2011塑性变形机制(1)解析
- 格式:ppt
- 大小:7.17 MB
- 文档页数:13
塑性变形名词解释塑性变形是指物质在受外力作用下发生不可逆的形变现象,其过程中原子或分子之间的排列和结构发生变化。
与弹性变形不同,塑性变形一旦发生,物质会永久性地保留其新的形状,无法恢复到原来的状态。
塑性变形广泛应用于材料科学、工程设计和制造等领域。
塑性变形的机制主要包括滑移、位错、扩散和相变等。
滑移是指晶格中的层状或面状结构在外力作用下沿着特定的晶面滑动,使晶体形成一种新的排列方式。
位错是晶格中原子位置的不连续和错位,是塑性变形的主要因素。
位错可以通过滑移、扩散或界面运动等方式发生移动,从而导致物质发生形变。
扩散是指物质中原子、离子或分子在固态中的移动,可以促使位错发生移动并引起塑性变形。
相变是一种物质由一个物态转变为另一个物态的过程,通过控制相变条件,可以实现塑性变形。
塑性变形对于材料的物理性质和力学性能具有重要影响。
塑性变形可以提高材料的延展性和塑性,降低其脆性和硬度,使其更适合于各种加工工艺。
塑性变形还可以改善材料的强度、硬度和韧性等机械性能,使之更适合于工程设计和制造。
此外,塑性变形还可以提高材料的导电性、导热性和耐腐蚀性等物理性质,扩大其应用领域。
塑性变形可以通过多种方式实现,包括热变形、冷变形、压力变形和拉力变形等。
热变形是在高温下进行的塑性变形,利用高温使材料的形变性能得以改善。
冷变形是在室温下进行的塑性变形,适用于各种类型的材料加工。
压力变形是通过在材料表面施加压力,使材料在局部区域内发生塑性变形。
拉力变形是通过对材料施加拉力,使其在延伸方向上发生塑性变形。
总之,塑性变形是物质在外力作用下发生不可逆形变的过程,其机制包括滑移、位错、扩散和相变等。
塑性变形对于材料的物理性质和力学性能具有重要影响,可以改善材料的延展性、韧性和均匀性,使之适应不同的工程需求。
塑性变形可以通过热变形、冷变形、压力变形和拉力变形等方式实现,广泛应用于材料科学、工程设计和制造等领域。
一、模具特点:1生产效率高2有利于自动化生产3产品互换性好4少、无切削加工、省材料5质量、精度高二、模具成型工艺:1 锻模:(1)镦锻—冷镦、温镦、热镦,热锻—模锻、胎模锻2挤压3拉拔:拉丝、拔管4冲压:分离、成形5压铸6塑料成形:模压成型、挤压成型、塑料成型三、模具的分类:1按再结晶温度分:冷变形模具、温变形、温变形模具2按模具加工的坯的工作温度分:热作模具、冷作模具、温作模具3按成形的材料分:1金属成形用模具2非金属成形用模具五、模具的设计时间T1:从模具设计到模具所有工艺文件、图样完成所用的时间,称模具设计时间T1。
六、模具的制造时间T2:模具从制造开始到初次使用时所用的时间,称为T2。
七模具的安装、调试时间T3:模具制造出来后,装在相应生产设备上,调试生产第一件合格产品所用的时间,称为模具的安装、调试时间T3。
八模具的修复及维护时间T4:模后,暂时性地失去功能或为了维护所用的时间,称为模具的修复及维护时间T4。
T4包含拆卸、重新装在设备上所用的时间。
九、模具的工作时间T5:模具在设备上生产出合格产品所模具的工作时间T5。
十、模具寿命与生产关率:减少模具的装配和修模次数与时间,提高模具的首次寿命与修复寿命,都能起到提高生产率的作用;设备工作节奏越快,模具寿命对生产率的影响就越大。
大批量生产时,缩短制模时间,采用快换模装置,缩短装模时间,减少修复次数,将增加工作时间整个时间的相对比例,会有效地提高生产率。
模具寿命的影响因素“1.凹圆角半径要小,几何形状:凹模角度一定时,挤压力越小,模具寿命越高。
模具结构形式:采用组合式模具。
导向装置的模具十一、1模具服役:模具安装调试后,正常生产合格产品的过程叫模具服役。
模具损伤:模具在使用过程中,出现尺寸变化或微裂纹,但没有立即丧失服役能力的状态叫模具损伤。
模具失效:模具受到损坏,不能通过修复而继续服役时叫模具失效。
广义的来讲,模具失效是指一套模具完全不能再用,生产中一般指模具的主要工作件不能再用。
材料力学中的塑性变形机制分析塑性变形是材料力学中一个重要的研究领域,它关注的是当材料受到应力时,如何在不断变形的过程中保持形状和结构的稳定性。
塑性变形机制是指材料在受力下产生塑性变形的基本过程和方式。
本文将从晶体塑性、材料硬化机制和高温塑性变形机制三个方面进行分析。
一、晶体塑性晶体塑性是指当晶体受到外部应力作用时,晶体发生形变,不会出现弹性恢复的现象。
晶体内存在许多晶格缺陷,如位错、空位、脱位等,这些晶格缺陷能有效地解释塑性变形的机制。
位错是晶体中最主要的塑性缺陷,它是由晶面错配引起的晶胞偏移。
当晶体受到外部应力作用时,位错会发生移动,导致晶体发生塑性变形。
二、材料硬化机制材料硬化是指材料在塑性变形过程中逐渐增加其应力与应变之间的比值,即材料的抗塑性变形能力增强。
