人教版高中数学选修2-1第二章圆锥曲线与方程2.4抛物线(教师版)【个性化辅导含答案】
- 格式:docx
- 大小:83.08 KB
- 文档页数:8
第二章圆锥曲线与方程
本章综述
本章的内容是:曲线与方程,椭圆,双曲线,抛物线.重点是圆锥曲线标准方程及其性质的研究.难点是已知曲线求方程.
根据已知条件选择适当的坐标系,借助数和形的对应关系建立曲线方程,把形的问题转化为数的研究,再把数的研究转化为形来讨论,这是解析几何的基本思想和方法.用解析法研究圆锥曲线是从初等数学过渡到高等数学的开始和阶梯,也是学习其他科学技术的基础,而学习圆锥曲线,需要综合运用过去学过的数学知识,因此,学习这一章,起着承前启后的作用.圆锥曲线是解析几何的重点内容.要深入理解曲线与方程的有关概念与相互关系,重点抓住两个基本问题:一是根据曲线方程研究曲线的基本性质;二是根据曲线的几何特征求曲线的方程.学习本章常用的方法有直接法、代入法、几何法、定义法、交轨法、参数法等. 圆锥曲线方程的应用和开放题在教材的例题和习题中有多处涉及,在各地的高中会考和高考模拟试卷中也有逐年增加的趋势,这类试题一般都紧扣课本内容,贴近生活,具有跨学科的特点.在高考中圆锥曲线占总分的15%左右,分值一直保持稳定.选择题、填空题重视基础知识和基本方法,而且具有一定的灵活性与综合性;解答题注重基本方法、数学思想的理解掌握和灵活运用,通常又不单独考查,多数情况是与函数、向量、数列结合起来,综合性强,难度较大,常被安排在试题最后.。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.准线与x轴垂直,且经过点(1,-2)的抛物线的标准方程是()A.y2=-2x B.y2=2xC.x2=2y D.x2=-2y【解析】由题意可设抛物线的标准方程为y2=ax,则(-2)2=a,解得a=2,因此抛物线的标准方程为y2=2x,故选B.【答案】 B2.以双曲线x216-y29=1的右顶点为焦点的抛物线的标准方程为()A.y2=16x B.y2=-16x C.y2=8x D.y2=-8x【解析】因为双曲线x216-y29=1的右顶点为(4,0),即抛物线的焦点坐标为(4,0),所以抛物线的标准方程为y2=16x.【答案】 A3.已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线的斜率为2,且右焦点与抛物线y2=43x的焦点重合,则该双曲线的离心率等于()A. 2B. 3C .2D .2 3【解析】 抛物线的焦点为(3,0),即c = 3.双曲线的渐近线方程为y =b a x ,由b a =2,即b =2a ,所以b 2=2a 2=c 2-a 2,所以c 2=3a 2,即e 2=3,e =3,即离心率为 3.【答案】 B4.抛物线y 2=12x 的准线与双曲线y 23-x 29=-1的两条渐近线所围成的三角形的面积为( )A .3 3B .2 3C .2 D. 3【解析】 抛物线y 2=12x 的准线为x =-3,双曲线的两条渐近线为y =±33x ,它们所围成的三角形为边长等于23的正三角形,所以面积为33,故选A.【答案】 A5.抛物线y 2=8x 的焦点到准线的距离是( )A .1B .2C .4D .8【解析】 由y 2=2px =8x 知p =4,又焦点到准线的距离就是p .故选C.【答案】 C二、填空题6.抛物线y 2=2x 上的两点A ,B 到焦点的距离之和是5,则线段AB 的中点到y 轴的距离是________.【解析】 抛物线y 2=2x 的焦点为F ⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12,设A (x 1,y 1),B (x 2,y 2),则|AF |+|BF |=x 1+12+x 2+12=5,解得x 1+x 2=4,故线段AB 的中点横坐标为2.故线段AB 的中点到y 轴的距离是2.【答案】 27.对标准形式的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④由原点向过焦点的某直线作垂线,垂足坐标为(2,1).其中满足抛物线方程为y 2=10x 的是________.(要求填写适合条件的序号)【解析】 抛物线y 2=10x 的焦点在x 轴上,②满足,①不满足;设M (1,y 0)是y 2=10x 上的一点,则|MF |=1+p 2=1+52=72≠6,所以③不满足;由于抛物线y 2=10x 的焦点为⎝ ⎛⎭⎪⎫52,0,过该焦点的直线方程为y =k ⎝⎛⎭⎪⎫x -52,若由原点向该直线作垂线,垂足为(2,1)时,则k =-2,此时存在,所以④满足.【答案】 ②④8.抛物线y =2x 2的准线方程为________.【解析】 化方程为标准方程为x 2=12y ,故p 2=18,开口向上,∴准线方程为y =-18.【答案】 y =-18三、解答题9.求焦点在x 轴上,且焦点在双曲线x 24-y 22=1上的抛物线的标准方程.【解】 由题意可设抛物线方程为y 2=2mx (m ≠0),则焦点为⎝ ⎛⎭⎪⎫m 2,0. ∵焦点在双曲线x 24-y 22=1上,∴m 24×4=1,求得m =±4, ∴所求抛物线方程为y 2=8x 或y 2=-8x .10.已知平面上动点P 到定点F (1,0)的距离比点P 到y 轴的距离大1,求动点P 的轨迹方程. 【导学号:18490069】【解】 法一 设点P 的坐标为(x ,y ), 则有(x -1)2+y 2=|x |+1.两边平方并化简,得y 2=2x +2|x |.∴y 2=⎩⎪⎨⎪⎧4x (x ≥0),0(x <0), 即点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0).法二 由题意知,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y =0上的点符合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x =-1的距离相等,故点P 的轨迹是以F 为焦点,x =-1为准线的抛物线,方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y =0(x <0).[能力提升]1.