩固所学知识。
八、第八章:四边形8.1 学习四边形的定义和性质,了解四边形的基本概念。
(全册)湘教版数学七年级下册全册教案-(湘教版)七年级下期数学教学计划一、基本情况分析:根据根据上学期期末考试成绩分析,其总体情况如下:155班学生:45人,其中男生15人,女生30人。
学生的数学成绩参差不齐,分数高的,90分的同学一人,分数低的,只有不足10分,总体上看,学生的数学成绩较差,及格的同学大概一半。
学生已经开始出现两极分化的苗头。
优生的数学思维得到了锻炼和培养,数学知识掌握得较牢固;而差生的智力和知识发展得较差,数学知识上一些基本的内容还很模糊,课堂上参与度不高,有时还需要教师提醒。
上学期学生数学上的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步认识,逻辑思维与逻辑推理能力得到了发展与培养,学生从形象思维到抽象思维的过渡阶段,抽象思维得到了较好的发展,但有一部分同学没有达到应该达到的发展高度,学生课外自主拓展知识的能力几乎没有,学生手中的与数学有关的课外辅导书甚少,学生不能自行拓展与加深自己的知识面;通过教育与训练培养,绝大部分学生能够认真对等每次作业,及时纠正作业中的错误,课堂上能专心致志的进行学习和思考问题,学生学习数学的兴趣得到了激发与进一步的发展,课堂整体表现活跃,积极开动脑筋,学生乐于合作学习,分享交流自己的发现,学生喜欢动手实验,对老师布置的思考题表现出较浓厚的兴趣;学习习惯上,学生的课前预习、课堂上记笔记的习惯培养得很不理想,这与我在教学中不提倡课前预习,少做笔记有关,我认为课前预习易使学生囿于教材框定的范围和思考方法,不利于发散思维能力的培养,应该在课堂上充分发挥学生的想象与思考,敢于大胆思考,课堂上就把时间有在思考问题上,而不应该用在当“打字员”上,本学期要思考如何克服课前预习、课堂上记笔记的弊端,发挥其有利的一面,学生对思考规律的小结,及时复习、总结上的习惯,还需要加强,课堂上专心致至的听讲,想在老师和同学的前面,及时纠正作业和试卷中的错误的习惯还需要加强,表扬和鼓励阅读与数学有关的课外读物,引导学生自主拓展和加深自己的知识的广度与深度;在学习方法上,一题多解,多题一解,从不同的角度看问题,从对称的角度思考问题,用不同的方法检验答案,需要加强训练与培养。
湘教版七年级(下册)数学复习资料全知识点总结
线性方程组
线性方程组的基本概念和解法。
包括用消元法、代入法和加减消法求解线性方程组的方法,以及对数学和生活中线性方程组的应用。
平面直角坐标系
熟练掌握平面直角坐标系的坐标表示方法、距离公式、中点公式、斜率公式等知识,能够根据相关信息画出几何图形。
几何图形的计算
对于各种几何图形,包括三角形、四边形、圆形等,掌握它们的定义、特征和性质,以及它们的周长和面积的计算方法。
数据的收集、整理和分析
通过调查、问卷、观察等方式收集数据,熟练掌握数据的整理、分类、统计和图形显示的方法,学会如何分析数据并得出结论。
题集
本文档还提供了丰富的题集,包括理论练和综合应用题等,有
助于学生巩固和提高数学水平。
注意事项
学习数学要注重基础,每个知识点都需要认真学习和掌握,及
时解决难点和疑惑。
做题时要认真阅读题目,理解题意,注意计算
过程和答案的准确性,适当进行思考和总结。
1.1 建立二元一次方程组1.理解二元一次方程及其解、二元一次方程组及其解、解方程组的概念;(重点)2.能根据简单的实际问题列出二元一次方程组.(难点)一、情境导入七年级一班共有男、女同学45人,在“献爱心·慰问儿童福利院”的活动中,男生平均每人捐款20元,女生平均每人捐款15元,全班共捐款800元,问全班男、女生各有多少人? 二、合作探究探究点一:二元一次方程的概念(2015·宜春模拟)已知(n -1)x |n |-2y m -2014=0是关于x ,y 的二元一次方程,则n m =________.解析:根据二元一次方程的定义,从二元一次方程的未知数的个数和次数两个方面入手,先求出字母m 、n 的值,再求n m 的值.根据题意,得m -2014=1,n -1≠0,|n |=1,解得m =2015,n =-1,∴n m =-1.故答案为-1.方法总结:考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:只含有2个未知数,含未知数的项的次数都是1的整式方程.