温度对微生物的影响
- 格式:doc
- 大小:42.00 KB
- 文档页数:2
气候变化对微生物群落结构的影响随着全球气候变暖的问题日益凸显,人类对于气候变化对生态系统的影响越来越关注。
微生物群落作为生态系统中的重要组成部分,对气候变化有着不可忽视的响应。
本文将探讨气候变化对微生物群落结构的影响,并分析其可能的生态意义。
1. 气温变化对微生物群落的影响气候变化中的关键因素之一是气温升高。
研究发现,气温升高会直接影响微生物群落的结构和活动。
首先,高温条件下,一些特定类型的微生物可能会显著增加其生长速率,导致微生物群落中的种类组成发生变化。
其次,高温条件下,一些微生物可能会产生更多的代谢产物,从而对整个群落结构产生影响。
因此,气温升高可能导致一些热喜好微生物的丰度增加,同时对其他微生物的数量和多样性产生负面影响。
2. 降水变化对微生物群落的影响除了气温变化外,降水的变化也是气候变化的重要因素之一。
随着降水量和降水频率的变化,微生物群落也会受到直接的影响。
例如,水分的变化可能导致微生物的生理代谢发生变化,从而改变微生物群落的结构。
此外,水分的变化还可能改变微生物之间的竞争关系,进而对微生物群落的多样性产生影响。
因此,降水的变化可能导致一些水分适应能力较强的微生物种类的增加,而其他微生物可能因为适应能力不足而减少。
3. 温度和降水的相互作用对微生物群落的影响气温和降水的变化通常是同时发生的,二者之间存在相互作用。
一些研究发现,气温和降水的变化会共同影响微生物群落的结构。
例如,在干旱的情况下,高温可能导致微生物群落的数量和多样性下降;而在潮湿条件下,高温可能促进一些热喜好微生物的生长,从而改变微生物群落的结构。
这些相互作用进一步增加了微生物群落对气候变化的响应性,使得微生物群落结构更加脆弱和易受损。
4. 气候变化对微生物群落结构的生态意义微生物群落结构的改变对于生态系统的功能稳定性和物质循环至关重要。
气候变化对微生物群落结构的影响可能导致生态系统的功能退化和生态过程的改变。
例如,一些气候变化引起的微生物丰度的变化可能会影响土壤肥力和植物生长,最终影响生态系统的产生力。
简述温度对微生物的影响温度是微生物生长、繁殖和代谢的重要因素之一,对微生物的生长有着明显的影响。
不同的微生物对温度的适应范围不同,因此在不同的温度下,微生物的生长速率和代谢活动都会发生变化。
温度对微生物的影响主要表现在以下几个方面:1. 温度影响微生物的生长速率温度是微生物生长的重要影响因素之一,温度过高或过低都会导致微生物生长速率降低。
不同的微生物对温度的适应范围不同,一般来说,微生物的生长速率会在其最适生长温度附近达到最大值,超出或低于该温度范围,微生物的生长速率都会降低。
2. 温度影响微生物的代谢活动温度对微生物代谢活动的影响也非常显著。
微生物的代谢活动包括呼吸作用、酶催化反应等。
不同的微生物在不同的温度下,代谢活动的速率也不同。
在适宜的温度下,微生物的代谢活动能够达到最大值,而在过高或过低的温度下,代谢活动的速率会降低。
3. 温度影响微生物的生长阶段微生物的生长阶段包括潜伏期、对数生长期和平衡期。
在不同的温度下,微生物的生长阶段也会发生变化。
例如,在低温下,微生物的生长速率较慢,而在高温下,微生物的生长速率较快,但生长时间会缩短。
4. 温度影响微生物的抗热性微生物的抗热性与其生长的温度范围有关。
一般来说,微生物在其最适生长温度附近的抗热性最强,而在超出最适生长温度范围后,微生物的抗热性会下降。
例如,大肠杆菌在60℃下存活时间只有几分钟,而在50℃下存活时间可以达到1个小时以上。
温度是微生物生长、繁殖和代谢的重要因素之一,不同的微生物对温度的适应范围不同,在不同的温度下,微生物的生长速率和代谢活动都会发生变化。
