车辆换算的规范
- 格式:docx
- 大小:15.24 KB
- 文档页数:2
文章编号:1673-6052(2019)05-0053-03 DOI:10.15996/j.cnki.bfjt.2019.05.015具体交通条件下车辆轴载换算系数计算方法常家树(辽宁省高速公路运营管理有限责任公司 沈阳市 110003) 摘 要:依据《公路沥青路面设计规范》(JTGD50-2017)对车辆当量设计轴载换算系数的确定过程进行分析,并参考国家及地方相关超限超载的治理政策,提出了具体设计交通条件下车辆当量设计轴载换算系数的计算方法。
关键词:特定交通;车辆当量设计轴载;换算系数中图分类号:U414 文献标识码:A1 概述《公路沥青路面设计规范》(JTGD50-2017)(以下简称设计规范)已于2017年9月正式实施。
规范中对于交通荷载的计算采用将车辆按轴型及轮胎数量划分为11类,然后将每类车换算为标准轴载作用次数来确定设计轴载作用次数,这需要首先确定车辆当量设计轴载换算系数。
对于此系数,规范规定可以采用三个水平来确定,其中,水平一是依据道路的实际荷载确定,水平二是根据当地经验确定,水平三是根据规范中推荐的数值来确定。
在实际应用中,对于低等级道路或者新建的高等级道路,由于缺乏必要的资金、时间及技术手段,故很难依据水平一来进行设计,而水平二的建立需要大量的地方统计数据,因此对其应用受到一定的限制,所以设计时绝大多数采用的是水平三,也就是规范中推荐数值。
由于规范中推荐数值是建立在全国交通条件下的一般值,对于具体设计的某一条路,荷载计算针对性不强,依据规范,对具体计算过程进行细化分析。
2 车辆当量设计轴载换算系数确定过程分析由于设计规范中对车辆当量设计轴载换算系数给出了推荐值,但未给出其确定方法,不能直接进行应用。
故需依据其提供的计算公式,找到具体的计算过程。
车辆类型分类及相关参数的定义与设计规范相同。
首先依据式(1)确定车辆的当量设计轴载换算系数:EALFm=EALFml×PERml+EALFmh×PERmh(1)式中:EALFm为m类车辆的当量设计轴载换算系数;EALFml、EALFmh为m类车辆中非满载及满载的当量设计轴载换算系数;PERml、PERmh为m类车辆中非满载及满载的车辆百分比。
三、标准轴载与轴载换算路面设计时使用累计当量轴次的概念。
但在道路上行驶的车辆类型很多,所以必需选定一种标准轴载,把不同类型轴载的作用次数。
根据道路汽车运输车辆的现状及发展趋势。
我国路面设计以双轮组单轴载100kn为标准轴载,以BZZ-100表示。
标准轴载的计算参数按下表确定。
标准轴载计算参数当把各种轴载换算为标准轴载时,为使换算前后轴载对路面的作用达到相同的效果,应该遵循两项原则:第一,换算以达到相同的临界状态为标准,即对同一种路面结构,甲轴载作用N1次后路面达到预定的临界状态,路面弯沉为L1,乙轴载作用路面达到相同临界状态作用次数为N2,弯沉为L2,此时甲乙两种轴载作用是等效的。
则应按此等效原则建立两种轴载作用次数之间的换算关系;第二,对某一种交通组成,不论以哪种轴载的标准进行轴载换算,由换算所得轴载作用次数计算的路面厚度是相同的。
当以设计弯沉值为设计指标及沥青层层底拉应力验算时,凡轴载大于25kn的各级轴载(包括车辆的前、后轴)P i的次数n i,均按如下公式换算成标准轴载P的当量作用次数N。
式中:N——标准轴载的当量轴次,次/日;n i——被换算车辆的各级轴载作用次数,次/日;P——标准轴载,kn;P i——被换算车辆的各级轴载,kn;k——被换算车辆的类型数;C1——轴数系数,C1 =1+1.2(m-1),m是轴数。
当轴间距大于3m时,按单独的一个轴载计算,当轴间距小于3m时,应考虑轴数系数;C2——轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。
当进行半刚性基层层底拉应力验算时,凡轴载大于50 kn的各级轴载(包括车辆的前后轴)的作用次数n i,均按如下公式换算成标准轴载p的当量作用次数n’。
式中:C1’—轴数系数,C2’=1+2(m-1);c’2—轮组系数,单轮组为1.85,双轮组为1.0,四轮组为0.09。
上述轴载换算公式仅适用于单轴轴载小于130 kn的轴载换算。
对于城市道路的路面设计,请参照城市道路设计规范的有关规定进行轴载换算。
关于调整公路交通情况调查车型分类及车辆折算系数的通知规统便字[2005]126号各省、自治区、直辖市交通(厅、委),天津、上海市政工程管理局,新疆生产建设兵团交通局,各有关单位:根据《公路工程技术标准》(JTG B01—2003)关于车型分类及车辆折算系数的规定,并结合公路交通情况调查统计工作的实际情况,现对公路交通情况调查车型分类及车辆折算系数进行调整。