探究点二:二元一次方程的解 【类型一】 根据二元一次方程的解求字母系数的值已知⎩⎨⎧x =2,y =1是方程kx -y =3的一个解,那么k 的值是( ) A .2 B .-2 C .1 D .-1解析:把⎩⎨⎧x =2,y =1代入方程kx -y =3中,得2k -1=3,解得k =2.故选A. 方法总结:根据二元一次方程的解求字母系数的值,解题的关键是把方程的解代入原方程,使原方程转化为以字母系数为未知数的方程,然后求解.【类型二】 二元一次方程的特殊解二元一次方程2x +3y =9的正整数解是________.解析:先令x 的值为1、2、3、4,求得⎩⎨⎧x =1,y =73,⎩⎨⎧x =2,y =53,⎩⎨⎧x =3,y =1,⎩⎨⎧x =4,y =13,显然其中的正整数解是⎩⎨⎧x =3,y =1.方法总结:二元一次方程有无数个解,二元一次方程的正整数解一般是有限个.确定二元一次方程的正整数解时,可以把其中一个未知数从整数1开始取值,看另一个未知数相应的值是否是正整数即可.探究点三:二元一次方程组 【类型一】 二元一次方程组的概念下列方程组是二元一次方程组的是( )A.⎩⎨⎧x -y =2,y +z =3B.⎩⎨⎧x +y =1,xy =2C.⎩⎨⎧x +y =2,x -y =1D.⎩⎨⎧x +y =2,1x +1y=3 解析:选项A 中有三个未知数,选项B 中的第二个方程是二元二次方程,选项D 中的第二个方程不是整式方程,只有选项C 中的方程组符合二元一次方程组的定义,故选C.方法总结:本题考查二元一次方程组的定义.如果一个方程组是二元一次方程组,必须同时满足三个条件:①只含有两个未知数;②含未知数的项的最高次数都是一次;③方程组中的几个方程都是整式方程.【类型二】 二元一次方程组的解二元一次方程组⎩⎨⎧x +y =3①,2x =4②的解是( ) A.⎩⎨⎧x =3,y =0 B.⎩⎨⎧x =1,y =2C.⎩⎨⎧x =5,y =-2D.⎩⎨⎧x =2,y =1解析:分别将各选项代入方程组中,A 选项代入后②不成立;B 选项代入后②不成立;C 选项代入后②不成立;D 选项代入后均成立,故选D.方法总结:将四个选项中的每组值代入方程组,能使方程组中的每个方程都成立的即是此二元一次方程组的解.【类型三】 根据实际问题列二元一次方程组小明用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x 张,2元的贺卡为y 张,那么所列方程组正确的是( )A.⎩⎨⎧x +y 2=10,x +y =8B.⎩⎨⎧x 2+y 10=8,x +2y =10C.⎩⎨⎧x +y =10,x +2y =8D.⎩⎨⎧x +y =8,x +2y =10 解析:根据1元的贺卡张数+2元的贺卡张数=8张,得方程x +y =8;根据1元的贺卡钱数+2元的贺卡钱数=10元,得方程为x +2y =10.列方程组为⎩⎨⎧x +y =8,x +2y =10.故选D. 方法总结:列二元一次方程组解应用题时,要正确找出相等关系,一般情况下,设了两个未知数,就要找两个相等关系,列两个方程.三、板书设计二元一次方程⎩⎨⎧二元一次方程的定义二元一次方程的解二元一次方程组⎩⎨⎧二元一次方程组的定义二元一次方程组的解根据实际问题列二元一次方程组本节课主要学习了二元一次方程及其解的概念、二元一次方程组及其解的概念.在教学中,可结合已学过的一元一次方程的概念,让学生归纳总结出二元一次方程、二元一次方程组必须满足的三个条件,以及二者的区别与联系.通过学生的积极参与,培养学生的概括能力,体验成功的快乐,提高学生的学习兴趣1.2 二元一次方程组的解法1.2.1 代入消元法1.掌握用代入消元法解二元一次方程组;(重点、难点)2.了解解二元一次方程组的基本思想是消元.一、情境导入 在上节课的情境导入问题中,设全班男生有x 人,女生有y 人,则有⎩⎨⎧x +y =45,20x +15y =800.怎样解这个方程组呢?二、合作探究探究点:用代入消元法解二元一次方程组 【类型一】 某个未知数的系数等于1解方程组:⎩⎨⎧2x -y =5,x -1=12(2y -1).解析:把第二个方程化简,把第一个方程变形,用x 表示y ,再代入第二个化简后的方程,消去一个未知数,把二元一次方程组转化为一元一次方程来求解.解:原方程组可化为⎩⎨⎧y =2x -5①,2x -2y =1②,将①代入②,得2x -2(2x -5)=1,解得x =92.将x =92代入①,得y =4,所以方程组的解为⎩⎨⎧x =92,y =4.