已知P 为抛物线y 2=4x 上的一个动点,直线l 1:x =-1,l 2:x +y +3=0,则P 到直线l 1,l 2的距离之和的最小值为( )A .2 2B .4 C. 2 D.322+1【解析】 将P 点到直线l 1:x =-1的距离转化为点P 到焦点F (1,0)的距离,过点F 作直线l 2的垂线,交抛物线于点P ,此即为所求最小值点,∴P 到两直线的距离之和的最小值为|1+0+3|12+12=22,故选A. 【答案】 A2.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 为原点,若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322 D .2 2【解析】 根据题意画出简图(图略),设∠AFO =θ(0<θ<π),|BF |=m ,则点A 到准线l :x =-1的距离为3,得3=2+3cos θ,得cosθ=13,又m =2+m cos(π-θ),得m =21+cos θ=32,△AOB 的面积为S =12·|OF |·|AB |·sin θ=12×1×⎝ ⎛⎭⎪⎫3+32×223=322,故选C. 【答案】 C3.如图2-4-1是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽________m.图2-4-1【解析】 以拱顶为坐标原点,建立如图所示的平面直角坐标系.设抛物线的标准方程为x 2=-2py (p >0).则A (2,-2),代入方程得p =1,∴抛物线的方程为x 2=-2y ,设B (x 0,-3)(x 0<0)代入方程得x 0=- 6.∴此时的水面宽度为2 6 m.【答案】 2 64.已知抛物线y 2=2px (p >0)的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1,点M ⎝ ⎛⎭⎪⎫23,-263是两条曲线的一个公共点. 【导学号:18490070】(1)求抛物线的方程;(2)求双曲线的方程.【解】 (1)把M ⎝ ⎛⎭⎪⎫23,-263代入方程y 2=2px , 得p =2,因此抛物线的方程为y 2=4x .(2)抛物线的准线方程为x =-1,所以F 1(-1,0),设双曲线的右焦点为F ,则F (1,0),于是2a =||MF 1|-|MF ||=⎪⎪⎪⎪⎪⎪73-53=23, 因此a =13.又因为c =1,所以b 2=c 2-a 2=89, 于是,双曲线的方程为x 219-y 289=1.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
浙江省金华市磐安县高中数学第二章圆锥曲线与方程2.4 抛物线及其标准方程教案新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省金华市磐安县高中数学第二章圆锥曲线与方程2.4 抛物线及其标准方程教案新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省金华市磐安县高中数学第二章圆锥曲线与方程2.4 抛物线及其标准方程教案新人教A版选修2-1的全部内容。
抛物线及其标准方程一、学情分析:对于高二的学生,在初中已经学过二次函数的图像是抛物线,研究过抛物线的顶点坐标、对称轴等问题,而我们现在学的圆锥曲线是要从最基本的图形入手来研究抛物线的特征,学生有了对抛物线的简单认识,所以学习这节课是对以前所学内容的进一步加深,符合我们的教育思路“由浅入深,步步深入”.二、学生课前准备活动:1.预习课本P64—67,对抛物线的定义和由来有一个大致的了解2.通过对抛物线的标准方程的认识,能够懂得现在要学的内容和以前所学的二次函数区别与联系。
三、教师课前准备:1.搜集与这节课有关的资料,认真备课,做课件,写教案,设计图片,明确教学过程中的重难点,设计引入问题的方法,结合学生的具体情况设计出符合学生具体内容的设计思路。
四、教学课题 2。
4 抛物线及其标准方程从这节课开始我们将对抛物线进行研究,和前面学的椭圆、双曲线的研究思路一样,都是先研究它的定义及标准方程,再研究它的简单几何性质,主要让学生进一步学习数形结合、分类太论,化归、函数与方程的数学思想。
五、教材分析:抛物线它是中学数学中的重要内容,它是在我们学习了二次函数的基础上的进一步深化,对于它的本质学生还不了解,所以我们在学习了椭圆(0<e<1)、双曲线(e〉1)这些圆锥曲线之后再来研究抛物线(e=1)就带来了很大的方便,这也是解析几何“用方程研究曲线”的思想的进一步深化。
2-1 1
抛物线的几何性质
辽宁省本溪满族自治县高中数学 第二章 圆锥曲线与方程 2.4.2 抛物线的几何性质教案 新人教B 版选修2-1
教学过程设计 教材处理 师生活动 二、例题向右,又抛物线经过点P (4,32) ,求它的标准方程,并画出图形。
例2.已知点A 在平行于Y 轴的直线上,且L 与X 轴的交点
三、随堂训练x 4
1=2、已知正三角形AOB 的顶点A ,B 在抛物线 6x y =上,O
是坐标原点,求三角形AOB 的边长。
3、垂直于x 轴的直线与抛物线4x y =交于A ,B 两点,且
34AB ,求直线4顶点在原点,关于坐标轴对称,且过点(2,3)-的抛物线方
辽宁省本溪满族自治县高中数学第二章圆锥曲线与方程 2.4.2 抛物线的几何性质教案新人教B版选修2-1
教学
目标
1。
抛物线【知识要点】1、抛物线的定义:平面内与一定点F 和一条定直线l (l 不经过点F)距离相等的点的轨迹叫做抛物线。
定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。
2、 抛物线的性质:抛物线的图形、标准方程、焦点坐标以及准线方程如下表::过抛物线的焦点且垂直于对称轴的弦H 1H 2称为通径;通径:|H 1H 2|=2P 4、焦点弦:过抛物线22y px =(0)p >焦点F 的弦AB ,若1122(,),(,)A x y B x y ,则①||AF =x 1+2p ,(定义) ②12x x =42p ,12y y =-p 2.(韦达定理)③ 弦长)(21x x p AB ++=,p x x x x =≥+21212,即当x 1=x 2时,弦长最短为2p ,此时弦即为通径。