具体如下:一、车型分类及车辆折算系数公路交通情况调查统计工作所采用的调查车型及车辆折算系数的调整方案见下表:调查车型分类及车辆折算系数表车型折算系数荷载及功率备注机动汽车小客车 1.0额定座位≤19座大客车 1.5额定座位>19座小型货车 1.0载质量≤2吨中型货车 1.52吨<载质量≤7吨包括吊车大型货车 2.07吨<载质量≤14吨特大型货 3.0载质量>14吨车车拖挂车 3.0包括半挂车、平板拖车集装箱车 3.0摩托车 1.0包括轻骑、载货摩托车及载货(客)机动三轮车等拖拉机 4.0非机动车人畜力车畜力车 4.0人力车 1.0包括人力三轮车、手推车自行车0.2 包括助动车注:交通量换算采用小客车为标准车型。
二、实施安排自2005年9月1日起,各有关单位应按本通知要求的调查车型分类及车辆折算系数(简称“新方案”,2004年以前的车型分类及车辆折算系数方案简称“旧方案”),开展公路交通情况调查统计及分析工作。
2005年统计年报数据应按“新方案”进行统计、分析,其中2005年1-8月份的数据参照2005年9月-12月按新方案统计的数据进行车型分类的调整。
各有关单位应认真做好公路交通情况调查车型分类及折算系数的调整工作,同时做好交通量调查设备车型分类调整工作,确保统计数据的连续性和准确性。
二OO五年八月十七日___________________________________________________________________________ __________(抄送:部公路司、部规划研究院)。
长安大学硕士学位论文关于车辆当量换算系数的评价与研究姓名:刘俊德申请学位级别:硕士专业:交通运输规划与管理指导教师:马荣国20030401摘要本文首先对1940到1993年以来,国内外在交通工程研究中涉及到的车辆当量换算系数计算的原理、方法和技术成果进行了分析、比较和评价,阐述了这些研究结果的使用条件和局限性。
在此基础上,鉴于我国公路交通中车种多,车型复杂以及混合交通等的特点,通过对我们以前研究通行能力积累的成果和实地177个不同路段所采集到的大量交通观测数据的分析和研究,利用数理统计和随机场理论,提出了一种汽车道路作用空间的物理分析方法来研究车辆当量换算问题。
本文还论述了车辆道路作用空间的机理、特性和概念,并据此建立了车辆道路作用空间的数学模型。
最后,通过大量实验分析,研究确定了车辆的分型标准、汽车在运行过程中道路作用空闻的侧向和纵向特性及其相互关系的定量数值,推算出了基于不同交通运行条件下的车辆当量换算系数。
关键词:交通工程交通特性作用空间车辆当量通行能力服务水平技术参数AbstractInthispaper,thePCEprinciple,methodandtechnicalachievementoftraf丘cengineeringindomesticandoverseasfrom1940to1993areanalyzed.comparedandevaluated.Moreover.the1lseconditionandlimitationofthestudyingachievementareelaborated.Basedonit,inviewofthecomplexityofthevehiclckindsandmixedbm伍cindomestichighwayt随佑c,thephysicsmethodoninfluencespaceofvehicleisputforwardaccordingtotheachievementofstudyingtheroadcapacityandthemass仃a伍cobservationdataof177sectionofhighway.Inaddition,thevehicleinfluencespace,principle,character,conceptionandthemathematicsmodelarediscussed.Byanalyzedanumberofexperiment,thecriteriontodefinetypeofvehicles,fiaesideandverticaldirectionfeaturetoroadplaceoccupiedbyvehicleswhicharetravelingaswellasthefixedquantitytOdescribetherelationshiptoeachotheraredetermined.Atlast,thePCEofdifferenttravelingconditionsalealsoputforward.Keywords:TrafficengineeringTrafficcharacterInfluencespacePassengerCarEqualityRoadcapacityServicestandardTechnicalparameter第1章概述1.1研究背景近20多年以来,随着我国经济的持续稳定发展,交通基础设施的建设得到了长足的进步。