材料硬化机制可以分为两个方面来理解:一方面是晶体硬化机制,另一方面是材料界面硬化机制。
晶体硬化机制主要是指晶体中位错的增多和运动困难,这导致了材料的硬化。
位错的增多是由于外力作用下新位错的产生和旧位错的增殖所致,而位错的运动困难则受到晶格缺陷的阻碍。
另外,晶胞的固溶体和强化相也会影响晶体的硬化程度。
材料界面的硬化机制主要是指材料中的晶界、相界等界面对材料塑性变形的抵抗。
晶界是晶体间的界面,相界是不同组成相之间的界面。
界面的存在导致了晶体中位错的吸引和束缚,从而增加了材料的硬度。
三、高温塑性变形机制高温塑性变形机制是指材料在高温下的塑性变形过程。
在高温下,材料的原子和晶胞具有较大的运动能力,晶格缺陷易于移动。
高温下的材料塑性变形机制主要包括位错滑移和晶胞的选择性分解。
位错滑移是指位错沿着某个晶体方向移动,从而使晶格产生位错滑移的塑性变形方式。
晶胞的选择性分解是指晶体在高温下,部分晶胞沿着特定晶面发生形变,而其他晶胞保持不变。
这种选择性分解使得材料发生特殊的形变,产生高温下的塑性变形。
总结起来,材料力学中的塑性变形机制分析可从晶体塑性、材料硬化机制和高温塑性变形机制三个方面展开。
塑性变形行为
形变特征
塑性变形通常具有以下特征:
1. 不可逆性:一旦发生塑性变形,材料无法恢复原来的形状,
而且会在施加外力的条件下不断变形。
2. 负荷依赖性:材料的塑性变形行为与施加的外力大小有关,
通常呈现出负荷增加、应变增加的趋势。
3. 加工硬化:材料在塑性变形后,其抗力会增加,即加工硬化
现象。
这是因为材料的晶界会发生择优取向,从而增加材料的强度。
4. 稳定塑性:一旦材料发生塑性变形,它的形变速率和变形模
式在稳定的载荷下不会发生明显变化。
形变机制
材料的塑性变形通常通过以下几种机制实现:
1. 滑移:在晶体中,塑性变形通常通过晶体平面上的原子滑移来实现。
原子滑移会导致晶体的形状发生变化。
2. 双Glide:双Glide是滑移的特殊情况,其中滑移面和滑移方向不相互垂直。
这会导致晶体中产生剪切应变。
3. 位错运动:位错是晶体中的缺陷,也是材料中塑性变形的主要载体。
位错可以通过滑移和蠕变两种方式来移动。
影响因素
材料的塑性变形行为受多种因素的影响,其中包括:
1. 温度:温度的变化会影响材料内部的晶界运动和位错运动。
2. 应变速率:应变速率的增加会增大材料的塑性变形,这是因为应变速率的增加会加大位错的数量和运动速度。
3. 组织结构:材料的晶粒大小、晶界分布和二相组织等结构特征会影响材料的塑性变形行为。
在工程实践中,深入了解塑性变形行为对于设计和制造高性能材料和零件至关重要。
只有充分理解材料的塑性变形机制和影响因素,才能合理选择材料并进行有效的工艺控制。
材料的塑性变形材料的塑性变形是材料力学学科中的一个重要概念,指的是材料在受力作用下发生的可逆性变形过程。
塑性变形是材料的一种特性,表现为材料在一定温度和应力情况下,发生塑性变形后不会恢复到原状态。
本文将从塑性变形的定义、性质、影响因素和应用领域等方面展开探讨。
材料的塑性变形是指材料在外力的作用下,呈现出形状的变化,这种变化是可逆的。
与弹性变形不同的是,塑性变形是在超过材料的屈服点后发生的,且发生塑性变形后,材料不会完全恢复到原来的形状。
塑性变形是材料内部晶格结构发生改变的结果,通过滑移、重结晶等机制实现。
塑性变形是材料力学中一个重要的研究对象,它与材料的性能密切相关。
在工程实践中,我们常常需要考虑材料在受力状态下的塑性变形性能,以确保材料在服役过程中不会发生意外事故。
此外,塑性变形还与材料的加工性能、成形性能等密切相关,因此对塑性变形的研究具有重要的理论和实际意义。
塑性变形的性质主要包括以下几个方面:1. 可逆性:塑性变形是可逆的,并且不会引起材料的永久形变。
2. 体积不变性:塑性变形并不改变材料的体积。
3. 定向性:塑性变形是有方向性的,取决于材料的晶体结构和加载方向。
塑性变形的影响因素主要包括应力、温度和变形速率等。
在一定温度条件下,应力越大,材料的塑性变形越明显;温度越高,材料发生塑性变形的能力越强;变形速率对于塑性变形的影响也非常显著,通常情况下,变形速率越大,材料的塑性变形越明显。
材料的塑性变形在工程实践中有着广泛的应用。
例如,金属材料的塑性变形性能直接影响着金属制品的成形性能;塑料制品的塑性变形特性决定了其在加工过程中的可塑性等。
因此,通过研究材料的塑性变形特性,可以指导工程实践中材料加工的选择和工艺优化,提高材料的利用率和产品质量。
总之,材料的塑性变形是材料力学中一个重要的研究领域,具有重要的理论和实际意义。
通过深入研究材料的塑性变形特性,可以有效地指导工程实践中材料的选择和制造过程,为优化材料性能和提高产品质量提供理论支持。