因此,在微生物的培养和应用过程中,需要根据微生物对温度的适应范围进行相应的温度控制,以达到最佳的生长效果。
温度对微生物发酵的影响及其控制一、温度对发酵的影响微生物发酵所用的菌体绝大多数是中温菌,如霉菌、放线菌和一般细菌。
它们的最适生长温度一般在20~40℃。
在发酵过程中,需要维持适当的温度,才能使菌体生长和代谢产物的生成顺利地进行。
温度对发酵有很大的影响。
它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,影响发酵液的理化性质,进而影响发酵的动力学特性和产物的生物合成。
温度对化学反应速度的影响常用温度系数(Q10)(温度每升高10℃,化学反应速度所增加的倍数)来表示。
在不同温度范围内,Q10的数值是不同的,一般是2~3。
而酶反应速度与温度变化的关系也完全符合此规律,也就是说,在一定范围内,随着温度的升高,酶反应速率也增加,但有一个最适温度,超过这个温度,酶的催化活力会下降。
温度对菌体生长的酶反应和代谢产物合成的酶反应的影响往往是不同的。
有人考察了不同温度(13~35℃)对青霉菌的生长速率、呼吸强度和青霉素生成速率的影响,结果是,温度对这三种代谢的影响是不同的。
按照阿伦尼乌斯方程计算,青霉菌生长的活化能E=34kJ/mol,呼吸活化能E=71kJ/mol,青霉素合成的活化能E=112kJ/mol。
从这些数据得知:青霉素生成速率对温度的影响最为敏感,微小的温度变化,就会引起生成速率产生明显的改变,偏离最适温度就会引起产物产量发生比较明显的下降,这说明次级代谢发酵温度控制的重要性。
因此,温度对菌体的生长和合成代谢的影响是极其复杂的,需要考察它对发酵的影响。
温度还能改变菌体代谢产物的合成方向。
如在高浓度Cl-和低浓度Cl-的培养基中利用金霉素链霉菌NRRLB-1287进行四环素发酵过程中,发酵温度愈高,愈有利于四环素的合成,30℃以下时合成的金霉素增多,在35℃时就只产四环素,而金霉素合成几乎停止。
温度变化还对多组分次级代谢产物的组分比例产生影响。
如黄曲霉产生的多组分黄曲霉毒素,在20℃、25℃和30℃下发酵所产生的黄曲霉毒素(aflatoxin)G1与B1的比例分别为3:1、1:2、1:1。
影响微生物生长的主要因素1. 内容1.温度温度是影响微生物生长的一个重要的因子。
温度太低,可使原生质膜处于凝固状态,不能正常地进行营养物质的运输或形成质子梯度,因而生长不能进行。
当温度升高时,细胞内化学和酶反应以较快的速率进行,生长速率加快。
但当超过某一温度时,蛋白质、核酸和细胞其他成分就会发生不可逆的变性作用。
温度对微生物的影响表现在:(1)影响酶活性。
(2)影响细胞质膜的流动性,温度高流动性大,有利于物质的运输;温度低流动性降低,不利于物质运输,因此温度变化影响营养物质的吸收与代谢产物的必泌。
(3)影响物质的溶解度。
2.pHpH影响微生物的生长,因为pH通过影响细胞质膜的透性、膜结构的稳定性和物质的溶解性或电离性来影响营养物质的吸收,从而影响微生物的生长速率。
每种微生物都有一个可生长的pH范围,以及最适生长pH。
大多数自然环境pH为5-9,适合于多数微生物的生长。
只有少数微生物能够在低于pH2或大于pH10的环境中生长。
根据微生物生长对pH的要求范围,可分:嗜酸性微生物、嗜中性微生物、嗜碱性微生物。
3.氧根据氧与微生物生长的关系可将微生物分为好氧、微好氧、氧的忍耐型、兼性厌氧、专性厌氧等五种类型。
4.营养物质的组成和浓度培养基中的营养物质的浓度对微生物的生长也有很大影响。
影响表现:微生物的生长速率:在微生物培养中,某种基本营养物质被耗尽也可使微生物的生长停止。