方法总结:代入消元法的基本步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x (或y )的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的未知数的值用“{ ”联立起来,就是方程组的解. 【类型二】 未知数的系数不等于1解方程组:⎩⎨⎧2x -3y =1,3x +2y =8. 解析:把第一个方程变形,用y 表示x ,再代入第二个方程,消去一个未知数,把二元一次方程组转化为一元一次方程来求解.解:⎩⎨⎧2x -3y =1①,3x +2y =8②,由①得x =12(3y +1)③.将③代入②,得3×12(3y +1)+2y =8,解得y =1.将y =1代入③,得x =2,所以方程组的解为⎩⎨⎧x =2,y =1. 方法总结:用代入法解二元一次方程组的基本思路是:选取其中一个二元一次方程,将它的一个未知数用另一个未知数来表示,再代入另一个方程,消去一个未知数,将方程转化为一元一次方程求解,即化“二元”为“一元”.三、板书设计用代入消元法解二元一次方程组的基本步骤:①把一个未知数用含有另一个未知数的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出x (或y )的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的未知数的值用“{ ”联立起来,就是方程组的解.本节课从上节课的实例引入,激发学生解二元一次方程组的求知欲望.在教学过程中,注重启发引导,让学生自主归纳总结用代入消元法解二元一次方程组的基本步骤.同时,应让学生注重数学思想方法的学习——消元1.2.2 加减消元法第1课时 用加减法解较简单系数的方程组1.掌握用加减法解系数较简单的二元一次方程组;(重点、难点)2.进一步理解解二元一次方程组的基本思想——消元.一、情境导入小玲与小丽两人星期日相约去超市买文具,小玲买了2支钢笔和3支铅笔,共花费19元;小丽买了3支钢笔和2支铅笔,共花费26元.如果买1支钢笔和1支铅笔,需要多少元?二、合作探究探究点:用加减法解较简单系数的方程组 【类型一】 用加减法直接解二元一次方程组解方程组:⎩⎨⎧x +3y =8,5x -3y =4. 解析:两方程相加即可消去y 求得x 的值,然后将x 的值代入第一个方程即可求得y 的值.解:⎩⎨⎧x +3y =8①,5x -3y =4②.①+②,得6x =12,解得x =2.把x =2代入①,得2+3y =8,解得y =2,因此原方程组的解是⎩⎨⎧x =2,y =2.方法总结:解二元一次方程组时,如果两个二元一次方程中同一未知数的系数相同或互为相反数,把这两个方程相减或相加,就能消去一个未知数,从而得到一个一元一次方程,再解这个一元一次方程,求出一个未知数的值;然后把这个未知数的值代入原方程组中系数比较简单的一个方程中,求出另一个未知数的值.最后再把两个未知数的值用大括号联立起来即为方程组的解.【类型二】 适当扩大系数后,用加减法解二元一次方程组解方程组:⎩⎨⎧x -2y =3,3x +y =2. 解析:把②×2,再与①式相加,消去y ,把二元一次方程组转化为一元一次方程求解.解:⎩⎨⎧x -2y =3①,3x +y =2②.②×2,得6x +2y =4③,①+③,得7x =7,解得x =1.将x =1代入②,得y =-1.因此,原方程组的解为⎩⎨⎧x =1,y =-1.方法总结:解二元一次方程组时,如果两个方程中的某一未知数的系数是倍数关系,可选取系数的绝对值较小的一个方程乘以一个适当的数,把两个方程中的这个未知数的系数化为相同或互为相反数,再把这两个方程相减或相加求出这个未知数,然后将它的值代入另一个未知数的系数较简单的方程中,求出另一个未知数的值.【类型三】 根据定义新运算列二元一次方程组求值定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________.解析:根据题意,得⎩⎨⎧a +2b =5,4a +b =6,解得⎩⎨⎧a =1,b =2,∴x *y =x 2+2y ,∴2*3=22+2×3=10,故答案为10.方法总结:定义新运算题是各类考试的热点题,它的实质是一种规定,规定某种运算方式,规定某个概念的特征性质,然后要求按照规定去计算、求值.解决此类问题,关键在于正确理解新定义的运算的意义.