④ 若AB 的倾斜角为θ,则AB =θ2sin 2p(焦点弦公式与韦达定理)---(重点)5、直线与抛物线相交所得弦长公式1212||||AB x x y y =-=-6、点P(x 0,y 0)和抛物线22y px =(0)p >的位置关系(1)点P(x 0,y 0)在抛物线22y px =(0)p >内⇔y 20<2px 0 (2)点P(x 0,y 0)在抛物线22y px =(0)p >上⇔y 20=2px 0 (3)点P(x 0,y 0)在抛物线22y px =(0)p >外⇔y 20>2px 07、直线与圆锥曲线的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:Ax+By+C=0: Ax+By+C=0,C f(x,y)=0,f(x,y)=0l ⎧⎨⎩设直线 圆锥曲线:由(注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.)---(重点)【解题方法】【关于抛物线定义的运用】1、 运用性质定理,抛物线上一点到焦点的距离相等列出等式,然后化简即得方程。
抛物线__________________________________________________________________________________ __________________________________________________________________________________ 1. 了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用; 2. 掌握抛物线的定义、几何图形、标准方程及简单几何性质. 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质图形标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离 性质顶点 O (0,0) 对称轴 y =0 x =0 焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线方程 x =-p 2x =p 2y =-p 2y =p 2范围x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R开口方向向右 向左向上向下例1:过点(0,-2)的直线与抛物线y 2=8x 交于A 、B 两点,若线段AB 中点的横坐标为2,则|AB|等于( )A .217B .17C .215D .15【解析】设直线方程为y =kx -2,A(x 1,y 1)、B(x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,得k 2x 2-4(k +2)x +4=0.∵直线与抛物线交于A 、B 两点,∴Δ=16(k +2)2-16k 2>0,即k>-1. 又x 1+x 22=2k +2k2=2,∴k =2或k =-1(舍去). ∴|AB|=1+k 2|x 1-x 2|=1+22·x 1+x 22-4x 1x 2=542-4=215.【答案】C练习1:已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3C. 5D.92【答案】A练习2:F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为________.【答案】52类型二 抛物线的标准方程和几何性质例2:已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A .45B .35C .-35D .-45【解析】由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0,∴x =1或x =4.不妨设A(4,4),B(1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →|·|FB →|=-85×2=-45.故选D .【答案】D练习1:已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12【答案】C练习2: 如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.【答案】12类型三 抛物线焦点弦的性质例3:已知直线y =k(x +2)(k>0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA|=2|FB|,则k 等于( )A .13B .23C .23D .223【解析】设A(x 1,y 1),B(x 2,y 2),易知x 1>0,x 2>0,由⎩⎪⎨⎪⎧y =k x +2y 2=8x得k 2x 2+(4k 2-8)x +4k 2=0,∴x 1x 2=4,① 根据抛物线的定义得,|FA|=x 1+p2=x 1+2,|FB|=x 2+2,∵|FA|=2|FB|,∴x 1=2x 2+2,② 由①②得x 2=1,∴B(1,22),代入y =k(x +2)得k =223,选D .【答案】D练习1:过抛物线y 2=2px(p>0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.【解析】直线y =x -p 2,故⎩⎪⎨⎪⎧y =x -p 2y 2=2px ,∴x 2-3px +p24=0,|AB|=8=x 1+x 2+p ,∴4p =8,p =2. 【答案】2类型四 直线与抛物线的位置关系 例4:如图所示,O 为坐标原点,过点P(2,0),且斜率为k 的直线l 交抛物线y 2=2x 于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的方程; (2)求x 1x 2与y 1y 2的值; (3)求证:OM ⊥ON【解析】(1)直线l 的方程为y =k(x -2)(k ≠0).①(2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON. 【答案】(1)直线l 的方程为y =k(x -2)(k ≠0).①(2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON.练习1 设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A.