即使培养基中没有任何毒物存在,而且其他营养物质仍很丰富,当添加少量这种营养物质时则微生物的生长可以重新开始;微生物细胞的生物量:在分批培养中,当底物利用速率达到零时,微生物的生长也恰好到达稳定期,此时,底物转化为细胞的产率已达最大。
2. 练习一、选择题1.消毒效果最好的乙醇浓度为:()A.50%。
B.70%。
C.90%答案:B2.巴氏灭菌的工艺条件是:()A.62-63℃ 30minB.71-72℃ 30minC.60-70℃ 30min答案:A3.杀死所有微生物的方法称为:()A.消毒B.灭菌C.防腐答案:B二、填空1.高压蒸汽灭菌法常用的工艺条件是:压力 ____________,温度 _______,时间________。
温度对微生物的影响引言微生物是一类极小的生物体,在自然界中广泛存在,并且对生态系统的功能与稳定发挥着重要作用。
温度作为一种环境因素,对微生物的生长、代谢和适应能力有着重要的影响。
本文将探讨温度对微生物的影响及其机制。
温度对微生物生长的影响温度是影响微生物生长的重要因素之一。
不同的微生物对温度的适应能力各不相同。
一般而言,微生物的生长速率会随着温度的升高而加快。
但当温度超过一定范围时,微生物的生长速率会减慢甚至停止。
这是因为温度会影响微生物的酶活性、细胞膜的稳定性以及代谢等方面的功能。
温度对微生物代谢的影响微生物的代谢是指微生物对外界营养物质的摄取、转化和利用过程。
温度对微生物代谢有直接影响。
一般来说,高温会促进微生物的代谢速率,而低温则会减缓代谢速率。
这是因为温度的改变会影响微生物酶的活性,从而影响代谢反应的进行。
温度对微生物适应能力的影响微生物能够适应各种不同的环境条件,其中包括温度的变化。
在适应过程中,温度是微生物的一个重要适应因素。
一些极端微生物能够在极高或极低的温度下存活和繁殖,而其他微生物则对温度的变化较为敏感。
这是因为微生物的生理特性和酶系统能力不同,导致其对温度的适应性也不同。
温度对微生物产物的影响一些微生物能够产生有用的产物,例如酶、抗生素等。
温度对这些产物的形成也有一定影响。
具体来说,适宜的温度可以促进微生物产物的合成,提高产量。
不过,过高或过低的温度都会对微生物的产物合成产生不利影响。
结论温度作为环境因素之一,对微生物的生长、代谢、适应能力和产物形成等方面均有着重要的影响。
了解温度对微生物的影响及其机制,对于优化微生物的利用、控制微生物的繁殖以及开发微生物产物具有重要意义。
以上就是温度对微生物的影响的相关内容,希望对读者对此有所了解。
温度对微生物发酵的影响及其控制一、温度对发酵的影响微生物发酵所用的菌体绝大多数是中温菌,如霉菌、放线菌和一般细菌。
它们的最适生长温度一般在20~40℃。
在发酵过程中,需要维持适当的温度,才能使菌体生长和代谢产物的生成顺当地进行。
温度对发酵有很大的影响。
它会影响各种酶反应的速率,转变菌体代谢产物的合成方向,影响微生物的代谢调控机制,影响发酵液的理化性质,进而影响发酵的动力学特性和产物的生物合成。
温度对化学反应速度的影响常用温度系数(Q10)(温度每上升10℃,化学反应速度所增加的倍数)来表示。
在不同温度范围内,Q10的数值是不同的,一般是2~3。
而酶反应速度与温度变化的关系也完全符合此规律,也就是说,在肯定范围内,随着温度的上升,酶反应速率也增加,但有一个最适温度,超过这个温度,酶的催化活力会下降。
温度对菌体生长的酶反应和代谢产物合成的酶反应的影响往往是不同的。
有人考察了不同温度(13~35℃)对青霉菌的生长速率、呼吸强度和青霉素生成速率的影响,结果是,温度对这三种代谢的影响是不同的。
根据阿伦尼乌斯方程计算,青霉菌生长的活化能E=34kJ/mol,呼吸活化能E=71kJ/mol,青霉素合成的活化能E=112kJ/mol。