三、板书设计用加减法解较简单系数的方程组1.某一未知数的系数相等或互为相反数——把两个方程直接相减或相加;2.某一未知数的系数成倍数关系——先把这一未知数的系数化为相等或互为相反数,再相加减.本节课学习了用加减法解系数较简单的二元一次方程组,在进行加减消元时,应将某一未知数的系数化为相等或互为相反数.在教学中,注重启发引导,让学生积极参与课堂活动,通过自主探究、合作交流,体验到成功的喜悦第2课时 用加减法解较复杂系数的方程组及简单应用1.掌握用加减法解系数较复杂的二元一次方程组及简单应用;(重点、难点)2.理解解二元一次方程组的消元思想.一、情境导入上节课我们学习了系数较简单的二元一次方程组的解法,方程组中某一未知数的系数相等或互为相反数,或成倍数关系.如果方程组中未知数的系数不成倍数关系,怎样解这样的方程组呢?二、合作探究探究点一:用加减法解系数较复杂的方程组 【类型一】 方程组中未知数的系数不成倍数关系解方程组:⎩⎨⎧3x -2y =6,2x +3y =17. 解析:可把x 的系数化为相等,①×2,②×3;也可把y 的系数化为相反数,①×3,②×2.解:⎩⎨⎧3x -2y =6①,2x +3y =17②.①×3,得9x -6y =18③,②×2,得4x +6y =34④.③+④,得13x =52,解得x =4.把x =4代入①,得12-2y =6,解得y =3.所以,方程组的解是⎩⎨⎧x =4,y =3. 方法总结:解二元一次方程组的关键是消元,即把“二元”化为“一元”.用加减消元法解二元一次方程组时,如果方程组中未知数的系数不成倍数关系,可选定一个未知数,把两个方程分别乘以一个适当的数,使这个未知数的系数化为相同或互为相反数,再用加减法求解.【类型二】 先化简,再解方程组解方程组:⎩⎪⎨⎪⎧73x +y 2=4,x +25=y +93. 解析:这个方程组中的方程比较复杂,可通过去分母等步骤把方程化简,然后再用加减法解方程组.解:原方程组可化为⎩⎨⎧14x +3y =24①,3x -5y =39②.①×5,得70x +15y =120③.②×3,得9x -15y =117④.③+④,得79x =237,解得x =3.把x =3代入②,得9-5y =39,解得y =-6.所以,原方程组的解是⎩⎨⎧x =3,y =-6.方法总结:解方程组时,如果系数为分数,一般先化为整数系数,并把方程整理化为一般形式,然后根据方程组的特点求解.探究点二:二元一次方程组的简单应用 【类型一】 利用二元一次方程组的解求字母的值已知关于x ,y 的二元一次方程组⎩⎨⎧2x +3y =k -3,x -2y =2k +1的解互为相反数,则k 的值是________.解析:因为关于x ,y 的二元一次方程组⎩⎨⎧2x +3y =k -3,x -2y =2k +1的解互为相反数,即x =-y .把x =-y 代入原方程组中,得⎩⎨⎧-2y +3y =k -3,-y -2y =2k +1,即⎩⎨⎧y =k -3①,-3y =2k +1②,把①代入②中,得-3(k -3)=2k +1,解得k =85. 方法总结:求解二元一次方程(组)中的字母的值,一般有以下方法:①将解代入方程组,得到关于字母的方程组,求解即可;②先消去一个未知数,再求另一个未知数和字母组成的方程组的解.【类型二】 同解方程组已知方程组⎩⎨⎧4x +y =5,3x -2y =1和⎩⎨⎧ax +by =3,ax -by =1有相同的解,求a 2-2ab +b 2的值. 解析:解第一个方程组⎩⎨⎧4x +y =5,3x -2y =1,把求得的解代入第二个方程组⎩⎨⎧ax +by =3,ax -by =1,求得a 、b 的值,再代入a 2-2ab +b 2计算.解:解方程组⎩⎨⎧4x +y =5,3x -2y =1,得⎩⎨⎧x =1,y =1.把⎩⎨⎧x =1,y =1代入方程组⎩⎨⎧ax +by =3,ax -by =1,得⎩⎨⎧a +b =3,a -b =1.解此方程组得⎩⎨⎧a =2,b =1,所以a 2-2ab +b 2=1. 方法总结:两个方程组同解求字母系数的值,常见的有两种类型:一是字母系数只出现在一个方程组中,这时可解另一个方程组,把求得的解代入含字母系数的方程,再解之即可.二是字母系数包含在两个方程组中,这时可把两个方程组重新组合,把不含字母系数的方程放在一起求解,再把求得的解代入含字母系数的方程组中求解即可.三、板书设计用加减法解较复杂系数的方程组及简单应用1.用加减法解系数较复杂的方程组2.