()13, B .()14, C .()23, D .()24,【答案】D练习2:抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OP →·OQ →=________.【答案】201. 已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为( )A.2212128x y -= B.2212821x y -= C.22134x y -= D.22143x y -=【答案】D2. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.3. 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43【答案】D4. 抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_________ 【答案】p=2 5. 曲线y =e-5x+2在点(0,3)处的切线方程为________.【答案】y =-5x +36.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M(m,0)且与曲线C 有两个交点A 、B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.【答案】(1)由已知得:曲线C 上的点到点F(1,0)与到x =-1的距离相等,∴曲线C 是以F(1,0)为焦点的抛物线,设y 2=2px(p>0),∵p 2=1,∴p =2,∴方程为:y 2=4x(x>0). (2)假设存在M(m,0)(m>0). 当直线l 斜率不存在时,l :x =m , 设交点A(m,2m),B(m ,-2m), FA →=(m -1,2m),FB →=(m -1,-2m), ∴FA →·FB →=m 2-6m +1<0, ∴3-22<m<3+2 2.当直线l 斜率存在时,l :y =k(x -m)(k ≠0),设A(x 1,y 1),B(x 2,y 2),⎩⎪⎨⎪⎧y 2=4xy =k x -m∴ky 2-4y -4km =0,∴Δ=16+16k 2m>0恒成立, y 1+y 2=4k,y 1y 2=-4m ,又y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+8m ,∵FA →·FB →=(y 214-1)·(y 224-1)+y 1y 2=y 1y 2216-14(y 21+y 22)+y 1y 2+12 =m 2-14(16k 2+8m)-4m +12=m 2-6m +1-4k2<0,即:4k 2>m 2-6m +1对∀k ≠0恒成立,又4k 2>0,∴m 2-6m +1<0恒成立, ∴3-22<m<3+22,综上,m 的取值范围是:3-22<m<3+2 2._________________________________________________________________________________ _________________________________________________________________________________基础巩固(1)1.抛物线x 2=12y 的焦点坐标为( )A.⎝ ⎛⎭⎪⎫12,0 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫18,0 D.⎝ ⎛⎭⎪⎫0,18 【答案】D2.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为( ) A .2 B .1C.12D.14【答案】A3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x2【答案】D4.已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( )A .2 2B .3C .2 3D .4【答案】B5.已知P 是抛物线y 2=2x 上动点,A ⎝ ⎛⎭⎪⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4 B.92C .5D.112【答案】B6. 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( )A.72 B .3C.52D .2【答案】B7. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332 D.94【答案】D能力提升(2)8.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的左顶点,则p =________. 【答案】29.已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为________.【答案】x-y-1=010.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=________.【答案】011. 如图14,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.图14【答案】12.已知动点P(x,y)(y≥0)到定点F(0,1)的距离和它到直线y=-1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设圆M过点A(0,2),且圆心M(a,b)在曲线C上,若圆M与x轴的交点分别为E(x1,0)、G(x2,0),求线段EG的长度.【答案】(1)依题意知,曲线C是以F(0,1)为焦点,y=-1为准线的抛物线.∵焦点到准线的距离p=2,∴曲线C方程是x2=4y.(2)∵圆M∴其方程为(x-a)2+(y-b)2=a2+(b-2)2令y=0得:x2-2ax+4b-4=0.则x1+x2=2a,x1·x2=4b-4.∴(x1-x2)2=(x1+x2)2-4x1·x2=(2a)2-4(4b-4)=4a2-16b+16.又∵点M(a,b)在抛物线x2=4y上,∴a2=4b,∴(x1-x2)2=16,即|x1-x2|=4.∴线段EG的长度是4.。