从这些数据得知:青霉素生成速率对温度的影响最为敏感,微小的温度变化,就会引起生成速率产生明显的转变,偏离最适温度就会引起产物产量发生比较明显的下降,这说明次级代谢发酵温度掌握的重要性。
因此,温度对菌体的生长和合成代谢的影响是极其简单的,需要考察它对发酵的影响。
温度还能转变菌体代谢产物的合成方向。
如在高浓度Cl-和低浓度Cl-的培育基中利用金霉素链霉菌NRRLB-1287进行四环素发酵过程中,发酵温度愈高,愈有利于四环素的合成,30℃以下时合成的金霉素增多,在35℃时就只产四环素,而金霉素合成几乎停止。
温度变化还对多组分次级代谢产物的组分比例产生影响。
如黄曲霉产生的多组分黄曲霉毒素,在20℃、25℃和30℃下发酵所产生的黄曲霉毒素(aflatoxin)G1与B1的比例分别为3:1、1:2、1:1。
环境因素对微生物的影响微生物在自然界中具有非常重要的生态角色,它们分布在各个环境中,包括土壤、水体、空气、植物表面及动物体内等。
环境是微生物的生长和繁殖的关键因素之一,不同的环境会对微生物的生长和代谢产生不同的影响。
因此,本文将从温度、湿度、光照、气体、营养物质和污染物等方面探讨环境因素对微生物的影响。
一、温度对微生物的影响微生物的生长和代谢都需要适宜的温度条件。
一般来说,微生物可以分为低温微生物、中温微生物和高温微生物三类。
低温微生物能在0-20℃的环境中生长和繁殖,如一些海洋浮游微生物、钓鱼岛蓝藻等。
中温微生物能在20-45℃的环境中生长和繁殖,如大肠杆菌等常见菌种。
高温微生物则能在45-100℃以上的环境中生长和繁殖,如古菌、双歧菌等。
温度对微生物的影响主要表现在以下几个方面:1.生长速度:不同温度下,同一种微生物的生长速度存在差异。
低温下微生物生长速度较慢,高温下生长速度较快。
2.营养代谢:高低温度均会影响微生物的代谢方式,影响其对营养物质的需求和利用率。
3.结构和形态:微生物在不同的温度下,可能会产生不同的膜结构和形态,如高温下的双歧菌可能形成纤维状的生长方式。
4.生长期:不同种类的微生物其生长期在不同的温度下会有所不同,例如一些海洋浮游微生物在低温环境下其生长速度会快速下降且寿命会缩短。
二、湿度对微生物的影响湿度是指空气中水分含量的大小,对微生物生长和繁殖具有一定的影响。
通常来说,微生物对湿度变化的适应能力较强,其生存的温度、营养和其他环境因素也会影响其在湿度条件下的表现。
湿度对微生物的影响主要表现在以下几个方面:1.水分含量与生长速度:微生物生长和繁殖的速度取决于其环境中的水分含量,长期处于干旱状态下的微生物容易死亡或处于休眠状态。
2.抗逆能力:适宜的湿度环境可以提高微生物的抗逆能力,使其更加耐受低温、干旱等环境压力。
3.水分含量与营养物质利用率:水分含量较高的环境中,微生物对营养物质的利用率较高,可以更快速地进行代谢和生长。
微生物的生长与环境条件微生物的生长与环境条件的关系是密不可分的。
微生物是指在一定环境下生长和繁殖的微小生命体,它们对环境条件有着非常严格的要求。
环境条件包括温度、湿度、氧气、营养物质等,这些因素都会影响微生物的生长和繁殖。
首先,温度是影响微生物生长的重要因素之一。
不同种类的微生物对温度的要求各不相同,过高或过低的温度都会抑制微生物的生长。
例如,细菌最适宜的生长温度为37℃,而真菌最适宜的生长温度则为28℃。
在实际情况中,可以根据需要对微生物进行加热、冷却或保温等处理,以促进或抑制微生物的生长。
其次,湿度也是影响微生物生长的重要因素之一。
过高或过低的湿度都会影响微生物的生长,不同种类的微生物对湿度的要求也各不相同。