二元一次方程组的简单应用本节课的内容难度较大,在教学中,教师应积极启发引导学生,让学生自己探究,总结出解题方法,同时应积极鼓励学生,勇于尝试,不断积累解题经验和方法1.3 二元一次方程组的应用第1课时 解决所列方程组中含“x +y =”形式的实际问题1.掌握列方程组解决所列方程中含“x +y =”形式的实际问题;(重点)2.通过解决实际问题进一步体会方程建模的过程和作用.(难点)一、情境导入小明买了80分和60分的邮票共17枚,花了12.2元,试问:80分与60分的邮票各买了多少枚?二、合作探究探究点:列方程组解决所列方程中含“x +y =”形式的实际问题 【类型一】 购票问题某学校在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?解析:本题的等量关系是:教师人数+学生人数=110人;教师的总票钱+学生的总票钱=2400元.根据题意列出方程组,解得答案.解:设在这次游览活动中,教师有x 人,学生有y 人,由题意得:⎩⎨⎧x +y =110,40x +20y =2400,解得⎩⎨⎧x =10,y =100. 答:在这次游览活动中,教师有10人,学生有100人.方法总结:此题主要考查了二元一次方程组的实际应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.【类型二】 配套问题(2015·成武县期末)机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?解析:设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,根据平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,列方程组求解.解:设需要安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,得⎩⎨⎧x +y =85,3×16x =2×10y ,解得⎩⎨⎧x =25,y =60.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.方法总结:本题考查理解题意的能力,关键是能准确理解2个大齿轮和3个小齿轮配成一套是什么意思,根据理解正确列出方程. 【类型三】 行程问题(2015·梧州模拟)A 地至B 地的航线长9750km ,一架飞机从A 地顺风飞往B 地需12.5h ,它逆风飞行同样的航线需13h ,求飞机无风时的平均速度与风速.解析:设飞机的平均速度为x 千米/时,风速为y 千米/时,根据航行问题的数量关系建立方程组求出其解即可.解:设飞机的平均速度为x 千米/时,风速为y 千米/时,由题意,得⎩⎪⎨⎪⎧x +y =975012.5,x -y =975013,解得⎩⎨⎧x =765,y =15. 答:无风时飞机的平均速度为765千米/时,风速为15千米/时.方法总结:本题考查了二元一次方程组的实际应用,掌握行程问题的顺风速度=无风时的速度+风速和逆风速度=无风时的速度-风速,由此建立方程组是关键.【类型四】 销售问题(2015·平阴县模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价-进价)甲 乙进价(元/件) 15 35售价(元/件) 20 45某商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?解析:利用图表得到两种商品的进价和售价,根据所求设甲、乙商品分别购进x 件和y 件得出它们的和为160件,再根据两种商品的利润和列式,得出二元一次方程组求解即可.解:设甲种商品应购进x 件,乙种商品应购进y 件,依题意得:⎩⎨⎧x +y =160,(20-15)x +(45-35)y =1100,解得⎩⎨⎧x =100,y =60.答:甲种商品应购进100件,乙种商品应购进60件.方法总结:此题主要考查了二元一次方程的应用,设出未知数,找出题目中与未知数相关的等量关系是解决问题的关键.三、板书设计列方程组解应用题的一般步骤:①审;②设;③找;④列;⑤解;⑥答.本节课从生活中的实例引入,让学生感受到数学在实际生活中的作用.列方程(组)解应用题的关键是找等量关系,这就要求同学们认真审题,弄清题目中哪些是已知的,哪些是要求的,已知与要求的量之间有什么联系.