例如,一些细菌需要在相对湿度为90%以上的环境中才能生长,而另一些细菌则需要在相对湿度为70%左右的环境中才能生长。
再者,氧气也是影响微生物生长的重要因素之一。
不同种类的微生物对氧气的需求也各不相同,有些微生物需要充足的氧气才能生长,而另一些微生物则需要在缺氧的环境中才能生长。
氧气的供应量还会影响微生物的生长速度和代谢方式。
此外,营养物质也是影响微生物生长的重要因素之一。
微生物需要充足的营养物质才能生长,例如碳、氮、磷等元素都是微生物生长所必需的营养物质。
不同种类的微生物对营养物质的需求也各不相同,需要根据实际情况进行配比。
综上所述,微生物的生长与环境条件的关系是密不可分的。
不同的环境条件对微生物的生长和繁殖都有着不同程度的影响。
在实际应用中,需要根据需要对微生物进行适当的处理,以促进或抑制微生物的生长,从而达到预期的目的。
微生物的生长和环境因素对微生物生长的影响微生物生长和环境因素对微生物生长的影响微生物是地球上分布最广泛、数量最丰富的生物体之一,它们在自然界的物质循环、生物多样性、人类生活等多个方面都发挥着重要作用。
微生物的生长和环境因素对微生物生长的影响是微生物学研究的重要内容,也是理解微生物生命活动和促进人类生产生活的重要方面。
微生物与温度微生物是地球上最为丰富而又神秘的生命形式之一,它们可以生存于极端环境下,如极寒和高温的环境。
而温度是微生物生存的最为关键的因素之一,在不同的温度下,微生物的代谢活动、生长和繁殖等方面的表现也各不相同。
下面我们将从温度的角度深入了解微生物与温度之间的关系。
微生物的温度分类根据微生物对环境温度的适应程度,微生物可以分为四类,它们分别是:嗜热菌、嗜冷菌、中温菌和常温菌。
其中,嗜热菌是指最适生长温度高于50℃的微生物,嗜冷菌是指最适生长温度低于20℃的微生物,中温菌是指最适生长温度在20℃-45℃之间的微生物,而常温菌则是指最适生长温度在20℃左右的微生物。
微生物与温度之间的相互关系对于微生物来说,温度不仅会对其生长和繁殖产生影响,还将直接影响到微生物进行代谢活动的速率、酶的反应速度、膜的流动性以及细胞膜的稳定性等方面。
这也就是为什么高温环境下的嗜热菌能繁殖、生存,而常温下的人类常见菌则会被灭活的原因。
1. 嗜热菌嗜热微生物其适应的温度范围较窄,但它们能够生长在高温的环境中,如间歇热泉、地热井等环境。
嗜热菌具有特殊的热稳定酶,能够在高温下维持细胞内的代谢活动,并能够抵抗温度对蛋白质的加速降解,从而在高温环境下生存繁殖。
而对于它们来说,低温环境下则会影响其代谢速率,使其无法繁殖生长。
2. 嗜冷菌嗜冷微生物能够在极端低温的环境中生存繁殖,如北极、南极、高山等地的冰川和净水区,甚至还能在-10℃以下的环境中生存。
嗜冷菌需要较少的营养物质来生存,其生长速度较慢,但是能够在极低温度下长时间存活。
在高温环境下,由于其酶的活性较低,无法进行正常的代谢活动,会显著影响嗜冷菌的生长。
3. 中温菌中温微生物可以栖息在环境温度较为温和的地区,如土壤、水体等。
在环境温度较高时,它们可以快速地进行代谢活动和繁殖生长,但在低温环境下则会显著减少代谢活动,甚至会停止生长。
4. 常温菌常温微生物可以在温和的环境中生长繁殖,如人类肠道中的肠球菌、葡萄球菌等。
温度对微生物的影响内容摘要:温度是影响微生物生长繁殖最重要的因素之一。
在一定温度范围内,机体的代谢活动与生长繁殖随着温度的上升而增加,当温度上升到一定程度,开始对机体产生不利的影响,如再继续升高,则细胞功能急剧下降以至死亡。
由华东理工大学资源与环境工程学院的博士研究生杨磊等对底泥修复中温度对微生物活性和污染物释放的影响做了研究,他们通过分析底泥中微生物的酶活性以及污染物的释放规律,探讨了温度对河道底泥生物修复的影响。
结果表明,底泥中微生物的脱氢酶、脲酶和磷酸酶的活性随着温度的升高而显著增大,但温度对纤维素酶的活性影响较小。
温度是影响微生物生长繁殖最重要的因素之一。
在一定温度范围内,机体的代谢活动与生长繁殖随着温度的上升而增加,当温度上升到一定程度,开始对机体产生不利的影响,如再继续升高,则细胞功能急剧下降以至死亡。
与其他生物一样,任何微生物的生长温度尽管有高有低,但总有最低生长温度、最适生长温度和最高生长温度这三个重要指标,这就是生长温度的三个基本点。
如果将微生物作为一个整体来看,它的温度三基点是极其宽的;就总体而言,微生物生长的温度范围较广,已知的微生物在零下12~100℃均可生长。
而每一种微生物只能在一定的温度范围内生长。
当温度超过微生物生长的最高温度或低于生长的最低温度都会对微生物产生杀灭作用或抑制作用。
高温使蛋白质、核酸等重要生物大分子发生变性、破坏,以及破坏细胞膜上的类脂成分,导致微生物死亡。
高温对微生物有明显杀灭作用. 因此,控制(有害)微生物的生长速率消灭不需要的微生物,在实际应用中具有重要的意义。
低温可起到抑制微生物生长和促使部分微生物死亡的作用。
但在低温下,其死亡速度比在高温下要缓慢得多。
一般认为,低温只是阻止微生物繁殖,不能彻底杀死微生物,一旦温度升高,微生物的繁殖也逐渐恢复。
由华东理工大学资源与环境工程学院的博士研究生杨磊等对底泥修复中温度对微生物活性和污染物释放的影响做了研究,他们通过分析底泥中微生物的酶活性以及污染物的释放规律,探讨了温度对河道底泥生物修复的影响。
浅谈温度对微生物的影响1005100524蒋玮关键词:微生物生长高温低温酶原生质层脂质摘要:温度对微生物的影响是广泛的,改变温度必然会影响微生物体内所进行的多种生物化学反应。
适宜的温度能刺激生长,不适的温度会改变微生物的形态、代谢、毒力等,甚至导致死亡。
由于温度对微生物有重要影响,因此微生物分类学上常用“最适生长温度”、“最高生长温度”、“最低生长温度”及温度存活试验作为鉴定菌种的一项生理特征,配合其它形态与生理特性,以区别不同温度范围的种、属。
生物体完成其生命机能的温度区,称为生物动力区。
本文主要阐述了动力区之外的温度对微生物生长繁殖、脂质组成等的影响。
一、高温对微生物的影响微生物在高于生物动力区的温度,即高于100℃会被杀死,实际上,就大多数微生物来讲,在温度高于大约50℃条件下即引起死亡。
大家知道,有机体的生命活动主要是由酶催化的,酶又是由易发生热变性的蛋白质构成的,所以,微生物的热致死多是因细胞酶的热钝化所引起的。
已知呼吸酶,特别是在催化三羧酸循环反应中的那些酶对热变性是特别敏感的,这些呼吸酶的变性能导致生物体的死亡。
另外,微生物在高温下死亡也很可能起因于部分RNA热钝化以及损坏原生质膜所引起。
一般来说当温度升高到破坏呼吸酶的程度时,细菌即不能生长。
二、低温对微生物的影响低温会减少或停止微生物的代谢作用。
温度低于冰点时,可以使原生质内的水分结冰,导致细胞死亡。
冻死与热死一样,其生物化学根据也未完全了解。
一般认为冻死是由于细胞内水分结冰形成冰晶扰乱了原生质胶体状态和对原生质膜与细胞壁的结构产生机械破坏所致。
另一方面,当微生物的悬液被冰冻时,尽管悬液中形成冰,而细胞内的水分仍保持过冷的液体状态,悬液中结冰后,细胞外溶液浓度上升,细胞内水分外渗而使细胞内溶质浓度增加,以致于质壁分离,造成死亡。
而真空冷冻干燥保藏菌种时,为什么菌体不会死亡呢?这是因为真空冷冻千燥时,由于冷冻迅速,菌体溶液中水分不形成结晶,而呈不定形玻璃状,当被迅速融化时,玻璃状水分也不形成结晶,这就是冷冻干燥保藏菌种的依据。
温度对生物体代谢和生理功能的影响温度是生物体生存和繁衍的重要环境因素之一。
无论是微生物、植物还是动物,都对温度有一定的适应性。