在教学中,让学生自己尝试寻找等量关系,在设未知数和作答时,注意不要漏写单位第2课时 解决所列方程组中x ,y 系数不都为1形式的实际问题1.掌握列二元一次方程组解决较复杂问题的应用题;(重点、难点)2.通过列二元一次方程组解决实际问题,培养学生的数学运用能力以及分析问题和解决问题的能力;(难点)3.通过贴近学生生活的素材,激发学生的学习兴趣,增强自信心.一、情境导入学校组织各班开展“阳光体育”活动,某班体育委员第一次到商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每根跳绳各多少元? 二、合作探究探究点:列二元一次方程组解决较复杂问题的应用题 【类型一】 行程问题(2015·攀枝花期末)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,求出小汽车和客车的平均速度.解析:设小汽车的速度为x km/h ,客车的速度为y km/h ,根据客车与小汽车的路程之和等于总路程,相遇时,小汽车比客车多行驶70千米,列出方程组即可.解:设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,由题意得:⎩⎨⎧2.5x +2.5y =420,2.5x -2.5y =70,解得⎩⎨⎧x =98,y =70.答:小汽车的速度为98km/h ,客车的速度为70km/h.方法总结:此题考查了二元一次方程组的应用,关键是读懂题意,找出题目中的等量关系,列出方程组解答即可.【类型二】 购物问题某超市为“开业三周年”举行了店庆活动.对A 、B 两种商品进行打折销售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元.而店庆期间,购买50件A 商品和50件B 商品仅需960元,这比不打折少花多少钱? 解析:通过打折前的两个等量关系列方程,从而求出打折前的A 、B 商品的单价.进而算出打折前购买商品所花的钱数,再与打折后所花的钱数相比较,就求出了少花的钱数.解:设打折前A 商品的单价为x 元,B 商品的单价为y 元,根据题意,得⎩⎨⎧5x +y =84,6x +3y =108,解得⎩⎨⎧x =16,y =4.打折前购买50件A 商品和50件B 商品共需16×50+4×50=1000(元).∴打折后少花1000-960=40(元).答:打折后少花40元. 方法总结:设未知数时可以直接设未知数,当直接设未知数不方便求解或列出的方程组较复杂时,也可以间接设未知数.要注意的是,间接设未知数时求得的解还需继续计算才能得出最后所要求的结果.【类型三】 分段计费问题某市为提倡居民节约用水,规定每三口之家每月用水量不得超过20吨,超过部分加价收费.已知小亮家有三口人,今年4月份用水24吨,交水费46元;5月份用水29吨,交水费58.5元,你能知道该市在限定量以内的水费每吨多少元,超过部分的水费每吨多少元吗?解析:本题等量关系为:4月份限定量以内的水费+超额部分的水费=46元;5月份限定量以内的水费+超额部分的水费=58.5元.根据这两个等量关系列出方程组求出答案.解:设三口之家限定量以内的水费为每吨x 元,超过部分的水费为每吨y 元.根据题意,得⎩⎨⎧20x +(24-20)y =46,20x +(29-20)y =58.5,解得⎩⎨⎧x =1.8,y =2.5.答:该市对三口之家限定量以内的水费每吨1.8元,超过部分的水费每吨2.5元. 方法总结:一般情况下,分段计费问题的等量关系为:各段内的费用之和为总费用. 【类型四】 方案问题将一摞笔记本分给若干个同学,每个同学分6本,则剩下9本;每个同学分8本,又差了3本,问共有多少本笔记本、多少个同学?解析:本题中2个等量关系为:笔记本的本数-同学的个数×6=9,同学的个数×8-3=笔记本的本数.根据这两个等量关系可列出方程组.解:设共有笔记本x 本,同学y 个.根据题意,得⎩⎨⎧x -6y =9,8y -3=x ,解得⎩⎨⎧x =45,y =6.答:共有45本笔记本,6个同学.方法总结:在方案问题中,要抓住其中不变的量找等量关系,列方程组. 【类型五】 图表信息题如图所示,小强和小红一起搭积木,小强所搭的小塔高度为23cm ,小红所搭的小树高度为22cm ,设每块A 型积木的高为x cm ,每块B 型积木高y cm ,请求出x 和y 的值.解析:小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,根据这两个等量关系列出方程组,再求解.解:根据题意,得⎩⎨⎧2x +3y =23,3x +2y =22,解得⎩⎨⎧x =4,y =5.方法总结:解题关键是看清图形的意思,找出等量关系列方程组求解. 三、板书设计列二元一次方程组解决较复杂问题的应用题⎩⎪⎨⎪⎧1.行程问题2.购物问题3.分段计费问题4.方案问题5.图表信息题列方程(组)解应用题是同学们学习中的难点,在教学中注意引导学生如何审题,如何找出解决问题的等量关系.本节课的内容紧密联系实际生活,体现了数学的应用价值,让学生积极参与,提高学习的积极性*1.4 三元一次方程组1.了解三元一次方程组的概念;2.掌握用代入法和加减法解三元一次方程组.(重点、难点)一、情境导入 设表示三种不同的物体,现用天平称了三次,如图所示,那么这三种物体的质量分别为多少克?二、合作探究探究点一:三元一次方程组的解法 【类型一】 一般方程组的求解解方程组:⎩⎨⎧5x +3y =25①,2x +7y -3z =19②,3x +2y -z =18③.解析:先用加减消元法把方程②、③中z 消去,得到一个关于x ,y 的二元一次方程,然后和方程①联立得方程组,求出x 、y ,再将x 、y 的值代入③求出z 的值.解:③×3-②得:7x -y =35,变形后,代入①得:5x +3(7x -35)=25,解得x =5;把x =5代入①得:25+3y =25,y =0;把x =5,y =0代入②得:2×5-3z =19,解得z =-3.原方程组的解为⎩⎨⎧x =5,y =0,z =-3.方法总结:解三元一次方程组的方法:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;②然后解这个二元一次方程组,求出这两个未知数的值;③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程;④解这个一元一次方程,求出第三个未知数的值;⑤最后将求得的三个未知数的值用“{”合写在一起即可.【类型二】 对称方程组的求解解方程组:⎩⎨⎧x +y =1,y +z =2,z +x =3.解析:三个式子相加再除以2得:x +y +z =3,用这个式子分别减去方程组中的每个方程,即可求得x 、y 、z 的值,得到方程组的解.解:⎩⎨⎧x +y =1①,y +z =2②,z +x =3③,①+②+③,得2(x +y +z )=6,即x +y +z =3④,④-①,得z =2,④-②,得x =1,④-③,得y =0,∴方程组的解是⎩⎨⎧x =1,y =0,z =2.方法总结:解三元一次方程组时,如果方程组中的三个未知数,每个未知数的系数和与其他未知数的系数和相同,可考虑把几个方程相加,再除以一个适当的数,然后把这个方程分别与每个方程相减即可.探究点二:三元一次方程组的应用【类型一】 三元一次方程组的实际应用某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的14,甲组植树的株数恰是乙组与丙组的和,问每组各植树多少株?解析:题中有三个等量关系:①甲组植树的株数+乙组植树的株数+丙组植树的株数=50;②乙组植树的株数=(甲组植树的株数+丙组植树的株数)×14;③甲组植树的株数=乙组植树的株数+丙组植树的株数.根据这三个等量关系可列出三元一次方程组,求出方程组的解即可.解:设甲组植树x 株,乙组植树y 株,丙组植树z 株.由题意,得⎩⎪⎨⎪⎧x +y +z =50,y =(x +z )×14,x =y +z ,解得⎩⎨⎧x =25,y =10,z =15.答:甲组植树25株,乙组植树10株,丙组植树15株. 方法总结:解答此题的关键是根据三组等量关系列出三元一次方程组,然后用代入消元法或加减消元法求出方程组的解.【类型二】 利用三元一次方程组求值已知关于x ,y 的二元一次方程组⎩⎨⎧x +2y =3,3x +5y =m +2的解满足x +y =0,求m 的值.解析:把已知方程组与x +y =0组成三元一次方程组,再解之即可.。
新版湘教版七年级数学下册复习教案(全册)
二元一次方程组
知识要点
1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做~
2、二元一次方程的解:适合二元一次方程的一组未知数的值叫做这个二元一次方程的一个解;
3、二元一次方程组:由几个一次方程组成并含有两个未知数的方程组叫做二元一次方程组