温度对生物体的代谢和生理功能有着深远的影响。
首先,温度对生物体的代谢速率有着直接的影响。
一般来说,温度升高会加速生物体的代谢过程,而温度降低则会减缓代谢速率。
这是因为温度的变化会影响生物体内部的化学反应速率。
在较高温度下,生物体的酶活性增强,代谢反应速率加快,能量消耗也相应增加。
相反,在较低温度下,酶活性减弱,代谢反应速率减缓,能量消耗减少。
这种温度调节代谢速率的机制使得生物体能够适应不同的环境温度。
其次,温度对生物体的生理功能也有重要影响。
温度的变化会直接影响生物体的生长、繁殖、免疫系统以及行为等方面。
例如,在温度适宜的条件下,植物的生长速度会加快,花期提前,果实成熟时间缩短。
而在过高或过低的温度下,植物的生长受到抑制,甚至导致枯萎死亡。
对于动物来说,温度的变化也会对其繁殖产生影响。
许多动物的繁殖季节与温度密切相关,温度的升高或降低可能会导致繁殖行为的改变,影响种群的数量和分布。
温度还对生物体的免疫系统产生影响。
研究表明,温度的变化会影响生物体的免疫功能,使其易受感染或抵抗力下降。
在寒冷的环境下,人体的免疫系统会受到抑制,增加感染疾病的风险。
而在高温环境下,人体容易出现脱水、中暑等问题,也会影响免疫系统的正常功能。
因此,温度的适宜调节对于维持生物体的免疫功能非常重要。
此外,温度还会对生物体的行为产生影响。
许多动物会根据温度的变化来选择栖息地、迁徙或冬眠。
例如,候鸟会根据温度的变化选择合适的迁徙时间和路径,以寻找更适宜的生存环境。
温度的变化也会影响动物的觅食行为、求偶行为以及社会行为等。
这些行为调节能够帮助生物体适应不同的温度环境,提高生存和繁殖的成功率。
总之,温度对生物体的代谢和生理功能有着重要的影响。
温度的变化会直接影响生物体的代谢速率、生理功能、免疫系统以及行为等方面。
实验三十五温度对微生物的影响
一、目的要求
了解不同微生物对高温的抵抗力以及同一微生物在不同的温度下对其生长的影响。
二、基本原理
温度是影响微生物生长与存活的重要因素之一。
当微生物处于最适生长温度时,有刺激生长的作用;不适宜的温度可以导致细菌的形态和代谢的改变或使微生物的蛋白质凝固变性而导致死亡。
不同的微生物对温度的抵抗力不同,如大肠杆菌在60℃10分钟内致死,而枯草芽孢杆菌在100℃ 6-17分钟内才能致死,这是因为芽孢不仅含水量低,有厚而致密的壁,而且还含有特殊的物质——吡啶二羧酸,所以芽孢杆菌的抗热能力比大肠杆菌强。
三、器材
大肠杆菌,枯草芽孢杆菌;
肉膏蛋白胨液体培养基试管16支,吸管,恒温水浴,温度计等。
四、操作步骤
1.将培养48小时的大肠杆菌和枯草芽孢杆菌斜面加入无菌生理盐水各5ml,用接种环刮下菌体,制成菌悬液。
2.取肉膏蛋白胨液体培养基试管16支,从1至16编号并注明各管所接菌种的名称和处理的温度及时间。
3.在单号1、3、5、7、9、11、13、15管中各接入大肠杆菌悬液0.2ml,在双号2、4、6、8、10、12、14、16管中各接入枯草芽孢杆菌悬液0.2ml。
4.将已接种的1-8管同时放入50℃水浴中,10分钟后取出第1-4管。
再过10分钟(即处理20分钟)后取出第5-8管;同法将接过菌种的第9-16管同时放入100℃水浴中,10分钟后取出第9-12管。
再过10分钟(即20分钟)后取出第13-16管。
5.上述各管取出后,立即用冷水冲凉,然后置37℃恒温室内培养24小时后,观察生长情况。
五、实验报告
1.结果
比较大肠杆菌和枯草芽孢杆菌对高温的抵抗能力。
生长情况用“-”表示不生长;“+”表示生长较差,“++”表示生长一般;“+++”表示生长良好。
将结果记录于下表中。
2.思考题
实验结果说明哪种微生物对高温抵抗能力强?为什么。