4、二元一次方程组的解:适合二元一次方程组里各个方程的一对未知数的值,叫做这个方程组里各个方程的公共解,也叫做这个方程组的解(注意:①书写方程组的解时,必需用“”把各个未知数的值连在一起,即写成的形式;②一元方程的解也叫做方程的根,但是方程组的解只能叫解,不能叫根)
5、解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组
6、解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法)
(1)代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解 (2)加减法解题步骤:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)
一、例题精讲
例1. 分别用代入法和加减法解方程组
解:代入法: 由方程②得: ③ {⎩⎨
⎧==b
y a x ⎩
⎨⎧==b y a x 5x+6y=162x-3y=1
⎧⎨⎩312-=
x y
将方程③代入方程①得: 解得x =2
将x =2代入方程②得: 4-3y=1
解得y=1
所以方程组的解为 加减法 :
例2.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?
分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的转变导致时间的不同,所以设平路长为x 公里,坡路长为y 公里,表示时间,利用两个不同的过程列两个方程,组成方程组
解:设平路长为x 公里,坡路长为y 公里 依题意列方程组得:
解这个方程组得: 经检验,符合题意 x +y =9
答:夏令营到学校有9公里
二、课堂小结:
回顾本章内容,总结二元一次方程组的解法和应用。
三、作业布置:
P25A 组习题
整式的乘法
教学目标: 1、回顾本章内容,熟练地运用乘法公式进行计算;
2、能正确地根据题目的要求选择不同的乘法公式进行运算。
教学重点:正确选择乘法公式进行运算。
163
1265=-⋅+x x ⎩⎨
⎧==1
2y x ⎪⎩⎪⎨⎧=+=+601016
96055129y x y x ⎩⎨
⎧==3
6y x
教学难点:综合运用平方差和完全平方公式进行多项式的计算。
教学方法:范例分析、探索讨论、归纳总结。
教学过程:
一、导学
1、平方差公式:
2、完全平方公式:
3、计算
(1) (2)
(3) (4) 二、探究
(1)做一做 运用乘法公式计算:
得:
= (2)直接利用第(1)题的结论计算:
分析(2)小题中的2x 相当于公式中的a ,3y 相当于公式中的b ,z 相当于公式中的c 。
解:=
=
=
三、精导
例1运用乘法公式计算:
(1) (2) (3) (4) 解:(1) =
=
想一想:这道题你还能用什么方法解答?
(2) = = =
(3)、(4) 略
注意灵活运用乘法公式,按要求最好能写出详细的过程。
例3 一个正方形花圃的边长增加到原来的2倍还多1m ,它的面积就增
加到原来的4倍还多21,求这个正方形花圃原来的边长。
()()2
2b a b a b a -=-+2
222)(b ab a b a ++=+2222)(b ab a b a +-=-()()b a b a ---()()b a b a +--())1)(1(12-++x x x )1(1-+++y x y x )(2)(c b a ++2)(c b a ++bc ac ab c b a 222222+++++2)32(z y x +-2)32(z y x +-2])3(2[z y x +-+z y z x y x z y x )3(2)2(2)3)(2(2)3()2(222-++-++-+yz xz xy z y x 6412942
22-+-++()()22b a b a --+()()22b a b a -++()()[]2
33+-a a )(c b a c b a -++-)(()()2
2b a b a --+()())]()][([b a b a b a b a --+-++()ab b a 2)2(2=•()()2
2b a b a -++()()222222b ab a b
ab a +-+++2222
22b ab a b ab a +-+++2222b a +2m。